
A COMPARISON BETWEEN RECURRENT NEURAL NETWORK
ARCHITECTURES FOR DIGITAL EQUALIZATION

Jorge D. Ortiz-Fuentes1 Mikel L. Forcada1

1Universitat d’Alacant,
Dept. Llenguatges i Sistemes Informàtics,

E-03071 Alacant (Spain).

ABSTRACT

This paper shows a comparison between three different
first-order recurrent neural network (RNN) architectures
(fully recurrent, partially recurrent, and Elman), trained
using the real-time recurrent learning (RTRL) algorithm
and the GSM training sequence ratio (26/114) for digital
equalization of 2-ary PAM signals. The results show no sub-
stantial effect of the particular architecture or the number
of units on the overall performance. This is due to the as-
sumption of a suboptimal equalization scheme by the RNNs,
because of the learning algorithm. The results are com-
pared to those obtained using a classical (decision-feedback
equalizer) approach.

1. INTRODUCTION

When digital signals are transmited through a communica-
tion channel, one of the problems that arises is intersymbol
interference (ISI). ISI is mainly due to multipath distor-
tion (the fact that signals arrive with different delays due
to the presence of different propagation paths) or to the
restricted bandwidth of the channel. The signal must then
be reconstructed at the receiver by using an equalizer that
approximates the inverse of the filter modelling the chan-
nel. When channel conditions are not stationary, the need
for an adaptive equalizer arises. We will focus on trained
adaptive equalizers, that is, those that transmit a training
sequence of bits known both to the transmitter and to the
receiver, which the equalizer uses to learn how to reverse
the effect of the channel on the original signal.

Many kinds of trained adaptive equalizers have been de-
scribed: some of them are based on statistical methods,
others are based on linear system theory, such as the lin-
ear transversal equalizer (LTE) and the decision feedback
equalizer (DFE)[1]. Neural networks (NN) —a natural
choice for an adaptive, trainable system— have recently
been applied to this field achieving better performance than
classical methods in some aspects[5, 6]. In particular, re-
current neural networks (RNN) are, in some respects, very
similar to DFEs in that outputs are fed back to the classi-
fier to assist in subsequent decisions[2, 3]; however, unlike
DFEs, RNNs may store additional information about the
past signals in the form of an internal state, that is, their
behavior may not be explained solely in terms of a finite
window of inputs and outputs.

This summary describes a comparison among three clas-

sical RNN architectures for a digital equalization task. Sec-
tion 2 describes the network architectures used. Section 3
describes the parameters of the simulations and presents
the results. Finally, the conclusions are given in Section 4.

2. NETWORK ARCHITECTURES

We have chosen three classical first-order recurrent neu-
ral architectures: a simple, fully recurrent NN used by
Kechriotis et al.[6], a partially recurrent neural network
used by Robinson and Fallside[7] for speech recognition pur-
poses, and an augmented recurrent architecture having a
layer mapping states to outputs, used by Elman[4] to study
temporal sequences. All the architectures are single-input,
single-output (SISO) and have N hidden state units. The
input, the state of the i-th hidden unit, the network output,
and the desired output at time t are denoted by u[t], xi[t],
y[t], and d[t] respectively. The state vector will be denoted
by x[t].

The equations describing these architectures are:

Fully recurrent (FR) NN:

x[t] = FN,N+1(x[t− 1], u[t]);

y[t] = x1[t].

Partially recurrent (PR) NN:

x[t] = FN,N+1(x[t− 1], u[t]);

y[t] = F1,N+1(x[t− 1], u[t]).

Elman RNN:

x[t] = FN,N+1(x[t− 1], u[t]);

y[t] = F1,N (x[t]).

where Fi,j stands for a single-layer perceptron having i out-
puts and j inputs, and therefore ij weights and i biases.
The total number of parameters (weights and biases) for
each network is: FRNN, N2 + 2N ; PRNN, N2 + 3N + 2;
Elman NN, N2 + 3N + 1. The activation function of all
units is the hyperbolic tangent.

These architectures are trained by using Williams and
Zipser’s [8] real-time recurrent learning (RTRL) algorithm
which updates weights every time a target or desired output
is supplied.



3. SIMULATION CONDITIONS AND
RESULTS

3.1. Effects of the architecture

Two kinds of simulations were done to test the effects of
architecture and number of hidden units. The training
sequence ratio for all of them was 26/114, the same as
in the Global System for Mobile communications (GSM)
standard (training sequences alternate with data) [9]. Ev-
ery single simulation was run over 1000 GSM blocks of
random data contaminated with additive white Gaussian
noise and filtered through two different channel models:
a minimum-phase channel (H(z) = 1 + 0.7z−1) and a
non-minimum-phase (NMP) channel (H(z) = 0.3482 +
0.8704z−1 + 0.3482z−2). The decision delay was set to the
delay of the signal with the highest energy. The learning
rate chosen was α = 0.1 after preliminary experimentation,
and a weight decay factor of γ = 0.001 [10] was applied.
Digital values −1 and +1 are represented by neural out-
puts −yp and +yp, with yp = 0.9. Results for each case
are averaged over 10 simulations each, and each simulation
starts with small random weights and biases around 0.0.

