
Using multilingual content on the web
to build fast finite-state direct translation

systems∗

Mikel L. Forcada

Departament de Llenguatges i Sistemes Informàtics

Universitat d’Alacant

E-03071 Alacant, Spain

∗Partially funded by CICyT (project TIC2000-1599-C02-02).

1



Index

The objective

The web as a source of translation units

Using subsentential translation units

Finite-state storage of TU databases

Updating the finite-state translation memory

A web-based application

Summary and outlook

2



Index

The objective

The web as a source of translation units

Using subsentential translation units

Finite-state storage of TU databases

Updating the finite-state translation memory

A web-based application

Summary and outlook

2



Index

The objective

The web as a source of translation units

Using subsentential translation units

Finite-state storage of TU databases

Updating the finite-state translation memory

A web-based application

Summary and outlook

2



Index

The objective

The web as a source of translation units

Using subsentential translation units

Finite-state storage of TU databases

Updating the finite-state translation memory

A web-based application

Summary and outlook

2



Index

The objective

The web as a source of translation units

Using subsentential translation units

Finite-state storage of TU databases

Updating the finite-state translation memory

A web-based application

Summary and outlook

2



Index

The objective

The web as a source of translation units

Using subsentential translation units

Finite-state storage of TU databases

Updating the finite-state translation memory

A web-based application

Summary and outlook

2



Index

The objective

The web as a source of translation units

Using subsentential translation units

Finite-state storage of TU databases

Updating the finite-state translation memory

A web-based application

Summary and outlook

2



Index

The objective

The web as a source of translation units

Using subsentential translation units

Finite-state storage of TU databases

Updating the finite-state translation memory

A web-based application

Summary and outlook

2



The objective

Use existing multilingual web content...

...to build and maintain a web-based, fast...

...direct machine translation engine...

...for MT-less (or MT-poor) language pairs.

3



The objective

Use existing multilingual web content...

...to build and maintain a web-based, fast...

...direct machine translation engine...

...for MT-less (or MT-poor) language pairs.

3



The objective

Use existing multilingual web content...

...to build and maintain a web-based, fast...

...direct machine translation engine...

...for MT-less (or MT-poor) language pairs.

3



The objective

Use existing multilingual web content...

...to build and maintain a web-based, fast...

...direct machine translation engine...

...for MT-less (or MT-poor) language pairs.

3



The objective

Use existing multilingual web content...

...to build and maintain a web-based, fast...

...direct machine translation engine...

...for MT-less (or MT-poor) language pairs.

3



The web as a source of translation units

One can mine the web for bitexts.

Techniques exist: Resnik (1999), Chen & Nie (2000).

Bitext identification involves bitext alignment.

Alignment produces candidate translation units (TU).

Coverage may be large for certain language pairs, registers, and

subjects.

Build a (web-based) translation-memory-like engine?

4



The web as a source of translation units

One can mine the web for bitexts.

Techniques exist: Resnik (1999), Chen & Nie (2000).

Bitext identification involves bitext alignment.

Alignment produces candidate translation units (TU).

Coverage may be large for certain language pairs, registers, and

subjects.

Build a (web-based) translation-memory-like engine?

4



The web as a source of translation units

One can mine the web for bitexts.

Techniques exist: Resnik (1999), Chen & Nie (2000).

Bitext identification involves bitext alignment.

Alignment produces candidate translation units (TU).

Coverage may be large for certain language pairs, registers, and

subjects.

Build a (web-based) translation-memory-like engine?

4



The web as a source of translation units

One can mine the web for bitexts.

Techniques exist: Resnik (1999), Chen & Nie (2000).

Bitext identification involves bitext alignment.

Alignment produces candidate translation units (TU).

Coverage may be large for certain language pairs, registers, and

subjects.

Build a (web-based) translation-memory-like engine?

4



The web as a source of translation units

One can mine the web for bitexts.

Techniques exist: Resnik (1999), Chen & Nie (2000).

Bitext identification involves bitext alignment.

Alignment produces candidate translation units (TU).

Coverage may be large for certain language pairs, registers, and

subjects.

Build a (web-based) translation-memory-like engine?

4



The web as a source of translation units

One can mine the web for bitexts.

Techniques exist: Resnik (1999), Chen & Nie (2000).

Bitext identification involves bitext alignment.

Alignment produces candidate translation units (TU).

Coverage may be large for certain language pairs, registers, and

subjects.

Build a (web-based) translation-memory-like engine?

4



The web as a source of translation units

One can mine the web for bitexts.

Techniques exist: Resnik (1999), Chen & Nie (2000).

Bitext identification involves bitext alignment.

Alignment produces candidate translation units (TU).

Coverage may be large for certain language pairs, registers, and

subjects.

Build a (web-based) translation-memory-like engine?

4



Using subsentential translation units/1

Customary translation memories use non-linguistic or weakly-
linguistic alignment techniques:

• Sentence boundary determination,

• format analysis,

• proper-name identification, etc.

Result: segments are sentences (running text) or list items (menus,
tables, etc.).

Coverage of sentence segments may not be large → approximate
matching.

5



Using subsentential translation units/1

Customary translation memories use non-linguistic or weakly-
linguistic alignment techniques:

• Sentence boundary determination,

• format analysis,

• proper-name identification, etc.

