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Abstract: The last few years have witnessed a surge in the interest of a new machine translation 

paradigm: neural machine translation (NMT). Neural machine translation is starting to displace its 

corpus-based predecessor, statistical machine translation (SMT). In this paper, I introduce NMT, and 

explain in detail, without the mathematical complexity, how neural machine translation systems work, 

how they are trained, and their main differences with SMT systems. The paper will try to decipher 

NMT jargon such as “distributed representations”, “deep learning”, “word embeddings”, “vectors”, 

“layers”, “weights”, “encoder”, “decoder”, and “attention”, and build upon these concepts, so that 

individual translators and professionals working for the translation industry as well as students and 

academics in translation studies can make sense of this new technology and know what to expect from 

it. Aspects such as how NMT output differs from SMT, and the hardware and software requirements of 

NMT, both at training time and at run time, on the translation industry, will be discussed.

Keywords: neural machine translation, neural networks, machine translation, word embeddings, 

encoder, decoder, deep learning

1. Introduction

The last few years have witnessed a surge in the interest in a new machine translation paradigm: neural 

machine translation (NMT), which is beginning to displace its corpus-based predecessor, statistical 

machine translation (SMT). For the potential of this technology to be fully realized in professional 
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translation, the involvement of professionals is crucial;1 involvement can only occur through 

understanding. This paper tries to help individual translators and professionals working for the 

translation industry as well as students and academics in translation studies make as much sense of 

NMT as is possible without a mathematical background, by deciphering NMT jargon such as 

“distributed representations”, “word embeddings”, “vectors”, “layers”, “weights”, “encoder”, 

“decoder” and “attention” and then building upon these concepts (section 2), so that professionals may 

be aware of what to expect of NMT (section 3): in which sense it is different from SMT; its hardware 

and software requirements; and how it may change the way in which translators work. Concluding 

remarks (section 4) wrap up the paper.

2. What is neural machine translation and how does it work?

2.1. Neural machine translation is corpus-based machine translation

Neural machine translation is a new breed of corpus-based machine translation (also called data-driven 

or, less often, corpus-driven machine translation). It is trained on huge corpora of pairs of source-

language segments (usually sentences) and their translations, that is, basically from huge translation 

memories containing hundreds of thousands or even millions of translation units. In this sense, it is 

similar to the statistical machine translation technology that was the state of the art until very recently, 

but uses a completely different computational approach: neural networks. 

2.2. Neural machine translation uses neural networks

Neural machine translation has, in spite of its name, only a very vague connection to neurons or to the 

way people’s brains (or translators’ brains) work. The name comes from the fact that the neural 

networks (which should properly be called artificial neural networks) on which NMT is based are 

composed of thousands of artificial units that resemble neurons in that their output or activation (that is,

the degree to which they are excited or inhibited) depends on the stimuli they receive from other 

neurons and the strength of the connections along which these stimuli are passed. This section 

describes these neurons and the way in which they represent knowledge. 

1 Way and Hearne (2011) worded this quite clearly in the abstract of their paper about statistical machine translation, the 

current dominant technology: “If [linguists and translators] are to make an impact in the field of MT, they need to know how

their input is used by the [statistical machine translation] systems”. This involvement of translators and linguists is also 

crucial now that NMT is challenging the dominant position of SMT.



2.2.1. Neural units or neurons. As has just been said, neural networks are sets of connected neurons, 

which are basically defined by their behaviour. Most neural units or neurons used in NMT operate in 

two steps when they decide their state or activation. Imagine we are computing the activation x of a 

neuron connected to N neurons numbered 1, 2, 3, …, N. 

