Integrating corpus-based and rule-based approaches in an open-source machine translation system

Felipe Sánchez-Martínez Juan Antonio Pérez-Ortiz Mikel L. Forcada

Transducens Group – Departament de Llenguatges i Sistemes Informàtics
Universitat d’Alacant, E-03071 Alacant, Spain

\{fsanchez, japerez, mlf\}@dlsi.ua.es

New Approaches to Machine Translation. A METIS-II Workshop
Leuven, Belgium
January 11, 2007
Outline

1. Apertium
 - Open-source shallow-transfer MT engine
 - On the use of target language information

2. Target-language-driven part-of-speech tagger training
 - Introduction
 - Method overview

3. Target-language-driven lexical selector training
 - Introduction
 - Method overview

4. Shallow-transfer rules extraction from parallel corpora
 - Introduction
 - Method overview

5. Discussion
Outline

1. Apertium
 - Open-source shallow-transfer MT engine
 - On the use of target language information

2. Target-language-driven part-of-speech tagger training
 - Introduction
 - Method overview

3. Target-language-driven lexical selector training
 - Introduction
 - Method overview

4. Shallow-transfer rules extraction from parallel corpora
 - Introduction
 - Method overview

5. Discussion
Open-source shallow-transfer MT engine

http://apertium.org

- Engine completely independent from the linguistic data
- Linguistic data coded using XML-based formats
- Compilers convert linguistic data into an efficient form
On the use of TL information to train SL models

- Use of information from the target side of the MT system, and two monolingual corpora in both languages
- Some modules of the MT system are used to train the remaining modules
Outline

1. Apertium
 - Open-source shallow-transfer MT engine
 - On the use of target language information

2. Target-language-driven part-of-speech tagger training
 - Introduction
 - Method overview

3. Target-language-driven lexical selector training
 - Introduction
 - Method overview

4. Shallow-transfer rules extraction from parallel corpora
 - Introduction
 - Method overview

5. Discussion
Part-of-speech tagging

- **Problem**: Selecting the correct part-of-speech for those words with more than one (ambiguous words)

- Part-of-speech tagger based on first-order hidden Markov models (HMM)
Target-language-driven part-of-speech tagger training

- Unsupervised training

- The method uses the rest of the modules of the MT system in which the resulting tagger will be embedded

- The SL corpus is segmented and for each segment all possible disambiguations are translated into TL

- A TL model is used to choose the best disambiguations

- HMM parameters are computed according to the likelihood of the corresponding translations into TL

⇒ The resulting tagger is tuned to the translation quality⇐
Example (English → Spanish)

- SL sentence (English):
 - He - prn books - noun | verb the - art room - noun | verb

- Possible translations (Spanish) according to each disambiguation and their normalized likelihoods according to a TL model:
 - Él - prn reserva - verb la - art habitación - noun 0.75
 - Él - prn reserva - verb la - art aloja - verb 0.15
 - Él - prn libros - noun la - art habitación - noun 0.06
 - Él - prn libros - noun la - art aloja - verb + 0.04

- The HMM parameters involved in these 4 disambiguations are updated according to their likelihoods in the TL.
Latest results

- Reported by Sánchez-Martínez, Pérez-Ortiz and Forcada (2006)
- TL model: A classical trigram language model
- Error rates calculated over ambiguous words only:
 - Supervised training \(\approx 11\% \)
 - TL-driven (unsupervised) \(\approx 25\% \)
 - Baum-Welch expectation maximization (unsupervised) \(\approx 31\% \)
Outline

1. Apertium
 - Open-source shallow-transfer MT engine
 - On the use of target language information

2. Target-language-driven part-of-speech tagger training
 - Introduction
 - Method overview

3. Target-language-driven lexical selector training
 - Introduction
 - Method overview

4. Shallow-transfer rules extraction from parallel corpora
 - Introduction
 - Method overview

5. Discussion
Lexical selection

- **Problem**: Selecting the correct translation into TL for those words with more than one (ambiguous words)

- Lexical selector based on co-occurrence models of SL lemmas

- No TL information is used to perform the lexical selection during execution
Target-language-driven lexical selector training

- Use of two monolingual corpora and the bilingual dictionary of the MT system

- Use of a sliding context window and a list of stopwords

Training procedure

1. Each SL ambiguous word is translated into TL, and for each translation a co-occurrence model is built from the TL corpus

2. Train a co-occurrence model of SL translation senses:
 - For each ambiguous SL word the set of possible translations is calculated
 - Co-occurrence information of TL lemmas is transferred to the SL by translating the surrounding context
Example (Spanish → English) /1

- SL context window (Spanish) after removing stopwords:
 \[C(\text{gato}) = \{\text{arbol, perro, ladrar}\} \]

- Set of translation senses for SL lemma “gato”:
 \[T(\text{gato}) = \{\text{gato}^{\text{jack}}, \text{gato}^{\text{cat}}\} \]

- Translated context (English):
 \[C_t(\text{gato}) = \{\text{tree, dog, bark}\} \]
Scores found in the TL co-occurrence models are transferred to the SL models:

- \(S(\text{cat, tree}) = 100 = S(\text{gato}^{\text{cat}}, \text{arbol}) \)
- \(S(\text{cat, dog}) = 300 = S(\text{gato}^{\text{cat}}, \text{perro}) \)
- \(S(\text{cat, bark}) = 3 = S(\text{gato}^{\text{cat}}, \text{ladrar}) \)
- \(S(\text{jack, tree}) = 12 = S(\text{gato}^{\text{jack}}, \text{arbol}) \)
- \(S(\text{jack, dog}) = 23 = S(\text{gato}^{\text{jack}}, \text{perro}) \)
- \(S(\text{jack, bark}) = 0 = S(\text{gato}^{\text{jack}}, \text{ladrar}) \)
Disambiguation method