Result: segments are sentences (running text) or list items (menus,
tables, etc.).

Coverage of sentence segments may not be large → approximate
matching.

5



Using subsentential translation units/1

Customary translation memories use non-linguistic or weakly-
linguistic alignment techniques:

• Sentence boundary determination,

• format analysis,

• proper-name identification, etc.

Result: segments are sentences (running text) or list items (menus,
tables, etc.).

Coverage of sentence segments may not be large → approximate
matching.

5



Using subsentential translation units/1

Customary translation memories use non-linguistic or weakly-
linguistic alignment techniques:

• Sentence boundary determination,

• format analysis,

• proper-name identification, etc.

Result: segments are sentences (running text) or list items (menus,
tables, etc.).

Coverage of sentence segments may not be large → approximate
matching.

5



Using subsentential translation units/1

Customary translation memories use non-linguistic or weakly-
linguistic alignment techniques:

• Sentence boundary determination,

• format analysis,

• proper-name identification, etc.

Result: segments are sentences (running text) or list items (menus,
tables, etc.).

Coverage of sentence segments may not be large → approximate
matching.

5



Using subsentential translation units/1

Customary translation memories use non-linguistic or weakly-
linguistic alignment techniques:

• Sentence boundary determination,

• format analysis,

• proper-name identification, etc.

Result: segments are sentences (running text) or list items (menus,
tables, etc.).

Coverage of sentence segments may not be large → approximate
matching.

5



Using subsentential translation units/1

Customary translation memories use non-linguistic or weakly-
linguistic alignment techniques:

• Sentence boundary determination,

• format analysis,

• proper-name identification, etc.

Result: segments are sentences (running text) or list items (menus,
tables, etc.).

Coverage of sentence segments may not be large → approximate
matching.

5



Using subsentential translation units/1

Customary translation memories use non-linguistic or weakly-
linguistic alignment techniques:

• Sentence boundary determination,

• format analysis,

• proper-name identification, etc.

Result: segments are sentences (running text) or list items (menus,
tables, etc.).

Coverage of sentence segments may not be large → approximate
matching.

5



Using subsentential translation units/1

Customary translation memories use non-linguistic or weakly-
linguistic alignment techniques:

• Sentence boundary determination,

• format analysis,

• proper-name identification, etc.

Result: segments are sentences (running text) or list items (menus,
tables, etc.).

Coverage of sentence segments may not be large → approximate
matching.

5



Using subsentential translation units/2

Subsentential units may improve coverage.

May be obtained from specialized subsentential aligning (Simard

& Langlais 2001). . .

. . . or using statistical MT techniques (Marcu 2001).

But may also introduce ambiguity:

• A careful balance is necessary: coverage vs. precision.

• Subject, register, and variety annotation crucial.

6



Using subsentential translation units/2

Subsentential units may improve coverage.

May be obtained from specialized subsentential aligning (Simard

& Langlais 2001). . .

. . . or using statistical MT techniques (Marcu 2001).

But may also introduce ambiguity:

• A careful balance is necessary: coverage vs. precision.

• Subject, register, and variety annotation crucial.

6



Using subsentential translation units/2

Subsentential units may improve coverage.

May be obtained from specialized subsentential aligning (Simard

& Langlais 2001). . .

. . . or using statistical MT techniques (Marcu 2001).

But may also introduce ambiguity:

• A careful balance is necessary: coverage vs. precision.

• Subject, register, and variety annotation crucial.

6



Using subsentential translation units/2

Subsentential units may improve coverage.

May be obtained from specialized subsentential aligning (Simard

& Langlais 2001). . .

. . . or using statistical MT techniques (Marcu 2001).

But may also introduce ambiguity:

• A careful balance is necessary: coverage vs. precision.

• Subject, register, and variety annotation crucial.

6



Using subsentential translation units/2

Subsentential units may improve coverage.

May be obtained from specialized subsentential aligning (Simard

& Langlais 2001). . .

. . . or using statistical MT techniques (Marcu 2001).

But may also introduce ambiguity:

• A careful balance is necessary: coverage vs. precision.

• Subject, register, and variety annotation crucial.

6



Using subsentential translation units/2

Subsentential units may improve coverage.

May be obtained from specialized subsentential aligning (Simard

& Langlais 2001). . .

. . . or using statistical MT techniques (Marcu 2001).

But may also introduce ambiguity:

• A careful balance is necessary: coverage vs. precision.

• Subject, register, and variety annotation crucial.

6



Using subsentential translation units/2

Subsentential units may improve coverage.

May be obtained from specialized subsentential aligning (Simard

& Langlais 2001). . .

. . . or using statistical MT techniques (Marcu 2001).

But may also introduce ambiguity:

• A careful balance is necessary: coverage vs. precision.

• Subject, register, and variety annotation crucial.

6



Using subsentential translation units/3

Regular TMs use the same weakly-linguistic segmentation strate-

gies when (pre)translating new text.

But subsentential units may also be used to segment texts. . .

. . . both when translating new text. . .

. . . and when aligning new bitexts.

7



Using subsentential translation units/3

Regular TMs use the same weakly-linguistic segmentation strate-

gies when (pre)translating new text.

But subsentential units may also be used to segment texts. . .

