
Efficient parsing using recursive transition networks with output

Javier M. Sastre∗†, Mikel L. Forcada †

∗Institut Gaspard-Monge, Université Paris Est,
F-77454 Marne-la-Vallée Cedex 2, France

†Grup Transducens, Departament de Llenguatges i Sistemes Informàtics, Universitat d’Alacant,
E-03071 Alacant, Spain.

Abstract
We describe here two efficient parsing algorithms for natural language texts based on an extension of recursive transition networks (RTN)
called recursive transition networks with string output (RTNSO). RTNSO-based grammars may be semiautomatically built from samples
of a manually built syntactic lexicon. Efficient parsing algorithms are needed to minimize the temporal cost associatedto the size of the
resulting networks. We focus our algorithms on the RTNSO formalism due to its simplicity which facilitates the manual construction
and maintenance of RTNSO-based linguistic data as well as their exploitation.

1. Introduction
This paper describes two efficient parsing algorithms

for natural language texts which use recursive transition
networks (Woods, 1970) (RTNs) generated from a large
and manually built syntactic lexicon such as the one de-
fined in (Gross, 1975). Both algorithms are easily defined
based on the formal definition of RTN with string output1

(RTNSOs) given in section 2., which corresponds to a spe-
cial type of pushdown letter transducer (a pushdown au-
tomaton with output), and the formal definition of the set
of outputs (such as parses or translations) associated to an
input string given in section 3. A first algorithm for the ef-
ficient computation of that set is given in section 4., paying
special attention to null closure due to its crucial role in the
algorithm. An explanation of how to modify the preceding
algorithm in order to obtain a more complex but also more
efficient Earley-like algorithm is given in section 5. Com-
parative results are given in section 6. Concluding remarks
close the paper.

1.1. Parsing with RTNs and lexicon-grammar
Lexicon-grammar is a systematic method for the analy-

sis and the representation of the elementary sentence struc-
tures of a natural language (Gross, 1996) which has pro-
duced, over the last 30 years, a large and fine-grain linguis-
tic resource2 describing syntactic and semantic properties
of French simple sentences (among other languages) for
13375 simple verbs, 10325 predicative nouns (e.g.:pride
as into be proud of) and 39297 idiomatic expressions play-
ing the role of predicative element (e.g.:to wear the pants).
There exists a technique to semiautomatically build a RTN-
based grammar from samples of the lexicon-grammar for
automatic parsing (Roche, 1993). Although the RTN for-
malism is not the most expressive, its simplicity has per-
mitted its practical application to the analysis of special-
ized domain corpora (Nakamura, 2004) with RTN-based
computer tools (INTEX (Silberztein, 1993), Unitex (Pau-
mier, 2006), Outilex (Blanc et al., 2006)). However, the

1For instance, the result of parsing as a tagged input.
2Partially available through the HOOP interface (Sastre,

2006) athttp://hoop.univ-mlv.fr

temporal cost of applying a large RTN to a large corpus
may be too high for certain applications. We expect to re-
duce it by employing efficient parsing algorithms.

2. Recursive transition networks with string
output

A non-deterministic RTNSOR = (Q, Σ, Γ, δ, QI , F)
is made of a finite set of statesQ = {q1, q2, . . . , q|Q|}
(which will also be used as the alphabet for the pushdown
stack), a finite input alphabetΣ = {σ1, σ2, . . . , σ|Σ|}, a
finite output alphabetΓ = {γ1, γ2, . . . , γ|Γ|}, QI ⊆ Q the
set of initial states,F ⊆ Q the set of acceptance states, and
a transition function

δ : Q×((Σ∪{ε})×(Γ∪{ε}))→ P(Q×(Q∪{λ})) (1)

whereP(·) represents the set of all subsets of a given set
andλ ∈ Q∗ is an empty sequence of states. As to the
possible types of transitions:

• Transitions of the formδ(q, (σ, γ)) with σ ∈ Σ and
γ ∈ Γ read one input symbol and write an output sym-
bol; those of the formδ(q, (σ, ε)) read a symbol but
do not write anything, those of the formδ(q, (ε, γ))
do not read an input symbol but write an output sym-
bol, and those of the formδ(q, (ε, ε)) neither read nor
write symbols.

