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Abstract
The objective of interactive translation prediction (ITP), a paradigm of computer-aided trans-

lation, is to assist professional translators by offering context-based computer-generated sug-

gestions as they type. While most state-of-the-art ITP systems are tightly coupled to a machine

translation (MT) system (often created ad-hoc for this purpose), our proposal follows a resource-
agnostic approach, one that does not need access to the inner workings of the bilingual resources

(MT systems or any other bilingual resources) used to generate the suggestions, thus allowing

to include new resources almost seamlessly. As we do not expect the user to tolerate more

than a few proposals each time, the set of potential suggestions need to be filtered and ranked;

the resource-agnostic approach has been evaluated before using a set of intuitive length-based

and position-based heuristics designed to determine which suggestions to show, achieving

promising results. In this paper, we propose a more principled suggestion ranking approach

using a regressor (a multilayer perceptron) that achieves significantly better results.

1 Introduction

Translation technologies are frequently used to assist professional translators. Common ap-

proaches use machine translation (MT) (Hutchins and Somers, 1992) or translation memo-

ries (Somers, 2003, Chapter 3) to produce a first (and usually inadequate) prototype of the trans-

lation which is then edited by the professional translator in order to produce a target-language

text that is adequate for publishing. In both scenarios, the suggestion may be considered by the

professional translators as a source of inspiration: they will assemble the final translation on

some occasions by accepting and rearranging parts of the proposal, or on other occasions by

introducing their own words when an appropriate equivalent is not found in the suggestion.

Our approach, described in a previous work (Pérez-Ortiz et al., 2014), follows a different

paradigm known as interactive translation prediction (ITP), which, instead of presenting a

translation proposal that gets reshaped by the target-language sentence formed in the translator’s

mind, focuses on offering translation suggestions as the translation is carried out. Most state-of-

the-art ITP approaches obtain the suggestions by means of a modified (or tailor-made) statistical

machine translation system (SMT) (Koehn, 2004) that is able to provide additional information

(such as word alignments, alternative translations, and scores or probabilities for the translation).

These systems are able to leverage more information from the bilingual resource than if it were

used unmodified as a black-box, but doing so they inherit the common requirements of SMT,



namely, the dependency on the availability of extensive parallel corpora. It is worth noting that

integrating other resources of bilingual information would be almost impossible in this kind of

systems, as the ITP tool needs the additional information obtained from the underlying SMT

engine.

Unlike those previously described, the approach described here is able to use any bilingual

resource capable of delivering one or more translations into target language, regardless of how

they are obtained and without the need to modify the resource; suggestions are created by

generating all possible sub-segments of words in the source-language sentence (up to a given

length) and then querying the available bilingual resources for their translations. The nature of

these bilingual resources is not limited to MT systems, but they may also include translation

memories, dictionaries, catalogues of bilingual phrases, or any combination of them. A neural-

based machine learning algorithm trained on features extracted from the source sentence, from

the current prefix of the target sentence, and from the translated sub-segments is used to rank

and select which suggestions to show at each time step. Not having to rely on the inner workings

of each system allows us to integrate new resources without modifying how the ITP system

works; similarly, we do not need to modify the resources in any way. Both these features make it

possible to use any resource the professional translator has access to in a seamless way.

These translated sub-segments are then offered to the user as the translation is being typed

with the objective of saving keystrokes and, hopefully, time. In previous works we have explored

the performance of our approach considering rule-based MT systems (Pérez-Ortiz et al., 2014)

and in-domain and out-of-domain SMT systems (Torregrosa et al., 2014), using a naı̈ve strategy

based on a number of intuitive heuristics to rank and select a few suggestions that are shown

to the user. In this paper, however, we aim to improve the strategy by using machine learning

techniques. The improvement presented here is twofold: on the one hand, more coherent and

principled models are introduced; on the other hand, the results we achieve are significantly

better.

The remainder of the paper is organised as follows. After reviewing the state-of-the-art of

ITP in Section 2, we describe our method for generating and ranking translation suggestions

from bilingual resources in Section 3, emphasizing the differences between the sounder approach

presented in this paper and the former heuristic ranking method. We then introduce in Section 4

our experimental set-up and show the results of its evaluation. Finally, we discuss the results and

propose future lines of research in Section 5.