. . . both when translating new text. . .

. . . and when aligning new bitexts.

7



Using subsentential translation units/3

Regular TMs use the same weakly-linguistic segmentation strate-

gies when (pre)translating new text.

But subsentential units may also be used to segment texts. . .

. . . both when translating new text. . .

. . . and when aligning new bitexts.

7



Using subsentential translation units/3

Regular TMs use the same weakly-linguistic segmentation strate-

gies when (pre)translating new text.

But subsentential units may also be used to segment texts. . .

. . . both when translating new text. . .

. . . and when aligning new bitexts.

7



Using subsentential translation units/3

Regular TMs use the same weakly-linguistic segmentation strate-

gies when (pre)translating new text.

But subsentential units may also be used to segment texts. . .

. . . both when translating new text. . .

. . . and when aligning new bitexts.

7



Using subsentential translation units/4

An alignment example: If we have the TU

(‘‘web bitexts’’,‘‘los bitextos en la red’’)

and the bitext contains the sentence pair

Web bitexts are a valuable resource.

Los bitextos en la red son un recurso muy valioso.

we obtain a candidate TU:

(‘‘are a valuable resource’’,‘‘son un recurso muy valioso’’)

A similar subsentential segmentation strategy must be designed
for pretranslation.

8



Using subsentential translation units/4

An alignment example: If we have the TU

(‘‘web bitexts’’,‘‘los bitextos en la red’’)

and the bitext contains the sentence pair

Web bitexts are a valuable resource.

Los bitextos en la red son un recurso muy valioso.

we obtain a candidate TU:

(‘‘are a valuable resource’’,‘‘son un recurso muy valioso’’)

A similar subsentential segmentation strategy must be designed
for pretranslation.

8



Using subsentential translation units/4

An alignment example: If we have the TU

(‘‘web bitexts’’,‘‘los bitextos en la red’’)

and the bitext contains the sentence pair

Web bitexts are a valuable resource.

Los bitextos en la red son un recurso muy valioso.

we obtain a candidate TU:

(‘‘are a valuable resource’’,‘‘son un recurso muy valioso’’)

A similar subsentential segmentation strategy must be designed
for pretranslation.

8



Using subsentential translation units/4

An alignment example: If we have the TU

(‘‘web bitexts’’,‘‘los bitextos en la red’’)

and the bitext contains the sentence pair

Web bitexts are a valuable resource.

Los bitextos en la red son un recurso muy valioso.

we obtain a candidate TU:

(‘‘are a valuable resource’’,‘‘son un recurso muy valioso’’)

A similar subsentential segmentation strategy must be designed
for pretranslation.

8



Using subsentential translation units/4

An alignment example: If we have the TU

(‘‘web bitexts’’,‘‘los bitextos en la red’’)

and the bitext contains the sentence pair

Web bitexts are a valuable resource.

Los bitextos en la red son un recurso muy valioso.

we obtain a candidate TU:

(‘‘are a valuable resource’’,‘‘son un recurso muy valioso’’)

A similar subsentential segmentation strategy must be designed
for pretranslation.

8



Finite-state storage of TU databases/1

TUs used to segment? → TU lookup very intensive!

A possible solution: finite-state transducers (FST):

TUs are input–output pairs: encoded as state paths in an FST.

Finite-state theory very well developed: e.g., minimization

(common substring correspondences in TUs may share paths).

9



Finite-state storage of TU databases/1

TUs used to segment? → TU lookup very intensive!

A possible solution: finite-state transducers (FST):

TUs are input–output pairs: encoded as state paths in an FST.

Finite-state theory very well developed: e.g., minimization

(common substring correspondences in TUs may share paths).

9



Finite-state storage of TU databases/1

TUs used to segment? → TU lookup very intensive!

A possible solution: finite-state transducers (FST):

TUs are input–output pairs: encoded as state paths in an FST.

Finite-state theory very well developed: e.g., minimization

(common substring correspondences in TUs may share paths).

9



Finite-state storage of TU databases/1

TUs used to segment? → TU lookup very intensive!

A possible solution: finite-state transducers (FST):

TUs are input–output pairs: encoded as state paths in an FST.

Finite-state theory very well developed: e.g., minimization

(common substring correspondences in TUs may share paths).

9



Finite-state storage of TU databases/1

TUs used to segment? → TU lookup very intensive!

A possible solution: finite-state transducers (FST):

TUs are input–output pairs: encoded as state paths in an FST.

Finite-state theory very well developed: e.g., minimization

(common substring correspondences in TUs may share paths).

9



Finite-state storage of TU databases/1

TUs used to segment? → TU lookup very intensive!

A possible solution: finite-state transducers (FST):

TUs are input–output pairs: encoded as state paths in an FST.

Finite-state theory very well developed: e.g., minimization

(common substring correspondences in TUs may share paths).

9



Finite-state storage of TU databases/1

TUs used to segment? → TU lookup very intensive!

A possible solution: finite-state transducers (FST):

TUs are input–output pairs: encoded as state paths in an FST.

Finite-state theory very well developed: e.g., minimization

(common substring correspondences in TUs may share paths).

9



Finite-state storage of TU databases/2

A typical way of using FSTs:

Left-to-right, longest-match (LRLM: lex, chunkers, fixed-length-
phrase parsers, etc.)