In the first step, the activations or states of neurons connected to it (which we will call x1, x2, x3, …, xN) 

are added, but first each one is multiplied by a weight representing the strength and nature of their 

connection: w1, w2, w3, …, wN; a bias (b, representing the tendency of the neuron to be excited) is 

commonly added to the total. These weights can be positive or negative: when the stimulus is received 

through a connection with a positive weight, an excited neuron tends to excite the neuron it is 

connected to; when the stimulus is received through a connection with negative weight, an excited 

neuron tends to inhibit the neuron it is connected to. The result,

y = w1×x1 + w2×x2 + w3×x3 + … + wN×xN + b,

is a number that can take any possible negative or positive value, but is not yet the activation x of the 

neuron. Activations are usually bound in some way; for instance, between 0 and 1 or between –1 and 

+1, or always positive. 

Therefore, in the second step, an activation function maps values of y onto values of x. Many different 

kinds of activation functions are possible. One common activation function is the logistic (sometimes 

called sigmoid) function which takes values between 0 and 1 and has the form shown in Figure 1. That 

is, when the weighted input y becomes more and more negative, the activation x takes a value that very 

slowly approaches zero; when y is zero, the activation takes a value of 0.5, and as y becomes more and 

more positive, x slowly approaches 1. The hyperbolic tangent activation function has a very similar 

shape to that of the logistic activation function but varies instead between –1 and 1. Another very 

popular activation function is called ReLU or rectified linear unit, shown in Figure 2. If y is positive, x 

equals y. If y is negative, x is simply zero. 

In most neural network architectures, the activations of individual neurons do not make sense by 

themselves, but rather when grouped with the activations of the other neurons, as will be described in 

the next section.



2.2.2. Grouping units into layers to learn distributed representations. In NMT, words or sub-word units

such as characters or short character sequences2 are processed in a parallel, distributed way: the actual 

activation states of each neuron in large sets of neurons are trained to build distributed representations 

of words and their contexts, both in the context of the source sentence being processed and in the 

context of the target sentence being produced. A representation is a snapshot of the activation states of 

each neuron in a specific group of them, usually called a layer: a fixed-size list (a vector) of quantities 

such as (+0.3, 0, -0.23, +0.01, -0.99, …). The actual translation output is produced from these 

representations. 

To get an idea of how vectors may be used to represent knowledge, imagine a rectangular room 

perfectly aligned with the compass points. Any point inside the room could be located from the 

southwest corner of the room (“the origin”) using three numbers: how many centimeters far north, how 

many centimeters far east, and how many centimeters high above the floor. For instance, the position of

the light bulb of the lamp on the nightstand could be represented with a three-dimensional vector, for 

example “(70, 150, 87)”.3 Now imagine that, like the bulb, concepts (words, sentences) could be placed

in the space inside that room: two similar concepts would ideally be close to each other and therefore 

have similar coordinates; very different concepts would be far apart from each other and therefore have

different coordinates. Three dimensions are not enough for the richness observed in language: 

encodings of words and representations of sentences need many more dimensions to accommodate 

them and their mutual relationships, usually hundreds of them. It is hard for most of us to imagine 

spaces with more than three dimensions, but geometry and maths nicely extend beyond three 

dimensions, and so, computing and storing these representations is only a matter of computing power 

and memory.

Representations are usually deep (hence the buzzword deep learning): they are not built in one shot, 

but in stages from other shallower representations or layers. These layers usually contain hundreds of 

neural units: weights connect all units in one layer with all units in the next layer; the number of 

connections ranges in the thousands.  

2.3. How does neural machine translation work?

2 The process to turn text into a series of these sub-word character sequences (sometimes called “byte pair encoding”: 

Sennrich, Haddow and Birch 2016) allows NMT systems to deal with new words they have not seen during training.

3 Negative values would be outside the room, south or west from it, or below it.



2.3.1. Training. We want the neural network to read each source sentence to form distributed 

representations (values of activations of groups of neurons), such that outputs computed from them are 

as close as possible to the corresponding reference or gold-standard translations in the training set 

(ideally produced by translation professionals). To that end, one trains the neural network; that is, 

determines the weight or strength of each of the connections between neurons so that the desired results

are obtained. NMT usually requires very large training corpora, typically as large as those used in good 

old SMT, and its training (searching for the best value for all of the weights in the network) is 

computationally very demanding: most NMT training resorts to using dedicated number-crunching 

hardware evolved from graphics processors, with typical training times ranging from days to months. 