For the architecture comparison, a network with N = 3
hidden units was selected for each network design (fully con-
nected, partially recurrent, and Elman nets). The number
of adjustable parameters (weights and biases) is compara-
ble (15, 20, and 19 respectively). Figure 1 shows the bit-
error-rate (BER) performance vs. signal-noise ratio for each
architecture. The perfomance is almost undistinguishable,
a surprising result in view of the apparent differences both
in representational capability.

We then set out to assess the effect of the number of
hidden units. Figure 2 shows the results for the fully recur-
rent and the Elman architectures, using 1 to 4 hidden units
and the non-minimum-phase channel (the results with the
partially recurrent network were very similar). The data
clearly indicate that the number of units does not apprecia-
bly affect the performance.

3.2. Internal representation

After obtaining the results shown on figure 2, we studied
the weight structure of trained nets, to infer the equaliza-
tion strategy learned, and checked whether the learning al-
gorithm was setting most of the weights to 0 so that the
RNN used a single hidden unit. Although some of them
showed the structure mentioned before, the rest of the tests
did not point so clearly in that direction. This may be
probably due to the assumption of suboptimal distributed
strategies which are roughly equivalent to a local strategy
using a single hidden unit. This deserves a more detailed
study that will be reported elsewhere.

3.3. Suboptimal strategy

The last step to study the suitability of using RNN for dig-
ital equalization as compared with other approaches was to
test whether the assumption of a suboptimal strategy [2, 3]
was due to the training algorithm or to an inherent repre-
sentational shortcoming of the architecture.

Since the worst results were obtained for the NMP chan-
nel, we decided to train a 2-hidden-neuron FR recurrent
neural network with its weights set to the values that allow

-4
-3.5

-3
-2.5

-2
-1.5

-1
-0.5

0

0 5 10 15 20 25 30 35 40 45 50

log(BER)

S/N ratio (dB)

Minimum Phase Channel

FR 3

333

3

3

3 Elman +

+++
+

+

+

PR 2

222
2

2

2

-4
-3.5

-3
-2.5

-2
-1.5

-1
-0.5

0

0 5 10 15 20 25 30 35 40 45 50

log(BER)

S/N ratio (dB)

Non-Minimum Phase Channel

FR 3

33
3

3
3

3

Elman +

+++
+

+
+

PR 2
2

22
2

2
2

Figure 1. Bit error rate versus signal-noise ratio for
the three different architectures (FR: fully recur-
rent; PR: partially recurrent).

it to emulate the behavior of an analytically obtained DFE
for that channel. When noise is low, a simple DFE such as

y[t] = sgn[A(u[t]− 0.8704y[t− 1]− 0.3482y[t− 2])]

will equalize it. A possible FRNN realization of this DFE
would be:

x1[t] = tanh(4.698u[t]− 4.089x1[t]− 1.636x2[t− 2]),

x2[t] = tanh(1.636x1[t− 1]),

with y[t] = x1[t] for no decision delay and y[t] = x2[t] for a
decision delay of 1 unit. The rest of the weights would be
zero. Figure 3 shows the performance of this synthetic RNN
equalizer, which is clearly superior to any of the trained
equalizers in this paper.

It is interesting to report here that, when training starts
from this synthetic network instead of from a network with
small random weights and biases, the BER performance of
the equalizer is somewhat degraded, especially when noise is
low; this is shown in figure 3. Additional experiments show
that degradation is worsened by the presence of the weight
decay term γ. Also, higher values of the learning rate α lead
to more degradation; this is due to the fact that the weight
update rule of the RTRL algorithm is an approximation to
true gradient descent in the limit α→ 0. The results shown
correspond to γ = 0 and α = 0.1, 0.01, 0.001.