Example: we have two TUs:

(‘‘a translation’’,‘‘una traducción’’)
(‘‘a translation memory’’,‘‘una memoria de traducción’’)

The text ‘‘Una memoria de traducción es un archivo...’’ will
be matched by the second one.

If no match is found, skip one word and try again.

10



Finite-state storage of TU databases/2

A typical way of using FSTs:

Left-to-right, longest-match (LRLM: lex, chunkers, fixed-length-
phrase parsers, etc.)

Example: we have two TUs:

(‘‘a translation’’,‘‘una traducción’’)
(‘‘a translation memory’’,‘‘una memoria de traducción’’)

The text ‘‘Una memoria de traducción es un archivo...’’ will
be matched by the second one.

If no match is found, skip one word and try again.

10



Finite-state storage of TU databases/2

A typical way of using FSTs:

Left-to-right, longest-match (LRLM: lex, chunkers, fixed-length-
phrase parsers, etc.)

Example: we have two TUs:

(‘‘a translation’’,‘‘una traducción’’)
(‘‘a translation memory’’,‘‘una memoria de traducción’’)

The text ‘‘Una memoria de traducción es un archivo...’’ will
be matched by the second one.

If no match is found, skip one word and try again.

10



Finite-state storage of TU databases/2

A typical way of using FSTs:

Left-to-right, longest-match (LRLM: lex, chunkers, fixed-length-
phrase parsers, etc.)

Example: we have two TUs:

(‘‘a translation’’,‘‘una traducción’’)
(‘‘a translation memory’’,‘‘una memoria de traducción’’)

The text ‘‘Una memoria de traducción es un archivo...’’ will
be matched by the second one.

If no match is found, skip one word and try again.

10



Finite-state storage of TU databases/2

A typical way of using FSTs:

Left-to-right, longest-match (LRLM: lex, chunkers, fixed-length-
phrase parsers, etc.)

Example: we have two TUs:

(‘‘a translation’’,‘‘una traducción’’)
(‘‘a translation memory’’,‘‘una memoria de traducción’’)

The text ‘‘Una memoria de traducción es un archivo...’’ will
be matched by the second one.

If no match is found, skip one word and try again.

10



Finite-state storage of TU databases/2

A typical way of using FSTs:

Left-to-right, longest-match (LRLM: lex, chunkers, fixed-length-
phrase parsers, etc.)

Example: we have two TUs:

(‘‘a translation’’,‘‘una traducción’’)
(‘‘a translation memory’’,‘‘una memoria de traducción’’)

The text ‘‘Una memoria de traducción es un archivo...’’ will
be matched by the second one.

If no match is found, skip one word and try again.

10



Finite-state storage of TU databases/3

a:una

translation:traducción

translation memory:memoria de traducción

(‘‘a translation’’,‘‘una traducción’’)

(‘‘a translation memory’’,‘‘una memoria de traducción’’)

11



Finite-state storage of TU databases/4

Letter transducers (LTs): the simplest FSTs.

Transitions: read one or zero characters, write one or zero char-
acters.

May implement optimal input–output string alignment: “edit
distance” (minimal insertions, deletions and substitutions).

Similar TUs likely to share similar alignments: path sharing.

LT are isomorphic to finite-state automata:

• standard minimization (Hopcroft & Ullman 1979),

• lightning-fast implementations (Bentley & Sedgewick 1997).

12



Finite-state storage of TU databases/4

Letter transducers (LTs): the simplest FSTs.

Transitions: read one or zero characters, write one or zero char-
acters.

May implement optimal input–output string alignment: “edit
distance” (minimal insertions, deletions and substitutions).

Similar TUs likely to share similar alignments: path sharing.

LT are isomorphic to finite-state automata:

• standard minimization (Hopcroft & Ullman 1979),

• lightning-fast implementations (Bentley & Sedgewick 1997).

12



Finite-state storage of TU databases/4

Letter transducers (LTs): the simplest FSTs.

Transitions: read one or zero characters, write one or zero char-
acters.

May implement optimal input–output string alignment: “edit
distance” (minimal insertions, deletions and substitutions).

Similar TUs likely to share similar alignments: path sharing.

LT are isomorphic to finite-state automata:

• standard minimization (Hopcroft & Ullman 1979),

• lightning-fast implementations (Bentley & Sedgewick 1997).

12



Finite-state storage of TU databases/4

Letter transducers (LTs): the simplest FSTs.

Transitions: read one or zero characters, write one or zero char-
acters.

May implement optimal input–output string alignment: “edit
distance” (minimal insertions, deletions and substitutions).

Similar TUs likely to share similar alignments: path sharing.

LT are isomorphic to finite-state automata:

• standard minimization (Hopcroft & Ullman 1979),

• lightning-fast implementations (Bentley & Sedgewick 1997).

12



Finite-state storage of TU databases/4

Letter transducers (LTs): the simplest FSTs.

Transitions: read one or zero characters, write one or zero char-
acters.

May implement optimal input–output string alignment: “edit
distance” (minimal insertions, deletions and substitutions).

Similar TUs likely to share similar alignments: path sharing.

LT are isomorphic to finite-state automata:

• standard minimization (Hopcroft & Ullman 1979),

• lightning-fast implementations (Bentley & Sedgewick 1997).