2 Related work

The systems which have most significantly contributed to the field of ITP are those built in the

pioneering TransType project (Foster et al., 1997; Langlais et al., 2000), and its continuation, the

TransType2 project (Macklovitch, 2006). These systems observe the current partial translation

already typed by the user and, by exploiting an embedded statistical MT engine, propose one or

more completions that are compatible with the sentence prefix entered by the user. The proposals

offered may range from one or several words to a completion of the remainder of the target

sentence. An automatic best-scenario evaluation with training and evaluation corpora belonging

to the same domain (Barrachina et al., 2009) showed that it might theoretically be possible to use

only 20–25% of the keystrokes in comparison with the unassisted translation for English–Spanish

translation (both directions) and around 45% for English–French and English–German.

A number of projects continued the research where TransType2 had left off. Caitra (Koehn,

2009) is an ITP tool which uses both the phrase table and the decoder of a statistical MT

system to generate suggestions. Researchers at the Universitat Politècnica de València have also

made significant improvements to a TransType2-style system such as allowing users to accept

discontinuous segments of the suggested translation (Domingo et al., 2016). The CASMACAT



project (Koehn et al., 2015) followed the same line of research, improving ITP using active and

on-line learning (Alabau et al., 2014). Commercial translation memory systems also integrate

some form of ITP as one of their basic features (see, for example, SDL Trados AutoSuggest

2.01), and new translation tools such as Lilt (Green et al., 2014) focus on delivering ITP on an

user-friendly web interface.

3 Method

As already described in other articles (Pérez-Ortiz et al., 2014; Torregrosa et al., 2014), our

method starts by generating all possible whole-word sub-segments of the source-language

sentence S of lengths l ∈ [1, L], where L is the maximum source sub-segment length measured

in words.2 The resulting sub-segments are then translated by means of a bilingual resource (or a

combination of bilingual resources). The set of potential proposals PS for sentence S is made

up of suggestions p, which in turn are made up of a target-language sub-segment tp and the

starting bp and ending ep positions of the corresponding sub-segment in S.

These suggestions are then offered as the translation T is being typed.3 Let Pr(x) be the

character-level set of prefixes of a string x, Tk the k-th word of T , and T̂ = T1...Tk−1ŵ the

partially translated sentence where ŵ ∈ Pr(Tk) is the currently typed prefix of Tk; we define the

set of compatible suggestions PS
compatible as

PS
compatible(ŵ) = {p ∈ PS : ŵ ∈ Pr(tp)}

For example, given S =“Mi sastre está sano”, with L = 2, the set of potential proposals will be

PS = { “My”, “My tailor”, “tailor”, “tailor is”, “is”, “is healthy”, “healthy”}; with T̂ =“My
t” and ŵ =“t”, the set of compatible suggestions would be PS

compatible = { “tailor”, “tailor
is”}.

As studied in (Pérez-Ortiz et al., 2014), the number of compatible suggestions depends not

only on the value of L, but also on the specific word prefix; for example, when users type the

letter d when translating a long sentence into Spanish, they will probably obtain a significant

number of suggestions starting with de4 originating from sub-segments located in different

source positions. Obviously, only suggestions originating from the part of the source sentence

currently being translated may be useful, but this position is difficult to determine unambiguously.

As we do not expect users to tolerate a long list of suggestions, more elaborated strategies are

needed both to rank suggestions and to reduce the list to a manageable size.

3.1 Previous approach

We have already proposed (Pérez-Ortiz et al., 2014) a naive way of ranking suggestions, based

on the following assumptions:

• the source-language sentence S and the target-language sentence T have similar lengths,

and translation is mainly monotonous; useful suggestions for the n-th word of T will be

generated from sub-segments close to the n-th word of S;

1http://www.translationzone.com/products/trados-studio/autosuggest/
2Suitable values for L will depend on the bilingual resource: on the one hand, we expect higher values of L to

be useful for high-quality MT systems, such as those translating between closely related languages, since adequate

translations may stretch to a relatively large number of words; on the other hand, L should be kept small for low-quality

MT systems whose translations quickly deteriorate as the length of the input sub-segment increases; of course, L will be

small for resources such as dictionaries.
3While T is fixed during automatic tests, professional translators may change their minds during the process.
4The preposition de (‘of’) is one of the most frequent words in Spanish texts.