• Only transitions of the formδ(q, (ε, ε)) can contain
elements ofQ × Q in their result set; that is, only
transitions without input and output can push a state
onto the stack. These transitions represent acall:
in addition to performing a transition to a new state,
they push a return state onto the stack which will be
popped later:(qc, qr) ∈ δ(qs, (ε, ε)) represents asub-
routine jumpto stateqc which pushes the return state
qr onto the stack. The rest of the transitions can only
return elements ofQ× {λ}, that is, they do not push
anything onto the stack.

• It has to be noted thatδ does not define any transitions
which pop states from the stack. This is because states
can be automatically popped from a nonempty stack

everytime the RTNSO reaches an acceptance state in
F ; the popped state is reached without consuming any
input or writing any output. The definition of popping
transitions is implicit in the definition ofR.

• As a general rule, loops consuming no input but
generating output or making calls are not allowed:
infinite length parses of natural-language input se-
quences make no sense and complicate the correspon-
dent parsing algorithms which should avoid falling
into infinite loops.

3. Language of translations of a string
In this section we will formally derive the computation

of the set of output translations associated to an input string
following (Garrido-Alenda et al., 2002).

During the application of a RTNSO, a triplet(q, z, π) ∈
Q×Γ∗×Q∗ represents the fact that a partial output (PO)z

has been generated up to the point of reaching stateq with
a stackπ. We callV ∈ P(Q × Γ∗ × Q∗) a set of POs
(SPO); we define∆ as the PO transition function over a
SPO for an input symbol as

∆ : P(Q× Γ∗ ×Q∗)× Σ→ P(Q× Γ∗ ×Q∗) (2)

∆(V, σ) = {(q′, zg, π) : (q′, λ) ∈ δ(q, (σ, g))

∧ (q, z, π) ∈ V }, (3)

whereq, q′, qc, qr ∈ Q, z ∈ Γ∗ is an output string,π ∈ Q∗

a stack,σ ∈ Σ an input symbol, andg ∈ Γ∪{ε} an output
symbol or an empty output. We define theε-closureCε(V)
of a SPOV ,

Cε : P(Q× Γ∗ ×Q∗)→ P(Q× Γ∗ ×Q∗), (4)

as the smallest SPO containingV and every PO directly or
indirectly derivable fromV throughε-transitions, that is,
through zero, one or more transitions without consuming
any input symbol. Informally, elements are added to the
ε-closure through three different kinds ofε-moves until no
more elements are added:

• Output without input: adding(q′, zg, π) for each
(q, z, π) in the closure and for eachq′ andg such that
(q′, λ) ∈ δ(q, (ε, g));

• Call or push: adding(qc, z, πqr) for each(q, z, π) in
the closure and for eachqc andqr such that(qc, qr) ∈
δ(q, (ε, ε));

• Return or pop: adding(qr , z, π) for each(q, z, πqr)
in the closure such thatq ∈ F ;

An efficient way to compute theε-closure is described
in section 4.

We recursively define

∆∗ : P(Q× Γ∗ ×Q∗)× Σ∗ → P(Q× Γ∗ ×Q∗), (5)

the extension of∆ to strings inΣ∗, as follows:

∆∗(V, ε) = Cε(V) (6)

∆∗(V, zσ) = Cε(∆(∆∗(V, z), σ)) (7)

Finally, we defineT (σ1 . . . σl) the language of transla-
tions of input stringσ1 . . . σl as the set of output strings of
the final part of the SPO (having only final states and no
pending return-from-call states) reachable from the initial
SPO (having every initial state coupled with an empty out-
put string and an empty return stack) through zero, one or
more transitions and consuming the whole input string:

T (σ1 . . . σl) = {z ∈ Γ∗ : (q, z, λ) ∈

∆∗(QI × {ε} × {λ}, σ1 . . . σl) ∧ q ∈ F}. (8)

4. Processing an input string
Based on the formal definition given in the previous

section, we propose a breadth-first algorithm decomposed
into algorithms 1 (translatestring), 2 (translatesymbol),
and 3 (closure) to process an input string for a given (non-
deterministic) RTNSO and to generate the set of corre-
sponding output strings based on the equations above.

The algorithm keeps for each prefix of the input string
a SPOV , whose elements are triplets of the form(q, z, π)
whereq ∈ Q is a state,z ∈ Γ∗ is an output string and
π ∈ Q∗ is a last-in-first-out stack holding states inQ (λ
will be used to represent the empty stack), as described in
the previous section. In the algorithms, the RTNSOR =
(Q, Σ, Γ, δ, QI, F) is treated as a global variable.