4. CONCLUSIONS

Our work shows that:



-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 5 10 15 20 25 30 35 40 45 50

log(BER)

S/N ratio (dB)

Fully recurrent net

1 unit 3

33
3

3

3
3 2 units +

++
+

+

+
+

3 units 2

22

2

2

2

2

4 units ×

××
×

×
×

×

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 5 10 15 20 25 30 35 40 45 50

log(BER)

S/N ratio (dB)

Elman net

1 unit 3

33
3

3

3

3 2 units +

++
+

+

+

+

3 units 2

22
2

2

2

2

4 units ×

×××
×

×
×

Figure 2. Bit error rate versus signal-noise ratio for
the fully recurrent and Elman nets as a function of
the number of hidden units

-2.5

-2

-1.5

-1

-0.5

0

0 5 10 15 20

log(BER)

S/N ratio (dB)

DFE FRNN

α = 0.1 3

3 3 3
3

3

3

3

3

α = 0.01 ++ + + +
+

+

+

+

α = 0.001 2
2 2 2

2
2

2

2

2

DFE ×

× × × ×
×

×

×

×

Figure 3. Bit error rate versus signal-noise ratio
for the FRNN emulating the optimum DFE for the
channel, before and after training.

• The BER performance of RNN equalizers trained us-
ing RTRL on 2-ary PAM signals using the GSM train-
ing ratio (26 train/114 data) is both independent of
the particular architecture used and independent of the
number of hidden units in the RNNs.

• This is due to the assumption of a suboptimal equal-
ization strategy which is equivalent to using a single
hidden neuron; indeed, we show that the architectures
are capable of a much better BER performance when
weights are set to suitable values. The suboptimality
of results indicates that RTRL may not be the best
choice of learning algorithm for adaptive equalization
purposes.

• The RTRL learning algorithm tends to degrade the
performance of a synthetic RNN designed to mimic the
optimum DFE, when it is run on real data. This is due
in part to the fact that the error gradient is approxi-
mated but not exactly computed by the RTRL learning
rule.

This suggests that one of the main lines of our future re-
search should address learning algorithms: RTRL seems to
be inefficient for this purpose and is computationally very
expensive. We also plan to study the suboptimal solutions
reached by the network in more detail. It is also important
to note that the work reported here deals with stationary
channels, a very uncommon situation in mobile digital com-
munications.

Acknowledgments: The authors wish to acknowledge
the support of the Spanish Comisión Interministerial de
Ciencia y Tecnoloǵıa through grant TIC95-0984-C02-01.



REFERENCES

[1] Proakis, J.; Digital Communications, New York:
McGraw-Hill (1995).

[2] Bradley, M.J.; Mars, P.; “A critical assessment of recur-
rent neural networks as adaptive in digital communica-
tions”, Proc. IEE Colloquium on Applications of Neural
Networks to Signal Processing, London, (1995), p. 11/1–
4.

[3] Bradley, M.J.; Mars, P.; “Application of recurrent neu-
ral networks to communication channel equalization”,
Proc. ICASSP ’95, Detroit, (1995), 5: 3399–3402.

[4] Elman, J.L.; “Finding structure in time”, Cognitive Sci-
ence 14 (1990) 179–211.

[5] Chen, S.; “Adaptive equalisation using neural net-
works”, in Murray, A.F.(ed.), Applications of Neural
Networks, Kluwer, (1995), 241–265.

[6] Kechriotis, G.; Zervas, E.; Manolakos, E.S.; “Using
Recurrent Neural Networks for Adaptive Communica-
tion Chanel Equalization”, IEEE Trans. on Neural Net-
works, (1994), 5:2, 267–278.

[7] Robinson, A.J.; Fallside, F.; “A recurrent error prop-
agation speech recognition system”, Computer Speech
and Language 5, 259–274.

[8] Williams, R.J.; Zipser, R.A; “A learning algorithm for
continually training recurrent neural networks”, Neural
Computation 1 (1989) 270–280.

[9] Scourias, J. “Overview of the global system for
mobile communications” http://ccnga.waterloo.ca/-

~jscouria/GSM/gsmreport.html (1995).

[10] Hertz, J., Krogh, A., Palmer, R.G.; Introduction to
the Theory of Neural Computation, Reading, Mass.:
Addison-Wesley (1991), p. 157.



A COMPARISON BETWEEN RECURRENT NEURAL
NETWORK ARCHITECTURES FOR DIGITAL EQUAL-
IZATION

Jorge D. Ortiz-Fuentes1 and Mikel L. Forcada1

1Universitat d’Alacant,
Dept. Llenguatges i Sistemes Informàtics,
E-03071 Alacant (Spain).

This paper shows a comparison between three different
first-order recurrent neural network (RNN) architectures
(fully recurrent, partially recurrent, and Elman), trained
using the real-time recurrent learning (RTRL) algorithm
and the GSM training sequence ratio (26/114) for digital
equalization of 2-ary PAM signals. The results show no sub-
stantial effect of the particular architecture or the number
of units on the overall performance. This is due to the as-
sumption of a suboptimal equalization scheme by the RNNs,
because of the learning algorithm. The results are compared
to those obtained using a classical (decision-feedback equal-
izer) approach.