During training, weights are modified in such a way that the value of a specific error function or loss 

function describing how far the machine translation outputs are from the reference translations is made 

as small as possible. For that purpose, training algorithms are used that compute small corrections 

(updates) to weights that are repeatedly applied until the loss function is minimum or small enough. As 

probabilities are available for each possible word at each position of the target sentence (see section 

2.2.6 below), the system is often trained in such a way that it assigns the maximum likelihood to the 

whole reference translation for all of the source–target pairs in the training set.

2.3.2. Machine translation as predicting the next word. Most NMT systems are built and trained in 

such a way that they resemble a text completion device (analogous to the word prediction feature of 

smartphone keyboards) which is informed by a representation of the source sentence, or, more 

specifically, by representations of each of the words of the source sentence in their context, built by the 

encoder part of the system. As a text completion device, a part of the system called the decoder 

provides, at each position of the target sentence being built, and for every possible word in the target 

vocabulary, the likelihood that the word is a continuation of what has already been produced. The best 

translation is usually built by picking the most likely word at each position. Based on this principle, but

using the decoder to predict the best possible target word considering the part of the sentence that a 

professional translator has already typed, Peris et al. (2017) have proposed what they call interactive 

neural machine translation, a special kind of interactive machine translation or interactive translation 

prediction, which had customarily been performed so far using SMT instead of NMT.4 In these 

prediction–completion translation workflows, the system suggests possible continuations which may be

accepted (using a hotkey such as the tabulator key, “⭾”) or ignored by the professional translators as 

they type the target text.

4 The pioneering interactive translation prediction work is that by Foster, Isabelle and Plamondon (1997).



2.3.3. Representations for words and for longer segments of text. NMT (as with all neural computation)

bases its power on the automatic learning of distributed representations, both for individual words, and 

for compound representations of parts of the sentence: these compound representations are computed 

(built) from the representations of smaller units, one unit at a time. Representations of individual 

words, or of sub-word units, (sometimes called embeddings) are usually learned from large 

monolingual texts by specialized neural networks that either learn to reproduce a specific word in a 

specific context from a few words to the right and to the left of it (sometimes called continuous bag-of-

words embeddings, Mikolov et al. 2013a) or learn to predict a few words to the right and to the left of a

word from the word itself (called skip-gram embeddings, see also Mikolov et al. 2013a). Embeddings 

naturally show interesting semantic properties: semantically similar words are assigned similar 

representations, so similar that they even allow for ‘semantic arithmetics’: if e(‘word’) is the vector 

representation of ‘word’ (remember, a vector is a fixed-length list of numbers), then the formula 

e(‘queen’)–e(‘woman’)+e(‘man’) (where vectors are added or subtracted neuron by neuron, much like 

columns in a spreadsheet) often yields a vector that is very similar to e(‘king’), as one would expect 

(Mikolov et al. 2013b).

For an NMT system, therefore, translating means encoding and decoding: How does NMT encode a 

source sentence and then decode it into a target sentence? In the most common NMT architecture, this 

proceeds in a recursive way. The next sections describe how in a bit more detail.

2.3.4. Encoding. First, let's consider encoding of the source sentence: Imagine we want to translate the 

sentence ‘My flight is delayed.’ into Spanish. A representation for the sentence is recursively formed 

from the vector embeddings of individual words, e(‘my’), e(‘flight’), e(‘is’), e(‘delayed’) and e(‘.’) as 

follows (note that we use “e(…)” as a shorthand notation for an encoding vector that may have 

hundreds of components):

1. The encoder network combines a preexisting (pre-learned) encoding for the empty sentence E(‘’) 

with the embedding of the first word e(‘my’) to produce an encoding E(‘My’).