12



Finite-state storage of TU databases/4

Letter transducers (LTs): the simplest FSTs.

Transitions: read one or zero characters, write one or zero char-
acters.

May implement optimal input–output string alignment: “edit
distance” (minimal insertions, deletions and substitutions).

Similar TUs likely to share similar alignments: path sharing.

LT are isomorphic to finite-state automata:

• standard minimization (Hopcroft & Ullman 1979),

• lightning-fast implementations (Bentley & Sedgewick 1997).

12



Finite-state storage of TU databases/4

Letter transducers (LTs): the simplest FSTs.

Transitions: read one or zero characters, write one or zero char-
acters.

May implement optimal input–output string alignment: “edit
distance” (minimal insertions, deletions and substitutions).

Similar TUs likely to share similar alignments: path sharing.

LT are isomorphic to finite-state automata:

• standard minimization (Hopcroft & Ullman 1979),

• lightning-fast implementations (Bentley & Sedgewick 1997).

12



Finite-state storage of TU databases/4

Letter transducers (LTs): the simplest FSTs.

Transitions: read one or zero characters, write one or zero char-
acters.

May implement optimal input–output string alignment: “edit
distance” (minimal insertions, deletions and substitutions).

Similar TUs likely to share similar alignments: path sharing.

LT are isomorphic to finite-state automata:

• standard minimization (Hopcroft & Ullman 1979),

• lightning-fast implementations (Bentley & Sedgewick 1997).

12



Finite-state storage of TU databases/5

t:d

 :d

t:i

w:o

e:e

o:s

n:z

_:_ c:c a:a s:s e:o s:s

(‘‘two cases’’,‘‘dos casos’’)

(‘‘ten cases’’,‘‘diez casos’’)

13



Finite-state storage of TU databases/6

Letter transducers are easy to maintain:

. . . new TUs may be easily added. . .

. . . or even deleted. . .

. . . while preserving the minimality of the LT!

(see our TMI 2002 paper: Garrido-Alenda et al. 2002).

14



Finite-state storage of TU databases/6

Letter transducers are easy to maintain:

. . . new TUs may be easily added. . .

. . . or even deleted. . .

. . . while preserving the minimality of the LT!

(see our TMI 2002 paper: Garrido-Alenda et al. 2002).

14



Finite-state storage of TU databases/6

Letter transducers are easy to maintain:

. . . new TUs may be easily added. . .

. . . or even deleted. . .

. . . while preserving the minimality of the LT!

(see our TMI 2002 paper: Garrido-Alenda et al. 2002).

14



Finite-state storage of TU databases/6

Letter transducers are easy to maintain:

. . . new TUs may be easily added. . .

. . . or even deleted. . .

. . . while preserving the minimality of the LT!

(see our TMI 2002 paper: Garrido-Alenda et al. 2002).

14



Finite-state storage of TU databases/6

Letter transducers are easy to maintain:

. . . new TUs may be easily added. . .

. . . or even deleted. . .

. . . while preserving the minimality of the LT!

(see our TMI 2002 paper: Garrido-Alenda et al. 2002).

14



Finite-state storage of TU databases/6

Letter transducers are easy to maintain:

. . . new TUs may be easily added. . .

. . . or even deleted. . .

. . . while preserving the minimality of the LT!

(see our TMI 2002 paper: Garrido-Alenda et al. 2002).

14



Updating the finite-state translation memory/1

The TM has to be updated using new bitexts.

Addition of TUs must be compatible with the LRLM scheme.

15



Updating the finite-state translation memory/1

The TM has to be updated using new bitexts.

Addition of TUs must be compatible with the LRLM scheme.

15



Updating the finite-state translation memory/1

The TM has to be updated using new bitexts.

Addition of TUs must be compatible with the LRLM scheme.

15



Updating the finite-state translation memory/2

A sketch of the updating procedure:

• Start the FST at the beginning of the source text;

• Look for longest input prefix matching the source part of a

TU;

• Check the target segment against the output;

• No match? Carefully skip source and/or target words and

try again.

16



Updating the finite-state translation memory/2

A sketch of the updating procedure:

• Start the FST at the beginning of the source text;

• Look for longest input prefix matching the source part of a

TU;

• Check the target segment against the output;

• No match? Carefully skip source and/or target words and

try again.

16



Updating the finite-state translation memory/2

A sketch of the updating procedure:

• Start the FST at the beginning of the source text;

• Look for longest input prefix matching the source part of a

TU;

• Check the target segment against the output;

• No match? Carefully skip source and/or target words and

try again.

16



Updating the finite-state translation memory/2

A sketch of the updating procedure:

• Start the FST at the beginning of the source text;

• Look for longest input prefix matching the source part of a

TU;

• Check the target segment against the output;

• No match? Carefully skip source and/or target words and

try again.

16



Updating the finite-state translation memory/2

A sketch of the updating procedure:

• Start the FST at the beginning of the source text;

• Look for longest input prefix matching the source part of a

TU;

• Check the target segment against the output;

• No match? Carefully skip source and/or target words and

try again.

16



Updating the finite-state translation memory/2

A sketch of the updating procedure:

• Start the FST at the beginning of the source text;

• Look for longest input prefix matching the source part of a

TU;

• Check the target segment against the output;

• No match? Carefully skip source and/or target words and

try again.

