
A Light Sliding-Window Part-of-Speech Tagger for the Apertium
Free/Open-Source Machine Translation Platform

Gang Chen, Mikel L. Forcada

Key Laboratory of Computational Linguistics (Peking University), Ministry of Education, China
Departament de Llenguatges i Sistemes Informàtics, Universitat d’Alacant, Spain

pkuchengang@gmail.com, mlf@dlsi.ua.es

Abstract
This paper describes a free/open-source implementation of the light sliding-window (LSW) part-of-speech tagger for the Apertium
free/open-source machine translation platform. Firstly, the mechanism and training process of the tagger are reviewed, and a new method
for incorporating linguistic rules is proposed. Secondly, experiments are conducted to compare the performances of the tagger under
different window settings, with or without Apertium-style “forbid” rules, with or without Constraint Grammar, and also with respect to
the traditional HMM tagger in Apertium.
Keywords: part-of-speech tagging, light sliding-window, machine translation, free/open-source

1. Introduction
Apertium1 is a shallow-transfer rule-based free/open-
source machine translation platform. This paper reports a
free/open-source implementation of the light sliding win-
dow (LSW) PoS tagger (Sánchez-Villamil et al., 2005), and
compares its performance with that of the original first-
order HMM tagger in Apertium (Tyers et al., 2010; Sheikh
and Sánchez-Martı́nez, 2009; Cutting et al., 1992). Section
2 reviews the mechanism of the LSW tagger and proposes
a method to improve its tagging accuracy by incorporating
linguistic rules, Section 3 shows the experimental results
and discusses them, and finally, in Section 4, the paper ends
with some conclusions and future plans.

2. Methods
The main difference between the LSW and HMM PoS tag-
gers is that the LSW PoS tagger makes local decisions
about the PoS tag of each word which are based on the am-
biguity class (set of PoS tags) of words in a fixed-length
context around the problem word, while HMM makes this
decision by efficiently considering all possible disambigua-
tions of all words in the sentence, by using a probabilis-
tic model based on a multiplicative chain of transition and
emission probabilities. In terms of model complexity, LSW
is simpler than HMM, while, on the other hand, the number
of parameters of LSW could be larger than that of HMM,
which may have a crucial influence on the tagging perfor-
mance as training material may not be sufficient to estimate
them adequately.
The LSW tagger is an improved version of the sliding win-
dow (SW) PoS tagger (Sánchez-Villamil et al., 2004), and
the main goal of the LSW tagger is to reduce the parameters
of a SW tagger, by using approximations for the parameter
estimation, without a significant loss in accuracy. There-
fore, we briefly describe the SW tagger first, and then the
LSW tagger.

1The Apertium machine translation engine, linguistic data for
various language pairs, and documentation can be downloaded
from http://www.apertium.org.

2.1. The SW tagger
2.1.1. Overview
Let Γ = {γ1, γ2, . . . , γ|Γ|} be the tag set, and W =
{w1, w2, . . . } be the words to be tagged. A partition of
W is established so that wi ≡ wj if and only if both
are assigned the same subset of tags, where each class
of the partition is called an ambiguity class. Let Σ =
{σ1, σ2, . . . , σ|Σ|} be the collection of ambiguity classes,
where each σi is an ambiguity class. Let T : Σ → 2Γ be
the function returning the collection T (σ) of PoS tags for
an ambiguity class σ.
The PoS tagging problem may be formulated as follows:
given a text w[1]w[2] . . . w[L] ∈ W+, each word w[t] is
assigned (using a lexicon and a morphological analyzer) an
ambiguity class σ[t] ∈ Σ to obtain the ambiguously tagged
text σ[1]σ[2] . . . σ[t] ∈ Σ+; the task of a PoS tagger is to
obtain a tag sequence γ[1]γ[2] . . . γ[t] ∈ Γ+ as correct as
possible, that is, the one that maximizes the probability of
that tag sequence given the word sequence:

γ∗[1] . . . γ∗[L] = argmax
γ[t]∈T (γ[t])

P (γ[1] . . . γ[L]|σ[1] . . . σ[L])

(1)
The core idea of SW PoS tagging is to use the ambiguity
classes of neighboring words to approximate the dependen-
cies locally:

P (γ[1] . . . γ[L]|σ[1] . . . σ[L]) =

t=L∏
t=1

p(γ[t]|C(−)σ[t]C(+))

(2)
where t = 1 . . . L, C(−) is the left context of length N(−)

(e.g. if N(−) = 1, then C(−) = γ[t − 1]), and C(+) is the
left context of length N(+).