2. Then the encoder network combines the representation of E(‘My’) and the embedding of e(‘flight’) 

to produce the encoding E(‘My flight’).

3. In successive steps, E(‘My flight’) and e(‘is’) lead to E(‘My flight is’), etc., until a representation for

the whole sentence E(‘My flight is delayed.’) is obtained.



In neural parlance, such a network is said to be a discrete-time recurrent neural network: it is 

repeatedly applied and part of the output computed in one step is fed back to the next step. Encoders 

arrange their layers in specific gating structures that are endowed with a certain capability to learn to 

forget past inputs which are not relevant at a certain point or to remember past inputs. The most 

commonly used gating configurations are long-short term memories (LSTM: Hochreiter and 

Schmidhuber 1997) and gated recurrent units (GRU: Cho et al. 2014). The encoding process is 

exemplified in Figure 3 (not all steps are shown).

An additional reverse encoder (not shown) may be added, which reads the sentence right to left (that is,

‘. delayed is flight My’) and produces a reverse encoding E'(‘My flight is delayed.’) from e(‘my’) and 

E(‘flight is delayed.’), which in turn is produced from E'(‘is delayed.’) and e(‘flight’), etc. We will 

assume that existing representations at each position of the source sentence (the direct one and the 

reverse one) are combined in some way (for instance, by putting the direct and the reverse vectors side 

by side next to each other to make a longer vector).

2.3.5. Decoding. Now, let us consider decoding. The simplest decoder (one without attention in NMT 

jargon, see section 2.3.1) works as follows:

1. Starting from the encoding of the whole sentence E(‘My flight is delayed.’), the decoder produces 

two vectors: one is an initial decoder state D(‘My flight is delayed’,‘’), where ‘’ represents an empty 

sequence of target words, and a vector of probabilities for all possible words x in the first position of 

the target sentence, p(x|‘My flight is delayed’,‘’). A well-trained decoder would assign the maximum 

likelihood to Spanish word x=‘Mi’. The word ‘Mi’ is therefore output.

2. The decoder reads D(‘My flight is delayed’,‘’) and the word ‘Mi’, and produces two vectors: the 

next decoder state D(‘My flight is delayed’,‘Mi’) and a vector of probabilities of all possible output 

words x in the second position of the sentence, p(x|‘My flight is delayed’,‘Mi’). A well-trained decoder 

would assign the maximum likelihood to the Spanish word ‘vuelo’. The word x=‘vuelo’ is therefore 

output.

3. In successive steps,  D(‘My flight is delayed’,‘Mi’) combined with ‘vuelo’ leads to D(‘My flight is 

delayed’, ‘Mi vuelo’) and a p(x|‘My flight is delayed’, ‘Mi vuelo’); let’s say that the most likely x is 

‘lleva’; then D(‘My flight is delayed’, ‘Mi vuelo’) is combined with ‘lleva’ and leads to D(‘My flight is

delayed’, ‘Mi vuelo lleva’) and a p(x|‘My flight is delayed’, ‘Mi vuelo lleva’), etc. All of this until the 

output ‘Mi vuelo lleva retraso.’ is produced and the most likely next word happens to be an end-of-

decoding marker.



The decoding process is depicted in Figure 4.

2.4. Extensions and alternative neural machine translation architectures 

2.4.1. Attention. The above paragraphs describe one of the typical NMT designs or architectures, aptly 

called the encoder–decoder architecture, or sometimes the seq2seq (“sequence to sequence”) 

architecture (Sutskever et al. 2014).5 The encoder–decoder architecture was almost immediately 

extended (Bahdanau et al. 2014) with a device called attention: the decoder pays attention (responds) 

not only to the last representation built by the encoder (in our example, E(‘My flight is delayed.’)) but 

also to the whole sequence of representations built during encoding (E(‘My’), E(‘My flight’), etc.) 

through an appropriate additional set of neural connections and layers. The recurrent encoder–decoder 

architecture with attention, using either LSTM or GRU gating structures may be considered to be the 

bread-and-butter of NMT in 2017.