• long suggestions are seldom useful,5 but when used there is a significant effort reduction;

• short suggestions are usually compatible,6 but do not save too much effort when used.

We therefore devised the following selection scheme: when the user translates the k-th word,

the shortest and longest (measured in number of words) suggestions originated from the closest

position in PS
compatible are offered, followed by the shortest and longest of the second closest

position, or, if no other position generated compatible suggestions, the second shortest and the

second longest suggestions from the previous position, and so on, up to a maximum number of

suggestions M .7

This heuristic performed remarkably well in spite of the simplicity of the approach: during

a conducted preliminary test using M = 4 with human translators (Pérez-Ortiz et al., 2014),

savings in the range of 25–65% keystrokes (depending on the language pair) were achieved,

without any explicit complaints from users about being offered too many suggestions.

3.2 Neural network model
The approach discussed in the preceding section can still be improved: on the one hand, more

rigorous and principled models rather than intuitive heuristics can be used; on the other hand, if

we get a better ranking of suggestions we can reduce the number of suggestions offered (reducing

the cognitive effort used for reading and selecting suggestions), the number of keystrokes or both.

Consequently, we propose to replace the previous intuitive heuristics with a ranker based on a

multilayer perceptron (Duda et al., 2000, Chapter 6).Four different systems will be trained, Full
feature set with usable suggestions, Full feature set with winning suggestions, Reduced feature
set with usable suggestions, and Reduced feature set with winning suggestions, depending on the

set of features and the kind of suggestions they will learn to identify:

• Full feature set: the full feature set that will be discussed in Subsection 3.3;

• Reduced feature set: a reduced feature set consisting of only two features, the length of

the suggestion and the normalized distance, as will be discussed in Subsection 3.3. This

that means that the model has access to similar information to that available to the previous

intuitive heuristic method.

• Winning suggestions: the set of winning suggestions, those that get chosen during the

automatic evaluation procedure described in Section 4. Winning suggestions are given a

score of 1, and the rest get a score of 0.8

• Usable suggestions: the set of usable suggestions, namely those which, for the current

partially translated sentence T̂ , could be used for advancing the translation, but are not

necessarily are part of the suboptimal sequence of actions the greedy automatic evaluation

procedure executes. For instance, given S =“Un coche rojo”, T =“A red car”, T̂ =“A r”,

p1 =“red” and p2 =“red car” both are deemed as usable, even when p2 would be more

advantageous. Usable suggestions are given a score of 1, and the rest get a score of 0.

5Our automatic testing strategy (see Section 4) only accepts suggestions that exactly match the provided reference.

However, professional translators may accept suggestions that slightly differ from their initial translation, editing the

suggestion or even adapting their planned translation. However, we lack a formal model that reflects this behaviour;

devising one is a requisite for conveying a more human-like automatic evaluation.
6Usually, short words such as determinants, prepositions, and non-ambiguous nouns are correctly translated even by

low quality resources.
7A system that reversed this order picking the longest and shortest suggestions, a second one picking first the longest

of each position and a third one picking first the shortest were also tested, but performed worse.
8During training, the desired output values will be 0 and 1, but during testing the network output will be a real value

between 0 and 1 that correlates with the goodness of the suggestion.



3.3 Features
We will use features fi, 1 ≤ i ≤ 30 for each p. As multilayer perceptrons cannot work with

nominal features, those will be transformed into multiple one-hot-encoded binary features and

then treated as numeric. Likewise, binary features are treated as numeric. The description of this

transformation will not be included in the definition of the features to avoid overcomplicating it;

when applied, the actual number of features grows to 79.

Length of the suggestion The length of the span the suggestion is generated from f1 = ep−bp
and the length of the translated sub-segment f2 = |tp|, both at the word and the character (f3, f4)

level. As discussed in Subsection 3.1, long suggestions are seldom used under our testing

conditions.

Position of the suggestion A set of features that relate to the position where each suggestion

comes from and where it is (potentially) offered. The features include the absolute position in

the source sentence f5 = bp and the position being currently worked on in the target sentence

f6 = k, the position normalized by the length of the sentence f7 = bp/|S| and f8 = k/|T |,9
the distance between source and target positions, both with absolute positions f9 = k − bp and

their normalized counterparts f10 = k/|T |−bp/|S|, and their position ratios f11 = k/bp. These

features help to determine how far we are from the suggestion source: long sentences will have

potentially higher values for the differences, but lower values on the ratio; the opposite stands for

short sentences. We also define (f12...f18), the equivalent feature set for character level positions

and distances.