Based on van Noord’sper subsetalgorithm (van Noord,
2000), algorithm 3 is an efficient algorithm for the compu-
tation of theε-closure of a given SPOV . To start it copies
V into E; then it usesV to store the result of the com-
putation andE to keep a trace of the partial outputs that
have not been processed yet.V is iteratively incremented
with the new reachable states from an arbitrary partial out-
put of E by oneε-transition. Each time a partial output
of E is retrieved ((q, z, π) ← next(E)) to be processed,
it is also removed fromE. Each time a new partial output
is added toV (if (add(V, (q, z, π))), it is also added toE
(insert(E, (q, z, π)) for further processing. The difference
betweenadd() andinsert() is that the former performs a
duplicity test before adding the PO toV and returns the
boolean result of this test, and the latter adds the POblindly
to E and returns nothing.

Algorithm 1 translatestring(σ1 . . . σl) . T , eq. (8)
Input: σ1σ2 . . . σl, an input string of lengthl
Output: T , the set of translations
1: V ← closure(QI × {ε} × {λ}) . initial SPO V0

2: i← 0
3: while V 6= ∅ ∧ i < l do . Vi+1 = Cε(∆(Vi, σi+1))
4: V ← closure(translate symbol(V, σi+1))
5: i← i + 1
6: end while
7: T ← ∅
8: if i = l then
9: for each (q, z, λ) ∈ V : q ∈ F do

10: T ← T ∪ {z}
11: end for
12: end if

As can be seen, the algorithm is quite simple and does
not require a complex data structure. At each iteration it

Algorithm 2 translatesymbol(V, σ) . ∆(V, σ), eq. (3)
Input: V , the SPOσ, the symbol
Output: W , the SPO after processingσ
1: W ← ∅
2: for each (q, z, π) ∈ V do
3: for each (q′, g) : (q′, λ) ∈ δ(q, (σ, g)) do
4: W ←W ∪ {(q′, zg, π)}
5: end for
6: end for

Algorithm 3 closure(V) . Cε(V)

Input: V , the SPO whoseε-closure is to be computed
Output: V after computing itsε-closure
1: E ← V . unprocessed PO queue
2: while E 6= ∅ do
3: (q, z, π)← next(E)
4: for each (q′, g) : (q′, λ) ∈ δ(q, (ε, g)) do . ε-
5: if add(V, (q′, zg, π)) then . transitions
6: insert(E, (q′, zg, π))
7: end if
8: end for
9: for each (qc, qr) ∈ δ(q, (ε, ε)) do

10: if add(V, (qc, z, πqr)) then . push-
11: insert(E, (qc, z, πqr)) . transitions
12: end if
13: end for
14: if π = π′qr ∧ q ∈ F ∧ add(V, (qc, z, πqr)) then
15: insert(E, (qr , z, π′)) . pop-transition
16: end if
17: end while

computes the SPO that can be derived from the precedent
one by recognizing the next input symbol, so it suffices
to store two SPOs at a time. It firstly fills in the next SPO
with the POs directly reachable through one transition con-
suming the next input symbol, then it completes the SPO
with the following reachable POs through one or moreε-
transitions, call and return transitions included. Two im-
portant limitations of the algorithm are: (a) the impossibil-
ity of parsing with RTNs representing left-recursive gram-
mars since the computation of theε-closure would try to
generate a PO with an infinite stack of return states, and
(b) the fact that for a SPOVi having two POs with differ-
ent stacks and/or outputs from where a call to a same state
qc is performed, the computation of every PO derived from
the call toqc is performed twice although it could be fac-
tored (for instance, for the RTNSO of Fig. 1 call to stateq0

is computed
∑

2n+1 times for a stringanbn when it could
be computedn + 1 times by factoring out common calls).
In the next section we show how to modify this algorithm
to avoid both limitations.

5. Earley-like RTNSO processing
Finite-state automata can give a compact representation

of a set of sequences by factoring out common prefixes and
suffixes. RTNs can also factor infixes by defining only a
subautomaton for each repeated set of infixes and by using
transitions calling the initial state of the correspondingsub-
automaton each time any infix in the set is to be recognized.

q0

q1 q2

q3 q4

q5

a : {

a : [

q0

q0

b : }

b :]

ε : x

Figure 1: Example of RTNSO. Labels of the formx : y

represent an input: output pair (e.g.:a : { for transi-
tion (δ(q0, a, {) = (q1, λ)). Dashed transitions represent
a call to the state specified by the label (e.g.: transition
(δ(q1, ε, ε) = (q2, q0)).