2.4.2. “Convolutional” neural machine translation. There are however more recent approaches to 

NMT that do not use the recurrent encoder–decoder architecture described here, but instead use what is 

called a convolutional architecture (Gehring et al. 2017). Instead of producing an encoding of the 

whole source sentence by recursively ingesting the embeddings of source words one by one, their 

decoder produces representations of each word by taking into account a few words (let’s say 2) to the 

left and to the right of it. For instance, our sentence ‘My flight is delayed’, conveniently padded to form

‘NULL NULL My flight is delayed. NULL NULL’ is turned into a series of context-informed 

representations R(‘NULL NULL My flight is’), R(‘NULL My flight is delayed’), R(‘My flight is 

delayed .’), R(‘flight is delayed . NULL’), and R(‘is delayed . NULL NULL’); then, these 

representations are taken again in groups of 5 and used to generate a series of deeper representations; 

this is repeated (convoluted) a couple of times. Then a similar scheme is used to generate 

representations of output words: starting with the representation of an initial left-padding, such as 

‘NULL NULL NULL’, and paying attention to the representations generated by the encoder, it predicts 

the next word: ‘Mi’. The three-word window is displaced right by appending the predicted word, and a 

representation for ‘NULL NULL Mi’ is built, which is used to predict the next word ‘vuelo’, etc.

2.4.3. Doing away with recursion and convolution: is attention all you need? But the last word has not 

yet been said about NMT architectures. Just as these lines were being written (June 2017), a new NMT 

architecture using only attention mechanisms (attention between source words, between the target 

5 The encoder–decoder approach is coincidentally similar to the Recursive Hetero-Associative Memories proposed two 

decades ago by the author (Forcada and Ñeco 1997).



words being generated, and between source and target words) has been proposed (Vaswani et al. 2017). 

These new NMT systems seem to obtain similar results to the above architectures with a fraction of the 

computational resources. While the field explores the capabilities of each possible architecture, most 

real-world applications are still using encoder–decoder architectures with attention.

2.5. Main differences between neural and statistical machine translation

SMT was, until very recently, the undisputed state-of-the-art in machine translation —with rule-based 

(or knowledge-based) machine translation (Forcada 2010, section 3.2) still being used in some real-

world applications.6 But currently, NMT is challenging that hegemony.

In both NMT and SMT, a target sentence is a translation of a source sentence with a certain probability 

of likelihood; in principle, all target sentences can be a translation of a source sentence, but we are 

interested in the most likely one. In both NMT and SMT, decoding (the same name is used) selects the 

most likely target sentence (or at least one of the most likely ones, as an exhaustive search is usually 

not possible). 

In NMT, the likelihood of the target sentence is computed by looking at the likelihood of each target 

word given the source sentence and the preceding words in the target sentence; the decoding 

mechanism, using information from the source sentence —processed by encoding and attention neural 

networks— provides this likelihood, and the most likely word is selected at each step. The whole 

process is performed by a single (“monolithic”7) large neural network whose connection weights are all

jointly trained.

In contrast, SMT builds translations by stringing together the translations of clearly identified 

subsegments (usually called phrases8). These phrase pairs (source subsegment, target subsegment) are 

obtained during training by parallel corpora by first aligning their source words to their target words 

using probabilities learned from the bilingual corpus, and then identifying source and target phrases 

that are compatible with the alignments of their individual words. Phrase pairs in the translation table 

6 For an accessible introduction on how SMT works, see Forcada (2010, section 3.3.2) and Hearne and Way (2011); a 

companion paper to the latter by Way and Hearne (2011) discusses the role of translators in the advancement of SMT, seen 

as the “state of the art” at that time.