Position and length A set of 3 nominalized features (f19, f20, f21) that relate to the position

and the length of the suggestion. Each feature takes a value in the {short, long} × {close, far}
set. We classify a suggestion as short if it has 2 or less words (f2) or 10 or less characters (f4),

and long otherwise. We classify a suggestion as close if it is 3 or less words away (f9), 20 or

less characters away (f15) or the ratio position (f11) is lower than 1.2; far otherwise. The feature

f19 uses word-level length and distance, f20 uses character-level length and distance, and f21
uses word-level length and ratio.

Distance distribution Given a training set, we compute the average x and standard deviation σ
values for the distribution of normalized distances and position ratios for the winning suggestions
set (as described in Subsection 3.2), we define four features:

• f22 = (f10 − x)/σ

• a nominal feature f23 that has 4 different classes depending on the relationship between f10
and the distribution: less than half σ away from x, a full σ away, 2σ away, or further;

• two more features (f24 and f25) similar to the two above, but replacing f10 with f11, using

their respective average and deviation.

Starting letter of the suggestion As discussed in Section 3, the starting letter of a word is

related to the size of the set of compatible suggestions PS
compatible. The nominal feature f26

takes the value of the first letter of the suggestion (ignoring the capitalization) if it belongs to the

English alphabet, and replaced with a generic other token otherwise.

Last action taken The binary feature f27 represents the action we took for the previous word

Tk−1: whether we typed it or it was part of an accepted suggestion.

9During testing, when the length of T cannot be known, we assume |T |= |S|.
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Figure 1: Alignment strengths for S =‘El coche blanco está destrozado’, T =‘The white
car is wrecked’, PS

compatible = { ‘The’, ‘The white’, ‘The white car’, ‘car’, ‘white car’,

‘white car is’,‘white’, ‘white is’, ‘white is wrecked’, ‘is’, ‘is wrecked’, ‘wrecked’}. Each sug-

gestion is given an alignment strength of 1, that gets evenly split along the surface of the

suggestion. Some suggestions like ‘white is wrecked’ cannot be aligned. Each position has a

label with the alignment strength over it; positions with more alignment strength are more likely

to be aligned.

Relationship to the last used suggestion The nominal feature f28 represents the relationship

of the current suggestion p with the last used one p′. It takes 5 possible values:

• p ends before p′, ep + 1 < bp′

• p is contiguous and is placed immediately before p′, ep + 1 = bp′

• p and p′ overlap,10 bp ∈ [bp′ , ep′ ] ∨ ep ∈ [bp′ , ep′ ]

• p is contiguous and is placed immediately after p′, bp − 1 = ep′

• p starts after p′, bp − 1 > ep′

At the beginning of the translation, where no suggestion has been used, all the suggestions are

deemed as belonging to the last category (starts after p′).

Light alignment model The light alignment model described in (Esplà-Gomis et al., 2012)

performs similarly to other state-of-the-art word-alignment methods using previously existing

bilingual resources without needing any training procedure. The model relies on a intuitive idea:

each sub-segment that contains Sj (the j-th word of S) whose translation covers Ty (the y-th

word of T ), and vice-versa, increases the likelihood (measured in alignment strength) of Sj and

Ty to be aligned. An example of how the model works is shown in Figure 1.

In the same way as the ITP system described here, all possible whole-word sub-segments of

S and T up to a given length are generated, and then translated using a bilingual resource (MT

in (Esplà-Gomis et al., 2012)), although we cannot use the sub-segments that are the product

of translating sub-segments of T : T only becomes available during the process as the user is

10This would mean a given part of S participates on the generation of different parts of T , which, in general terms, is

unlikely to be desirable.



typing it (which means nothing at all is available at the start); translating these sub-segments as

the translator types could degrade the performance of the system to the point that it coud not be

effectively used, specially if working with complex MT systems, when the user computer has

low processing power or on-line.