However, it is up to the parsing algorithm to detect that the
same calling transition is made multiple times at an input
point so the called subautomaton is processed only once.
Based on Earley’s context-free grammar parsing algorithm
(Earley, 1970)3, we show here a modified and more effi-
cient version of the algorithm in section 4. which is able to
process left-recursive RTNSOs, and which factores out the
computation of infix calls by parallel analyses, as for the
RTNSO of Fig. 1.

We exchange the use of a return state stack for a more
complex representation of POs, which mainly involves a
modification of theε-closure algorithm: when a call tran-
sition to a stateqc is found, apausedPO until the comple-
tion of the call is generated as well as a new PO starting the
called subanalysis fromqc and the current input point, if
not already started. Each time a subanalysis is completed,
a resumedPO is generated for every concatenation of the
pausedPOs depending on it and the substring generated by
the subanalysis.

5.1. Language of translations through Earley-like
processing

POs are represented as 5-tuples(q, z, qc, qh, i) ∈ (Q×
Γ∗ × (Q ∪ λ) × Q × N), whereq is the current state,qh

the state that initiated this subanalysis,i the input position
where this subanalysis began (i representing the point be-
tweenσi andσi+1, so0 is the point before the first input
symbol),z the output generated from stateqh and input
positioni up to stateq and the current input position, and
qc the start state of the subanalysis which this PO depends
on (λ if no subanalysis completion is required, that is, for
POs which are not paused but active).

We extend the PO transition function∆ of eq. (3),
which corresponds to Earley’s “scanner”, as follows:

∆ : P(Q× Γ∗ × (Q ∪ {λ})×Q× N)× Σ→

P(Q× Γ∗ × (Q ∪ {λ})×Q× N) (9)

∆(V, σ) = {(q′, zg, λ, qh, i) : (q′, λ) ∈ δ(q, (σ, g))∧

(q, z, λ, qh, i) ∈ V } (10)

Note that the function does not apply on POs depending on
a subanalysis: they stay paused until the completion of the
subanalysis.

3(Woods, 1970) mentions an adaptation of Earley’s algorithm
for RTNs in (Woods, 1969). However we have not been able to
obtain the latter paper.

Let i, j, k ∈ N such thati ≤ j ≤ k, we redefine theε-
moves of theε-closure in section 3. for 5-tuples as follows:

• Output without input: analogously to the pre-
ceding version, we add(q′, zg, λ, qh, j) for each
(q, z, λ, qh, j) in the closure ofVk and for eachq′ and
g such that(q′, λ) ∈ δ(q, (ε, g));

• Call or push: analogously to Earley’s “predictor”,
we add(qr, z, qc, qh, j) and (qc, ε, λ, qc, k) for each
(q, z, λ, qh, j) in the closure ofVk and for eachqc and
qr such that(qc, qr) ∈ δ(q, (ε, ε)); (qr , z, qc, qh, j)
is the new paused PO depending on the subanalysis
started by the new PO(qc, ε, λ, qc, k);

• Return or pop: analogously to Earley’s “completer”,
for each(q, z, λ, qc, j) such thatq ∈ F (the com-
pleted POs) and for each(q′, z′, qc, qh, i) ∈ Vj (the
paused POs depending on the completed one) we add
(q′, z′z, λ, qh, i) to the closure ofVk (we resume them
with the concatenation of the paused PO and the com-
pleted PO);

The extension of∆ to strings inΣ∗ (eqs. 6 & 7) re-
mains unchanged except for the use of the newly defined
∆ andε-closure.

Finally, the language of translationsT (σ1 . . . σl) stays
the same except for the adaptation to the new SPO repre-
sentation and the use of the newly defined functions:

T (σ1 . . . σl) = {z ∈ Γ∗ : (q′, z, λ, qh, 0) ∈

∆∗({(q, ε, λ, q, 0) : q ∈ QI}, σ1 . . . σl) ∧ q′ ∈

F ∧ qh ∈ QI}, (11)

that is, the outputs of the POs completing (q′ ∈ F) an
initial state (qh ∈ QI) and not depending on a subanalysis,
which are indirectly derived from an initial PO (external
calls to the initial states of the RTNSO).