7 The term is borrowed from electronic hardware parlance, where a monolithic system is one in which all of the components

are built together in the same integrated circuit.

8 They are called phrases (Koehn 2010, 127) even if they are not syntactic units in the linguistic sense.



come with a number of scores computed from these word alignments. Therefore, training occurs in two

phases (which are not jointly learned): alignment and phrase extraction. During translation, each source

sentence is chopped into source phrases (usually in many possible ways), the phrases are looked up in 

the translation table, and their translations are strung together in a number of plausible ways to form 

candidate translations of the whole sentence. Phrase-pair scores and target language probabilities 

obtained from very large amounts of monolingual target text are combined to compute the likelihood of

each candidate translation, to select the best one.9 

This leads to a very important difference. Unlike in SMT, in NMT the identification of subsegments 

and their translations is not straightforward: the raw translation is produced word by word taking the 

whole source segment into account. This is clearly visible if one uses Google Translate, which is 

migrating from SMT to NMT.10 For language pairs that still use SMT, the correspondences between 

source and target phrases may be revealed when the mouse hovers over the target sentences; for 

language pairs using NMT, whole sentences are highlighted instead. Possible errors in NMT are 

therefore much harder to trace back to phrase-pairs found in the bilingual corpus used to train the 

system.

3. What can translators expect from neural machine translation?

Although NMT is relatively young, it is already being deployed as part of online translation systems 

(such as Google Translate), internally being used inside major international corporations (such as 

Booking.com, Levin et al. [2017]) or to offer translation services (such as those offered by KantanMT, 

Shterionov et al. 2017). As a result, a number of studies have been published which can give an idea of 

what can be expected. 

3.1. High computational requirements

NMT systems are hard to train, even harder than SMT systems, which already required parallel corpora

that are not usually available to individual translators or even small translation agencies. These parallel 

corpora are much larger than the usual translation memories. Dedicated hardware (such as GPUs, 

9 The weight assigned to each one of the scores when computing the likelihood of the whole sentence is determined using a 

small development set of a few thousand sentence pairs.

10 http://translate.google.com: language pairs are being migrated from statistical to NMT, but migration is not complete as 

these lines are written. In those language pairs using neural translation it is no longer possible to hover over target words to 

see the source words they correspond to, as is possible for language pairs using phrase-based SMT.

http://translate.google.com/


originally used as graphic processing units, hence the name) is needed, and training times (days, 

weeks, months) may be too long for some applications.

There are a number of freely available NMT toolkits with very friendly user licenses such as 

OpenNMT,11 Sennrich et al.’s (2017) Nematus,12 AmuNMT,13 or Neural Monkey,14 but installing, 

configuring, and using them requires skills that are not usually possessed by professional translators, 

even if one has access to the kind of specialized hardware needed.  

But even once trained, machine translation (“decoding”) may be too slow on regular desktop or laptop 

machines: therefore, in computer-aided translation environments, interactive, real-time usage (machine 

translation output being produced on demand, much as translation memory fuzzy matches are) may be 

very difficult and one would have to turn to batch usage (that is, using precomputed machine 

translation output), with the corresponding change in translation workflow.

Machine translation companies which offered customers the possibility to build an SMT system from 

their translation memories and from stock parallel corpora, and then run the resulting system on the 

customer’s documents, are starting to offer NMT too. 

If, however, access to adequate hardware of sufficient power is actually possible, the nature of 

decoding in NMT naturally lends itself to interactive translation completion workflows.

3.2. A different kind of output

The output of NMT systems is, in many respects, similar to that produced by SMT systems. Some 

annoying problems inherent to corpus-based machine translation such as inconsistencies in numerical 

expressions and URLs, mistranslation of proper nouns (particularly compound proper nouns such as 

United Nations or Bank of England), terminological inconsistencies, misplacing of formatting tags, 

etc., are still there. But NMT output is different in some respects.