We take the original idea one step further: suggestions that cover an area with high alignment
strength are more likely to be aligned; hence those covering the position currently being worked

on (k) are more likely to be used. To this end, we analyze the set of suggestions that overlap with

the end of the typed prefix T̂ . Let Pr and Suf be the character-level set of prefixes and suffixes

of a given string, we define extender, the set of suggestions that overlap with and extend the end

of the current typed prefix T̂

extender(T̂ ) = {p ∈ PS : Pr(tp) ∩ Suf(T̂ ) �= ∅}
As discussed by Esplà-Gomis et al. (2012), we operate on the idea that sub-segment alignment

applies alignment pressure: the larger the surface covered, the weaker the confidence in the

alignment. Each sub-segment pair is given an alignment strength of 1 unit. This strength is split

evenly along the surface of the suggestion as measured in square words. So, the force exerted on

each position is

vp =
1

(ep − bp)|tp|
To estimate which position j of S is being worked on, we look at how much alignment strength
is exerted on it. For this mean, we define

W (j, T̂ ) =
∑

p∈extender(T̂ )

{
vp if j ∈ [bp, ep]
0 otherwise

As discussed, we interpret high alignment strength as high confidence in an alignment; positions

(j) of S with higher pressure for the position k of T currently being worked on are more likely

to be aligned. Hence, suggestions covering k whose area collects more alignment strength have

a higher probability of being direct translation of the segment of S being currently translated.

Moreover, we do not want to realign already used suggestions: for this mean we define PS
accepted,

the set of accepted suggestions. Having this in consideration, we add the combined alignment
strength pressing the area under each suggestion:

f29 =
∑

j∈span(p)

{
W (j, T̂ ) if p �∈ PS

accepted

0 otherwise
(1)

Conversely, we can exploit this alignment model to discredit suggestions originating in positions

j that may have been already covered in T . To this end, we calculate the alignment strength
over the already translated part of the sentence T = T1...Tk−1. Let occurrences(tp, T ) be the

function that returns the number of times tp appears as a subsequence (substring) of T , we define

the set of suggestions that overlap with T ,

overlap(T ) = {p ∈ PS : occurrences(tp, T ) > 0}

As the target text of each suggestion tp may appear more than once in T̂ , we are unsure of

which alignment is the correct one. For addressing this problem, we split the alignment strength
between the different matches,

up =
vp

occurrences(tp, T )
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Figure 2: Alignment strengths for S =‘El coche blanco está destrozado’, T =‘The
white car is wrecked’, T̂ =‘The white car is w. . . ’, PS

compatible = { ‘The’, ‘The white’,

‘The white car’, ‘car’,‘white car’, ‘white car is’, ‘white’, ‘white is’, ‘white is wrecked’, ‘is’,

‘is wrecked’, ‘wrecked’}. Rectangles with solid outlines represent suggestions in overlap, those

with dashed outlines represent suggestions in extender. Assuming ‘white’ /∈ PS
accepted (‘white’

has not been used when typing T̂ ), ‘white’ has f26 = 1, eq. 1 and f27 = 1− (1 + 6/9), eq. 2,

‘wrecked’ has f26 = f27 = 1 + 1/4

We define the past alignment strength function, that includes those suggestions that could have

been used for T , even if those were never offered or used by the translator:

Wpast(j, T ) =
∑

p∈overlap(T )

{
up ifj ∈ [bp, ep]
0 otherwise

We define a second feature that discredits suggestions originating from positions that have

evidence (in the form of suggestions that overlap with T ) of having already been covered in the

translation:

f30 =
∑

j∈span(p)

{
Wpast(j, T ) if p �∈ PS

accepted

0 otherwise
(2)

An example of how this both features work is discussed in Figure 2.

4 Experimental setup and results

As explained in Section 3.2, four different configurations are trained. Training, development

and test data are extracted from a corpus with 15,000 English–Spanish sentences extracted from

Europarl (Koehn, 2005) version 7, a collection of proceedings from the European Parliament;

11,000 sentences were used as training set, 1,000 as development or validation set and the

remaining 3,000 as test set. As a bilingual MT engine capable of providing the translation

of the sub-segments we used the free/open-source statistical MT system Moses (Koehn et al.,

2007) trained over 155,760 independent sentences from the same corpus, following the standard

procedure for training a baseline system.11 The evaluation was conducted for the translation of

texts from English to Spanish.

11The corpora is available at http://www.statmt.org/europarl. The sentences match those we used in a

previous paper (Torregrosa et al., 2014).