The adaptation of algorithms 1 (translatestring) and 2
(translatesymbol) is trivial and will not be given here. Al-
gorithm 4 replaces algorithm 3 and is an almost straighfor-
ward implementation of theε-closure for Earley-like pro-
cessing. As stated in (Earley, 1970),ε-transitions may lead
to analyses which may partially reject correct parses. No-
tice that if a subanalysis starting at an SPOVi is completed
without input consumption (ε-completion), the paused POs
to be resumed will belong to the same SPOVi. If a paused
PO depending on the same subanalysis is generated in the
same SPOVi after theε-completion of the subanalysis,
this paused PO will not be resumed by the precedentε-
completion and thus every derived parse will not be re-
turned. Algorithm 4 creates an initially empty setT of
ε-translations which it fills with the pairs(qh, z) extracted
from everyε-completed subanalysis(q, z, λ, qh, j). Each
time a paused PO(qr, z, qc, qh, j) is generated, it firstly
verifies if call to qc was already performed and if it led
to a ε-completion (there exists at least aε-translation for
stateqc). If so, the paused PO is immediately resumed for
eachε-translation inT ; if not, call to stateqc is normally
performed.

6. Empirical tests
Both algorithms have been programmed using C++ and

STL and execution times measured for the RTNSO of
Fig. 1 in a Linux Debian platform with a 2.0 GHz Pentium
IV Centrino processor and a 2 GB RAM (see Fig. 2(a)). As
expected, our first algorithm has an exponential cost even
for an acceptor version, that is, without output generation.
Although Earley’s algorithm cost isn3, our Earley-based
algorithm has also an exponential cost. A pure Earley algo-
rithm (without output generation) would have a linear cost
for our example grammar (see Fig. 2(b)). An exponential
number of steps are saved due to the factoring of an ex-
ponential number of state calls; however, when we resume
a set of paused POs with every completion of their com-
mon subanalysis, we are computing a cartesian product of
the concatenations of every output of every PO with every
output of every subanalysis completion. Earley’s base al-
gorithm is only a recognizer; it can be easily modified in
order to compute the set of parses, but if this set grows ex-
ponentially w.r.t. the input length the cost cannot be kept
to polynomial time.

We have implemented modified versions of both algo-
rithms which use pointers or handles to the nodes of a trie
in order to represent sequences. This allows PO compar-
isons to avoid expensive string comparisons. During the
traversal of a consuming transition, the transition output
is efficiently appended to the string since its handle points
to the last sequence symbol. Our first algorithm experi-
ences an exponential speed up with the use of tries, but
our Earley-based algorithm shows an even worse tempo-
ral cost. This is because the completion of a subanalysis
involves the concatenation of two sequences, an operation
where a trie structure is not so helpful.

7. Conclusion
We have first given here an efficient and simple parsing

algorithm for natural language texts with RTNSOs with
two limitations: left-recursive RTNSOs cannot be pro-
cessed and infix calls are not factored. Based on Ear-
ley’s parsing algorithm for context-free grammars, we have
shown how to modify the precedent algorithm in order to
suppress both limitations. Finally, we have given some
comparative results which show that output generation,
rather than being a simple issue, complicates algorithms
up to obtaining exponential time costs in spite of the poly-
nomial time of the acceptor-only algorithms.

We are currently studying the use of an RTN-like struc-
ture to efficiently build and store the resulting set of trans-
lations, to avoid an exponential complexity.

Acknowledgements: This work has been partially sup-
ported by the Spanish Government (grant number
TIN2006–15071–C03–01), by the Universitat d’Alacant
(grant number INV05-40), by the MENRT and by the
CNRS. We thank Pr. E. Laporte for his useful comments.

8. References
Blanc, Olivier, Matthieu Constant, and́Eric Laporte, 2006.

Outilex, plate-forme logicielle de traitement de textes
écrits. InProceedings of TALN’06. Leuven, Belgium:
UCL Presses universitaires de Louvain.