16



Updating the finite-state translation memory/3

Use heuristics to extend and combine the matched TUs with

skipped words.

Note: simultaneous matching of input and output natural to

FSTs.

17



Updating the finite-state translation memory/3

Use heuristics to extend and combine the matched TUs with

skipped words.

Note: simultaneous matching of input and output natural to

FSTs.

17



Updating the finite-state translation memory/3

Use heuristics to extend and combine the matched TUs with

skipped words.

Note: simultaneous matching of input and output natural to

FSTs.

17



Updating the finite-state translation memory/4

Bootstrapping: Initial contents of FSTs are word-for-word and

multiword TUs from bitexts:

• Marcu (2001), “contiguous alignments”: all TUs with words

in source segment statistically aligned only with words in

target segment and vice versa.

• Other strategies possible.

Notation: (s, T (s)) translation unit (T (s) is the translation of

source segment s).

18



Updating the finite-state translation memory/4

Bootstrapping: Initial contents of FSTs are word-for-word and

multiword TUs from bitexts:

• Marcu (2001), “contiguous alignments”: all TUs with words

in source segment statistically aligned only with words in

target segment and vice versa.

• Other strategies possible.

Notation: (s, T (s)) translation unit (T (s) is the translation of

source segment s).

18



Updating the finite-state translation memory/4

Bootstrapping: Initial contents of FSTs are word-for-word and

multiword TUs from bitexts:

• Marcu (2001), “contiguous alignments”: all TUs with words

in source segment statistically aligned only with words in

target segment and vice versa.

• Other strategies possible.

Notation: (s, T (s)) translation unit (T (s) is the translation of

source segment s).

18



Updating the finite-state translation memory/4

Bootstrapping: Initial contents of FSTs are word-for-word and

multiword TUs from bitexts:

• Marcu (2001), “contiguous alignments”: all TUs with words

in source segment statistically aligned only with words in

target segment and vice versa.

• Other strategies possible.

Notation: (s, T (s)) translation unit (T (s) is the translation of

source segment s).

18



Updating the finite-state translation memory/4

Bootstrapping: Initial contents of FSTs are word-for-word and

multiword TUs from bitexts:

• Marcu (2001), “contiguous alignments”: all TUs with words

in source segment statistically aligned only with words in

target segment and vice versa.

• Other strategies possible.

Notation: (s, T (s)) translation unit (T (s) is the translation of

source segment s).

18



Updating the finite-state translation memory/5

A sketch of the bitext alignment strategy with examples.

Perfect alignment: bitext does not provide new TUs:

Source: # s1 s2 s3 . . .

Target: # T (s1) T (s2) T (s3) . . .,

s1s2s3 . . . is a LRLM cover of the input.

The symbol # stands for start of sentence, text, etc.

Conveniently, T (#) = #

19



Updating the finite-state translation memory/5

A sketch of the bitext alignment strategy with examples.

Perfect alignment: bitext does not provide new TUs:

Source: # s1 s2 s3 . . .

Target: # T (s1) T (s2) T (s3) . . .,

s1s2s3 . . . is a LRLM cover of the input.

The symbol # stands for start of sentence, text, etc.

Conveniently, T (#) = #

19



Updating the finite-state translation memory/5

A sketch of the bitext alignment strategy with examples.

Perfect alignment: bitext does not provide new TUs:

Source: # s1 s2 s3 . . .

Target: # T (s1) T (s2) T (s3) . . .,

s1s2s3 . . . is a LRLM cover of the input.

The symbol # stands for start of sentence, text, etc.

Conveniently, T (#) = #

19



Updating the finite-state translation memory/5

A sketch of the bitext alignment strategy with examples.

Perfect alignment: bitext does not provide new TUs:

Source: # s1 s2 s3 . . .

Target: # T (s1) T (s2) T (s3) . . .,

s1s2s3 . . . is a LRLM cover of the input.

The symbol # stands for start of sentence, text, etc.

Conveniently, T (#) = #

19



Updating the finite-state translation memory/5

A sketch of the bitext alignment strategy with examples.

Perfect alignment: bitext does not provide new TUs:

Source: # s1 s2 s3 . . .

Target: # T (s1) T (s2) T (s3) . . .,

s1s2s3 . . . is a LRLM cover of the input.

The symbol # stands for start of sentence, text, etc.

Conveniently, T (#) = #

19



Updating the finite-state translation memory/6

Misalignment: The TM needs updating!

Source: . . . sk sk+1 . . .

Target: . . . T (sk) . . .,

where T (sk+1) is not a prefix of the target text following T (sk).

Find the longest source ŝk after sk such that T (ŝk) is a target
prefix.

Then extend T (skŝk) = T (sk)T (ŝk), to obtain a LRLM cover of
the source, and go on.

20



Updating the finite-state translation memory/6

Misalignment: The TM needs updating!

Source: . . . sk sk+1 . . .

Target: . . . T (sk) . . .,

where T (sk+1) is not a prefix of the target text following T (sk).

Find the longest source ŝk after sk such that T (ŝk) is a target
prefix.

Then extend T (skŝk) = T (sk)T (ŝk), to obtain a LRLM cover of
the source, and go on.