Due to the semantic nature of learned representations, errors are usually semantically motivated; for 

instance, the wrong country may be obtained, such as Norway instead of Tunisia, as found by Arthur et 

al. (2016), who class this kind of error as “particularly serious because the content words that are often 

11 http://opennmt.net/

12 https://github.com/rsennrich/nematus

13 https://amunmt.github.io/features/

14 http://neural-monkey.readthedocs.io/en/latest



mistranslated […] are also the words that play a key role in determining the whole meaning of the 

sentence.” This kind of error therefore requires a specific kind of attention on the part of the post-

editor.

Systems using sub-word units —which may be linguistically motivated but more often are not— 

instead of whole words may resort to being creative when it comes to translating a word they have 

never seen during the training stage by piecing a translation together from sub-word units. Here are 

some examples from Czech–English machine translation:15

 The system is able to reconstruct an acceptable translation such as Elizabeth Picciuto (Czech 

Elizabeth Picciutová).

 The system produces a word that is very similar to what would be considered an adequate 

translation: denacification for denazification (Czech denacifikace), taequondo for taekwondo 

(Czech taekvondo), anisakiosis for anisakiasis (Czech akisakiózou, ‘with anisakiasis’), or 

compilating for compilation (Czech compilací). For examples like these, post-editing is 

straightforward but necessary.

 The system invents a reasonable word such as multifight for multisport (Czech víceboje), 

yachtamaker for yachtwoman (Czech Jachtařku), restorer for restaurateur (Czech restaurátoří),

or geolocator for GPS (Czech geolokátoru).

 The system gets confused and produces the wrong form of proper nouns: Raction for the 

middle-eastern city of Raqqa (Czech v Rakce ‘in Raqqa’), Aveir for the Portuguese city of 

Aveiro (Czech u Aveiru, ‘in Aveiro’).

 The system produces partly translated words which are hard to recognize such as vruts for pikes

(Czech vruty), nalect for discovery or finding (Czech nalezení) or revante for revenge (Czech 

revanš). 

Up until now, sub-word units were very unusual and this kind of output was seldom produced by any of

the existing technologies (rule-based machine translation, SMT). So far, machine translation output 

contained either target words seen during training or untranslated source words; if sub-word NMT is 

used, post-editors need to be able to spot and deal with new types of mistranslation that, up to now, 

they may not have encountered.

15 Examples provided by Barry Haddow (2017, personal communication) from the actual output of a system using byte-

pair encoding sub-word units.



3.3. Is neural machine translation better than statistical machine translation?

At this point, it is perfectly legitimate to ask: is NMT better than its corpus-based predecessor, SMT? It 

is the case that NMT systems participating in international shared-task contests16 have shown to 

produce the best results as regards subjective direct assessments and automatic evaluation measures 

that roughly compare them to preexisting reference translations, but reliable measurements of the 

improvement in their actual impact in translator productivity when used as a starting point for a post-

editing job are still to be made. Recently, Google adopted NMT for a few of its language pairs (Wu et 

al. 2017), in a move that was accompanied by considerable hype, which did not go down too well in 

some sectors of the machine translation community (Vashee 2016).

3.3.1. Automatic evaluation. Automatic evaluation measures, which compare the output of the machine 

translation to usually a single independent professional translation called a reference translation using 

text similarity measures such as the fraction of matching one-, two-, three- and four-word sequences,17 

very often give NMT a definite advantage (see e.g., Toral and Sánchez-Cartagena 2017); this 

advantage, however, is reduced (see also Bentivogli et al. 2016) when sentences get very long 

(30 words).