To generate the training set, using a source sentence and a reference, an automatic system

iteratively considers the first letter of each word and evaluates all the possible suggestions; those

that fully match the following words of the reference are tagged as usable in that context, and

those that would be part of the greedy suboptimal sequence of actions that leads to the best

performance are tagged as winning in that context.

In order to measure the performance of each configuration, we use the keystroke ratio

(KSR), that is, the ratio between the actual number of keys pressed for typing the translation and

the length in characters of the translation, as described by Langlais et al. (2000). Accepting a

suggestion, no matter its rank, costs one keystroke. It is worth noting that this metric does not

measure the time or effort needed to read the suggestions, and does not penalize the offering of

inappropriate suggestions in any way. The automatic evaluation system12 is similar to the one

described in the previous work (Pérez-Ortiz et al., 2014): it tries to emulate the behaviour of a

user that, given a source sentence S, mentally generates a translation T ,13 then proceeds to type

it, reading every offered suggestion and accepting the longest one that matches exactly T , if any.

Suggestions need to be full-word translations: if Tk is “thesaurus”, the suggestion “the” will not

be accepted. The system types the first letter of the next word in T , evaluates all the suggestions,

and either chooses the longest one that matches with T or types the rest of the word,14 until T
is completed.15 The models have been tested with different limits for the maximum number of

suggestions M ∈ [1, 8], sorted in descending order according to the multilayer perceptron output

value.

All the multilayer perceptron configurations have three layers: input, hidden and output.

Those trained with the reduced feature set only have two input neurons; perceptrons dealing

with the full feature set have 75 input units. We will explore different values for the number of

units in the hidden layer. All configurations have just one output neuron, and are fully connected.

All the neurons but the output neuron have logistic activation functions; as we are estimating a

regression function, the output neuron has the identity activation function.

For the training procedure, we use backpropagation with mean squared error (MSE) as the

error function to optimize, and no momentum or regularization of any kind. As neural networks

have trouble dealing with local minima (Gori and Tesi, 1992), each perceptron has been trained

five times with different random initializations. Table 1 shows that there is a strong correlation

between MSE and KSR; as a result of this we can presume that the systems with lower minimum

squared error MSE will do a better job ranking the suggestions, so we select the model that

achieves the lowest MSE out of the 5 different initializations. While the weights were updated

after computing the error of every event in the training set, the decision to stop the training (also

known as convergence condition) is based on the validation set, in order to minimise the risk of

overfitting. We will use these algorithms as implemented in the free open source neural network

library FANN (Nissen, 2003).

As hyperparameters, we explored different values for the learning rate and the number

of neurons in the hidden layer. All the configurations were tested with learning rates α ∈
{10−2, 10−3, 10−4}. The configurations using the reduced feature set were trained and tested

with N ∈ {2, 4, 8, 16} neurons in the hidden layer; the ones using the full feature set used

12While human evaluation is preferable, it is too expensive for systematically testing every model.
13During automatic evaluation, a reference translation is provided.
14This differs from the previously described approach, where the suggestions were evaluated after every keypress,

rather than only evaluating them at the start of each word.
15This evaluation model assumes a greedy left-to-right longest-match coverage and, as such, produces a suboptimal

solution. Experiments using an optimal coverage strategy that find the global optimum sequence of actions rather than

the suboptimal one achieved by the the greedy left-to-right longest match strategy, have been conducted, achieving

keystroke ratio improvements under 1%. As such experiments are much more computationally expensive, the left-to-right

longest-match strategy is used.



Configuration

M
1 2 3 4 5 6 7 8

Full set, Usable 0.87 0.88 0.88 0.88 0.88 0.87 0.87 0.86
Full set, winning 0.92 0.95 0.96 0.96 0.96 0.95 0.95 0.95

Reduced set, Usable 0.91 0.94 0.93 0.93 0.93 0.92 0.91 0.91
Reduced set, winning 0.90 0.90 0.89 0.87 0.87 0.86 0.85 0.84

Table 1: Pearson correlation coefficients between minimum squared error (MSE) and keystroke

ration (KSR) for each maximum number of suggestions M and configuration. Every configura-

tion shows strong positive correlation between MSE and KSR.
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Figure 3: KSR for the multilayer perceptron hyperparameter configuration trained using the full
feature set and the winning suggestions set that got the best MSE. The system beats the baseline

in a statistically significant way for every tested value of the maximum number of suggestions

M .