- Disambiguation is performed in an analogous way
 - A sliding context window is considered
 - Given an ambiguous word, co-occurrence models for each translation senses are consulted
 - Scores for words in the context are added up
 - The translation sense with the higher final score becomes the winner

- Experimental results not yet available. We are currently working on it.
Outline

1. Apertium
 - Open-source shallow-transfer MT engine
 - On the use of target language information

2. Target-language-driven part-of-speech tagger training
 - Introduction
 - Method overview

3. Target-language-driven lexical selector training
 - Introduction
 - Method overview

4. Shallow-transfer rules extraction from parallel corpora
 - Introduction
 - Method overview

5. Discussion
Transfer rules are used to:

- produce grammatically correct translations in the TL
- perform some lexical changes, such as preposition changes
- introduce auxiliary verbs when needed
- ...

Goal:

- To automatically learn those transformations that produce correct translations in the TL

How:

- Adapting the alignment templates (ATs) already used in statistical MT to the Apertium architecture
Alignment templates are learned in a 3-stage procedure:

1. Compute word alignments
2. Extract aligned phrase pairs (translation units)
3. Generalize over the extracted phrases using word classes

Linguistic information used to define word classes:

- **Closed lexical categories**: categories that cannot easily grow when adding new words to the dictionaries (pronouns, prepositions, etc.)

Word class: part-of-speech (including all inflection information)

- but **closed** words have their own single class
Alignment template example

Bilingual phrase:

<table>
<thead>
<tr>
<th>Alacant</th>
<th>a</th>
<th>viure</th>
<th>van</th>
<th>vivieron</th>
<th>en</th>
<th>Alicante</th>
</tr>
</thead>
</table>

Alignment template:

(noun,loc) ▪ ▪ ▪
(a-(pr)) ▪ ▪ ▪
(verb,inf) ▪ ▪ ▪
anar-(vbaux,pres,3rd,pl) ▪ ▪ ▪

dimensions: ▪ ▪ ▪

Spanish analysis:

\[\text{vivieron en Alicante}^1 \rightarrow \text{vivir}-(\text{verb,pret,3rd,pl}) \text{ en}-(\text{pr}) \]
\[\text{Alicante}-(\text{noun,loc}) \]

Catalan analysis:

\[\text{van viure a Alacant} \rightarrow \text{anar}-(\text{vbaux,pres,3rd,pl}) \]
\[\text{viure}-(\text{verb,inf}) \text{ a}-(\text{pr}) \text{ Alacant}-(\text{noun,loc}) \]

\[^1 \text{Translated into English as They lived in Alicante} \]
Alignment templates application

Spanish (input): permanecieron en Alemania\(^2\) →

\textit{permanecer}-(verb,pret,3rd,pl) \textit{en}-(pr)

Alemania-(noun,loc)

Catalan (output): anar-(vbaux,pres,3rd,pl)

\textit{romandre}-(verb,inf) a-(pr)

Alemanya-(noun,loc) →

van romandre a Alemanya

Word-for-word translation:

\textit{romangueren en Alemanya}

\(^2\)Translated into English as \textit{They remained in Germany}
Latest results

- Reported by Sánchez-Martínez and Ney (2006)

- Use of a corpus with around 300,000 words for AT extraction

- Translation quality compared to that of word-for-word translation and that obtained with handcrafted rules

- Relative improvement if the quality achieved with handcrafted rules is assumed to be 100%:
 - Spanish → Catalan: 70%
 - Catalan → Spanish: 60%
Outline

1. Apertium
 - Open-source shallow-transfer MT engine
 - On the use of target language information

2. Target-language-driven part-of-speech tagger training
 - Introduction
 - Method overview

3. Target-language-driven lexical selector training
 - Introduction
 - Method overview

4. Shallow-transfer rules extraction from parallel corpora
 - Introduction
 - Method overview

5. Discussion
Three corpus-based approaches have been presented to “give linguistic content” to some modules of the open-source (rule-based) MT system Apertium.

Some modules of the MT system itself are used to train the remaining modules.

Transfer rules are extracted from a small parallel corpus.
- Inferred transfer rules are human-readable. Automatically-inferred rules and handcrafted rules can coexist.

All methods are (or will shortly be) freely available under open-source licenses.
Further reading

Corbí-Bellot A. M. et al.
An open-source shallow-transfer machine translation engine for the Romance languages of Spain
Proceedings of the Tenth Conference of the EAMT, p. 79–80, 2005.

Sánchez-Martínez F., J.A. Pérez-Ortiz and M. L. Forcada
Speeding up target-language driven part-of-speech tagger training for machine translation

Sánchez-Martínez F. and H. Ney
Using alignment templates to infer shallow-transfer machine translation rules
Integrating corpus-based and rule-based approaches in an open-source machine translation system

Felipe Sánchez-Martínez Juan Antonio Pérez-Ortiz
Mikel L. Forcada

Transducons Group – Departament de Llenguatges i Sistemes Informàtics
Universitat d’Alacant, E-03071 Alacant, Spain

{fsanchez,japerez,mlf}@dlsi.ua.es

New Approaches to Machine Translation. A METIS-II Workshop
Leuven, Belgium
January 11, 2007