20



Updating the finite-state translation memory/6

Misalignment: The TM needs updating!

Source: . . . sk sk+1 . . .

Target: . . . T (sk) . . .,

where T (sk+1) is not a prefix of the target text following T (sk).

Find the longest source ŝk after sk such that T (ŝk) is a target
prefix.

Then extend T (skŝk) = T (sk)T (ŝk), to obtain a LRLM cover of
the source, and go on.

20



Updating the finite-state translation memory/6

Misalignment: The TM needs updating!

Source: . . . sk sk+1 . . .

Target: . . . T (sk) . . .,

where T (sk+1) is not a prefix of the target text following T (sk).

Find the longest source ŝk after sk such that T (ŝk) is a target
prefix.

Then extend T (skŝk) = T (sk)T (ŝk), to obtain a LRLM cover of
the source, and go on.

20



Updating the finite-state translation memory/7

When matching and extending matches no longer possible, word

skipping necessary:

Source: . . . sl s
′
l sl+1 . . .

Target: . . . T (sl) t
′
l T (sl+1) . . .,

With s′l and t′l possibly empty word sequences.

21



Updating the finite-state translation memory/7

When matching and extending matches no longer possible, word

skipping necessary:

Source: . . . sl s
′
l sl+1 . . .

Target: . . . T (sl) t
′
l T (sl+1) . . .,

With s′l and t′l possibly empty word sequences.

21



Updating the finite-state translation memory/8

Words skipped only in target text?

Source: . . . sl sl+1 . . .

Target: . . . T (sl) t
′
l T (sl+1) . . .,

A possible LRLM cover: T (sl sl+1) = T (sl) t
′
l T (sl+1).

22



Updating the finite-state translation memory/8

Words skipped only in target text?

Source: . . . sl sl+1 . . .

Target: . . . T (sl) t
′
l T (sl+1) . . .,

A possible LRLM cover: T (sl sl+1) = T (sl) t
′
l T (sl+1).

22



Updating the finite-state translation memory/8

Words skipped only in target text?

Source: . . . sl sl+1 . . .

Target: . . . T (sl) t
′
l T (sl+1) . . .,

A possible LRLM cover: T (sl sl+1) = T (sl) t
′
l T (sl+1).

22



Updating the finite-state translation memory/9

Words skipped only in source text?

Source: . . . sl sl+1 . . .

Target: . . . T (sl) t
′
l T (sl+1) . . .,

A possible LRLM cover: T (sl s
′
l sl+1) = T (sl) T (sl+1).

23



Updating the finite-state translation memory/9

Words skipped only in source text?

Source: . . . sl sl+1 . . .

Target: . . . T (sl) t
′
l T (sl+1) . . .,

A possible LRLM cover: T (sl s
′
l sl+1) = T (sl) T (sl+1).

23



Updating the finite-state translation memory/9

Words skipped only in source text?

Source: . . . sl sl+1 . . .

Target: . . . T (sl) t
′
l T (sl+1) . . .,

A possible LRLM cover: T (sl s
′
l sl+1) = T (sl) T (sl+1).

23



Updating the finite-state translation memory/10

But one could examine further before adding new TUs:

For example:

Source: . . . sl sl+1 sl+2 sl+3 . . .

Target: . . . T (sl) t
′
l T (sl+1) T (sl+3) . . .,

If t′l is similar to T (sl+2), this may be a reordering: T (sl+1 sl+2) =

t′l T (sl+1)

24



Updating the finite-state translation memory/10

But one could examine further before adding new TUs:

For example:

Source: . . . sl sl+1 sl+2 sl+3 . . .

Target: . . . T (sl) t
′
l T (sl+1) T (sl+3) . . .,

If t′l is similar to T (sl+2), this may be a reordering: T (sl+1 sl+2) =

t′l T (sl+1)

24



Updating the finite-state translation memory/10

But one could examine further before adding new TUs:

For example:

Source: . . . sl sl+1 sl+2 sl+3 . . .

Target: . . . T (sl) t
′
l T (sl+1) T (sl+3) . . .,

If t′l is similar to T (sl+2), this may be a reordering: T (sl+1 sl+2) =

t′l T (sl+1)

24



Updating the finite-state translation memory/11

A computationally-feasible approach would explore only a se-

lected set of linguistically-reasonable configurations (“produc-

tions”).

But also: should we add a TU because of a single misalignment?

A possibility: store lists of alternate TUs and counts.

Keep only the most frequent TU in main transducer.

Modify transducer only if the alternate transduction wins.

25



Updating the finite-state translation memory/11

A computationally-feasible approach would explore only a se-

lected set of linguistically-reasonable configurations (“produc-

tions”).

But also: should we add a TU because of a single misalignment?

A possibility: store lists of alternate TUs and counts.

Keep only the most frequent TU in main transducer.

Modify transducer only if the alternate transduction wins.

25



Updating the finite-state translation memory/11

A computationally-feasible approach would explore only a se-

lected set of linguistically-reasonable configurations (“produc-

tions”).

But also: should we add a TU because of a single misalignment?

A possibility: store lists of alternate TUs and counts.

Keep only the most frequent TU in main transducer.

Modify transducer only if the alternate transduction wins.