Algorithm 4 closure(V, k) . Cε(Vk)

Input: V , the SPO whoseε-closure is to be computed;k,
the current input position

Output: V after computing itsε-closure
1: T ← ∅ . ε-completion set
2: E ← V . unprocessed PO queue
3: while E 6= ∅ do
4: (q, z, λ, qh, j)← next(E)
5: for each (q′, g) : (q′, λ) ∈ δ(q, (ε, g)) do . ε-
6: if add(V, (q′, zg, λ, qh, j)) then . TRANS.
7: insert(E, (q′, zg, λ, qh, j))
8: end if
9: end for

10: for each (qc, qr) ∈ δ(q, (ε, ε)) do . PREDICT.
11: if add(V, (qr, z, qc, qh, j)) then . paused
12: if {(g : (qc, g) ∈ T } 6= ∅ then . ε-com-
13: for each{g : (qc, g) ∈ T } do . plet.
14: if add(V, (qr, zg, λ, qh, j)) then
15: insert(E, (qr, zg, λ, qh, j))
16: end if
17: end for
18: else ifadd(V, (qc, ε, λ, qc, k)) then
19: insert(E, (qc, ε, λ, qc, k)) . sub-
20: end if . analysis
21: end if
22: end for
23: if q ∈ F then . COMPLETER
24: for each (q′, z′, qh, q′h, i) ∈ Vj do . paused
25: if i = k then . register ε-completion
26: T = T ∪ {(qh, z)}
27: end if
28: if add(V, (q′, z′z, λ, q′h, i)) then . resu-
29: insert(E, (q′, z′z, λ, q′h, i)) . med
30: end if
31: end for
32: end if
33: end while

Earley, Jay, 1970. An efficient context-free parsing algo-
rithm. Commun. ACM, 13(2):94–102.

Garrido-Alenda, Alicia, Mikel L. Forcada, and Rafael C.
Carrasco, 2002. Incremental construction and mainte-
nance of morphological analysers based on augmented
letter transducers. InProceedings of TMI 2002 (Theo-
retical and Methodological Issues in Machine Transla-
tion, Keihanna/Kyoto, Japan, March 2002).

Gross, Maurice, 1975.Méthodes en Syntaxe. Paris: Her-
mann.

Gross, Maurice, 1996.Lexicon Grammar. Cambridge:
Pergamon Press, pages 244–258.

Nakamura, Takuya, 2004. Analyse automatique d’un dis-
cours spécialisé au moyen de grammaires locales. In
Fairon C. et Dister A. Purnelle G. (ed.),JADT 2004,
International Conference on the Statistical Analysis of
Textual Data. Louvain-la-Neuve: UCL Presses univer-
sitaires de Louvain.

Paumier, Sébastien, 2006.Unitex 1.2 User Manual.
Université de Marne-la-Vallée.http://www-igm.
univ-mlv.fr/ ˜ unitex/UnitexManual.pdf .

algorithm 1 alg. 1 + trie alg. 1 no output

Earley + trie Earley

time
(sec)

input length (n for input)an bn

0.01

0.1

1

10

100

1000

11 1916 17 1812 13 14 15

(a)

time
(sec)

input length (n for input)an bn

Earley acceptor (without output generation)

0

1

2

3

4

0

100,000

200,000

300,000

400,000

500,000

(b)

Figure 2: Comparative graphics of execution times (in sec-
onds) w.r.t. input length (n) of the different algorithms for
the RTNSO of Fig. 1 and inputanbn. Notice the loga-
rithmic scale of the vertical axis of graphic 2(a): all of its
functions are exponential.

Roche, Emmanuel, 1993.Analyse syntaxique transfor-
mationnelle du français par transducteurs et lexique-
grammaire. Ph.D. thesis, Université Paris 7, Paris.

Sastre, Javier M., 2006. HOOP: a Hyper-Object Ori-
ented Platform for the management of linguistic
databases. Presentation in Lexis and Grammar Confer-
ence, Palermo, Italy, September 6-9. Abstract available
at http://www-igm.univ-mlv.fr/ ˜ sastre/
publications/sastre06b.zip .

Silberztein, Max D., 1993.Dictionnaires électroniques
et analyse automatique de textes. Le système INTEX.
Paris: Masson.

van Noord, Gertjan, 2000. Treatment of epsilon moves in
subset construction.Comput. Linguist., 26(1):61–76.

Woods, William A., 1969. Augmented transition networks
for natural language analysis. Rep. CS-1, Comput. Lab.,
Harvard U., Cambridge, Mass.

Woods, William A., 1970. Transition network gram-
mars for natural language analysis.Commun. ACM,
13(10):591–606.