Adequate translations usually require placing the equivalents of source words in a completely different 

order. Automatic analysis finds that NMT (Toral and Sánchez-Cartagena 2017; Bentivogli et al. 2016) 

produces reorderings that resemble more those of reference sentences than those produced by SMT (the

latter paper reports a 50% decrease in “word order errors”). In an English–German task, Bentivogli et 

al. (2016) also found that NMT produces “less morphology errors (–19%) [and] less lexical errors (–

17%)” than SMT.

3.3.2. Subjective evaluation. Manual evaluation, that is, subjective assessment of output fluency (a 

monolingual measure of quality) usually shows NMT output to be much more fluent that its SMT 

counterpart (Bojar et al. 2016, section 3.5); automatic evaluation results are consistent with this finding 

(Toral and Sánchez-Cartagena 2017). Note that a translation can be very fluent but may not be 

adequate in the sense that it does not have the same meaning as the original sentence. 

16 Such as those proposed by WMT, the Conference on Machine Translation, formerly Workshop on [statistical] Machine 

Translation (see http://www.statmt.org/wmt17/ for the 2017 edition).

17 A well-known measure called BLEU (Papineni et al. 2001) computes these four matching fractions and takes the 

geometric average. The result is a number between 0 and 1, sometimes reported as BLEU points on a scale from 0 to 100.



3.3.3. Measuring post-editing effort and productivity. Measurements of the actual usefulness of NMT 

for professional translators are still very scarce (they are generally quite scarce even for older machine 

translation technologies), but some preliminary results have started to emerge, particularly those of  

comparisons between NMT and the current state of the art, phrase-based SMT. Bentivogli et al. (2016) 

show that NMT “generates outputs that considerably lower the overall post-edit effort with respect to 

the best [phrase-based SMT] system” in an English–German machine translation task. When post-

editing effort was approximated as the minimum number of insertions, deletions or substitutions of one 

word, or shifts of whole blocks of words needed to turn machine translation output into an adequate 

text, the gain was observed to be 26%. Note, however, that the amount of post-editing is only an 

approximation to actual post-editing effort, as it does not take into account, for instance, post-editing 

time.

In a more recent paper, Castilho et al. (2017) compared the effort when post-editing statistical and 

NMT output from English into German, Greek, Portuguese and Russian, using systems trained on the 

same data; they measured editing time, and technical post-editing effort, that is, the actual number of 

post-editing keystrokes. As regards the number of segments (sentences) requiring no editing, 

differences were not statistically significant except when translating into German, where NMT had an 

advantage. Post-editing time (or its reverse, throughput in words per second) was only marginally 

better for NMT, except when translating into Russian. Finally, technical effort (number of keystrokes or

minimum number of edits as in Bentivogli et al. 2016) was reduced for all target languages when using 

NMT. 

These findings, while promising for a technology that only started to be available three years ago, are 

still inconsistent, and more extensive testing should be performed. The results of any comparison 

between an SMT and an NMT system may vary depending on how similar the training data are to the 

actual texts to be translated, the language pair, and the specific machine translation configurations used.

4. Concluding remarks

Neural machine translation is the new machine translation paradigm, currently a direct competitor with 

statistical machine translation, and to some extent with rule-based (or knowledge-based) machine 

translation. As many translators are likely to translate by post-editing the output of machine translation,

it is crucial for them to be aware of the latest machine translation approach. 



A description of NMT (its architecture and how it functions), which avoids mathematical details as 

much as possible, has been presented after a quick explanation of how artificial neurons and artificial 

neural networks work, while trying to decipher concepts such as embeddings, encoding, decoding, 

attention, etc. in terms which are hopefully accessible to translators.

The implications for translators have also been discussed, focusing on the computational requirements 

of NMT, the nature of the output it produces, and a comparison between this new machine translation 

technology and existing statistical machine translation.
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Figure 1: The logistic activation function



Figure 2: The ReLU activation function

Figure 3: Encoding of the English sentence "My flight is delayed . "



Figure 4: Decoding into Spanish of the representation of the English sentence "My flight is delayed ."