25



Updating the finite-state translation memory/11

A computationally-feasible approach would explore only a se-

lected set of linguistically-reasonable configurations (“produc-

tions”).

But also: should we add a TU because of a single misalignment?

A possibility: store lists of alternate TUs and counts.

Keep only the most frequent TU in main transducer.

Modify transducer only if the alternate transduction wins.

25



Updating the finite-state translation memory/11

A computationally-feasible approach would explore only a se-

lected set of linguistically-reasonable configurations (“produc-

tions”).

But also: should we add a TU because of a single misalignment?

A possibility: store lists of alternate TUs and counts.

Keep only the most frequent TU in main transducer.

Modify transducer only if the alternate transduction wins.

25



Updating the finite-state translation memory/11

A computationally-feasible approach would explore only a se-

lected set of linguistically-reasonable configurations (“produc-

tions”).

But also: should we add a TU because of a single misalignment?

A possibility: store lists of alternate TUs and counts.

Keep only the most frequent TU in main transducer.

Modify transducer only if the alternate transduction wins.

25



A web-based application/1

Similar to a search engine: e.g., it crawls the web.

FST implementation allows speeds of 100,000 words per second

(intensive use expected).

26



A web-based application/1

Similar to a search engine: e.g., it crawls the web.

FST implementation allows speeds of 100,000 words per second

(intensive use expected).

26



A web-based application/1

Similar to a search engine: e.g., it crawls the web.

FST implementation allows speeds of 100,000 words per second

(intensive use expected).

26



A web-based application/2

Services that would be offered:

Fast (pre-)translation: with a client-side alignment and post-

edition tool; optional submission of new TUs.

Translated browsing: with link following (as Altavista or Google).

A TU lookup interface: for translators (as TransSearch).

Bitext contribution: users may contribute candidate bitexts not

covered by the engine.

27



A web-based application/2

Services that would be offered:

Fast (pre-)translation: with a client-side alignment and post-

edition tool; optional submission of new TUs.

Translated browsing: with link following (as Altavista or Google).

A TU lookup interface: for translators (as TransSearch).

Bitext contribution: users may contribute candidate bitexts not

covered by the engine.

27



A web-based application/2

Services that would be offered:

Fast (pre-)translation: with a client-side alignment and post-

edition tool; optional submission of new TUs.

Translated browsing: with link following (as Altavista or Google).

A TU lookup interface: for translators (as TransSearch).

Bitext contribution: users may contribute candidate bitexts not

covered by the engine.

27



A web-based application/2

Services that would be offered:

Fast (pre-)translation: with a client-side alignment and post-

edition tool; optional submission of new TUs.

Translated browsing: with link following (as Altavista or Google).

A TU lookup interface: for translators (as TransSearch).

Bitext contribution: users may contribute candidate bitexts not

covered by the engine.

27



A web-based application/2

Services that would be offered:

Fast (pre-)translation: with a client-side alignment and post-

edition tool; optional submission of new TUs.

Translated browsing: with link following (as Altavista or Google).

A TU lookup interface: for translators (as TransSearch).

Bitext contribution: users may contribute candidate bitexts not

covered by the engine.

27



Concluding remarks

Careful integration of current knowledge:

• web mining for bitexts,

• bitext alignment techniques, and

• finite-state technology,

together with LRLM segmentation heuristics,

may yield a working web-based translation engine in a few years.

Very desirable for MT-poor language pairs.

28



Concluding remarks

Careful integration of current knowledge:

• web mining for bitexts,

• bitext alignment techniques, and

• finite-state technology,

together with LRLM segmentation heuristics,

may yield a working web-based translation engine in a few years.

Very desirable for MT-poor language pairs.

28



Concluding remarks

Careful integration of current knowledge:

• web mining for bitexts,

• bitext alignment techniques, and

• finite-state technology,

together with LRLM segmentation heuristics,

may yield a working web-based translation engine in a few years.

Very desirable for MT-poor language pairs.

28



Concluding remarks

Careful integration of current knowledge:

• web mining for bitexts,

• bitext alignment techniques, and

• finite-state technology,

together with LRLM segmentation heuristics,

may yield a working web-based translation engine in a few years.

Very desirable for MT-poor language pairs.

28



Concluding remarks

Careful integration of current knowledge:

• web mining for bitexts,

• bitext alignment techniques, and

• finite-state technology,

together with LRLM segmentation heuristics,

may yield a working web-based translation engine in a few years.

Very desirable for MT-poor language pairs.

28



Concluding remarks

Careful integration of current knowledge:

• web mining for bitexts,

• bitext alignment techniques, and

• finite-state technology,

together with LRLM segmentation heuristics,

may yield a working web-based translation engine in a few years.

Very desirable for MT-poor language pairs.

28



Concluding remarks

Careful integration of current knowledge:

• web mining for bitexts,

• bitext alignment techniques, and

• finite-state technology,

together with LRLM segmentation heuristics,

may yield a working web-based translation engine in a few years.

Very desirable for MT-poor language pairs.

28



Concluding remarks

Careful integration of current knowledge:

• web mining for bitexts,

• bitext alignment techniques, and

• finite-state technology,

together with LRLM segmentation heuristics,

may yield a working web-based translation engine in a few years.

Very desirable for MT-poor language pairs.

28