N ∈ {2, 8, 32, 128} neurons in the hidden layer.

We will also use the previous intuitive heuristic approach, as described in Subsection 3.1

(referred to as heuristic onwards) as a baseline. Paired bootstrap resampling (Koehn, 2004) is

performed between the different models (including the heuristic approach) using 1000 iterations

and p ≤ 0.05; the best statistically significant KSR values achieved will be denoted with a circle.

Results show that the perceptrons trained with the winning suggestions and full feature set

(Figure 3) perform notably better than the ones trained with the reduced set (Figure 4). In every

figure, the line “Minimum KSR” denotes the best KSR we can achieve offering all the suggestions

using the current methodology, and circled points denote the best statistically significant KSR.

While several systems trained with the full feature set performed statistically significantly better

than the heuristic approach, no reduced feature set system manages to outperform the heuristic
baseline with M = [1, 2]. Those trained with the usable suggestions perform similarly to the

ones trained with the winning suggestions: the best performing systems are not statistically

significantly better or worse than the best ones using winning suggestions for most values of

the maximum number of suggestions M , but, overall, less configurations manage to beat the

baseline. Figure 5 compares the performance of the best system for each configuration.
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Figure 4: KSR for the multilayer perceptron hyperparameter configuration trained using the

reduced feature set and the winning suggestions set that got the best MSE. The system beats the

baseline in a statistically significant way for every tested value of M , but for M = 1, 2, where it

achieves significantly worse KSR.
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Figure 5: KSR for the best multilayer perceptron hyperparameter configuration for each training

set. The best models perform similarly regardless if predicting winning or usable suggestions,

even though the MSE is higher for the ones predicting usable suggestions. Best statistical

significance marks those values of the maximum number of suggestions M where the model

using the Full feature set with winning suggestions is statistically significantly better than the rest;

2-best statistical significance marks those where it is not significantly better or worse than the

model using the Full feature set with usable suggestions, but both are statistically significantly

better than the rest.



5 Conclusions and future work

Resource-agnostic ITP is a low-cost approach for computer-aided translation. We aim to provide

a competitive alternative to postediting that can easily integrate any bilingual resource the user

has access to.

The naı̈ve distance-based ranking described in (Pérez-Ortiz et al., 2014) provided results

comparable to glass-box ITP. We managed to significantly improve it employing a sounder

machine-learned model that manages to obtain keystroke savings in the range of 25–45% when

offering up to 4 suggestions to the user.

It is important to evaluate this model with more language pairs, specially those which

present special interest deemed their grammatical or lexical differences. Also, selecting which

features are more representative can further improve the performance of the models while

reducing the processing power needed to train and test the model.

There are other ITP systems being currently developed, namely Thot. (Ortiz-Martı́nez

and Casacuberta, 2014) Although it is addressing a different problem by using an ad-hoc SMT

system, it assists the user in a similar way. A comparison of the performance achieved will be

conducted to contextualize our method.

For further improving the results attained, we plan to use a distortion model as the one

proposed by Al-Onaizan and Papineni (2006), that can be used to predict which source words

will be translated next, integrating this information as a feature for the multilayer perceptron,

hopefully complementing our light alignment model described in Section 3.3. We also plan to

use a simplified language model to give a rough estimate of the likelihood of the concatenation

of T̂ and a given suggestion.

We also plan to explore the impact of simultaneously using different black-box bilingual

resources. Different strategies will be evaluated in order to integrate the available resources:

combining multiple black-box MT systems as described in (Jayaraman and Lavie, 2005); using

confidence-based measures in order to select the most promising translations as performed by

Blatz et al. (2004); predicting the best candidates for the translation of each particular sub-

segment by using only source-language information, thus avoiding the need to consult every

available resource, as explored by Sánchez-Martı́nez (2011); or letting the multilayer perceptron

manage the different suggestions, devising new features if needed.

Finally, we also aim to find evaluation metrics that improve the correlation with professionals

by mimicking how a professional translator would work with the tool. Currently, we only choose

suggestions that perfectly fit what the professionals are going to type; a translator could however

accept a partially matching suggestion and then replace the mismatching part, or even accept a

suggestion that does not match the planned translation, adapting it to the new prefix.
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