2.1.2. Unsupervised parameter estimation
Let p(γ|C(−)σC(+)) be the probability of a tag γ appearing
between the context C(−) and C(+). The most probable tag
γ∗[t] is selected as the one with the highest probability by
the formula:

γ∗[t] = argmax
γ∈T (σ[t])

p(γ|C(−)σC+)) (3)

ar
X

iv
:1

50
9.

05
51

7v
1

 [
cs

.C
L

]
 1

8
Se

p
20

15

http://www.apertium.org

Estimating the parameters from a tagged corpus would be
straightforward, but estimating from an untagged corpus
requires an iterative process. Let ñC(−)γC(+)

(a simpler
and interchangeable representation for p(γ|C(−)σC(+)))
be the effective number of times (count) that γ appears be-
tween the context C(−) and C(+). Following the steps in
(Sánchez-Villamil et al., 2004), we can estimate ñC(−)γC(+)

iteratively by:

ñ
[k]
C(−)γC(+)

=

ñ
[k−1]
C(−)γC(+)

∑
σ:γ∈T (σ)

nC(−)σC(+)

 ∑
γ′∈T (σ)

ñ
[k−1]
C(−)γ′C(+)

−1

(4)

A recommended initial value could be obtained by assum-
ing that all the tags γ in σ are equally probable.

2.2. The LSW tagger
2.2.1. Overview
The SW tagger tags a word by looking at the ambiguity
classes of neighboring words, and has therefore a number
of parameters in O(|Σ|N(−)+N(+) |Γ|). The LSW tagger
(Sánchez-Villamil et al., 2005) tags a word by looking at
the possible tags of neighboring words, and therefore it has
a number of parameters inO(|Γ|N(−)+N(+)+1

). Usually the
tag set size |Γ| is significantly smaller than the combina-
tional ambiguity class size |Σ|. In this way, the number
parameters is effectively reduced.
The LSW approximates the best tag as follows:

γ∗ = argmax
γ∈T (σ[t])∑

E(−)∈T
′(C(−)[t])

E(+)∈T
′(C(+)[t])

p(E(−)γE(+)|C(−)[t]γ[t]C(+)[t]) (5)

where T ′ : Σ∗ → 2Γ∗ , an extension of T , returns the set of
tag sequences for an ambiguity sequence; E(−) and E(+)

are the left and right tag sequence respectively.

2.2.2. Unsupervised parameter estimation
Following a procedure similar to that for the SW tagger, we
can derive an iterative process to train the LSW tagger.

ñ
[k]
E(−)γE(+)

= ñ
[k−1]
E(−)γE(+)

∑
σ:γ∈T (σ)

C(−):E(−)∈T
′(C(−))

C(+):E(+)∈T
′(C(+))

nE(−)σE(+)

∑

γ′∈T (σ)

C(−):E(−)∈T
′(C(−))

C(+):E(+)∈T
′(C(+))

ñ
[k−1]
E(−)γ′E(+)

−1

(6)

where ñE(−)γE(+)
is the effective number of times (count)

that γ appears between the context of tags E(−) and E(+).
Similarly to the initialization step in the SW tagger, a rec-
ommended initial value can be obtained by assuming that
all the tag sequencesE(−)γE(+) in the windowC(−)σC(+)

are equally probable.

Items Spanish Catalan English
Words (train) 3 million 4 million 3 million

Amb. classes (train) 106 92 68
Words (test) 25, 000 25, 000 30, 000

Amb. rate (test) 22.81% 31.13% 29.97%
Forbid rules 545 272 117

Enforce rules 15 25 41

Table 1: Major statistics for the training and test data.

2.3. LSW with forbid and enforce rules
There are forbid and enforce rules for sequences of two PoS
tags in the current implementation of the Apertium PoS tag-
ger. They were successfully applied in the original HMM
tagger in Apertium, with a significant improvement in ac-
curacy (Sheikh and Sánchez-Martı́nez, 2009), simply by
making the corresponding transition probabilities equal to
zero. The SW tagger could not make use of forbid and en-
force rules because of the fact that it works with ambiguity
classes, while on the other hand, the LSW tagger can easily
incorporate them as it works directly with PoS tags
The rules can be introduced right after the initialization
step. For a tag sequence in the parameter space, if any con-
secutive two tags match a forbid rule or fail to match an
enforce rule, the underlying parameter ñE(−)γE(+)

will be
given a starting value of zero.
In this way, for an LSW tagger with rules, the initial value
could be given as follows,

ñ
[0]
E(−)γE(+)

=

{
0 if E(−)γE(+) is not valid,
Λ otherwise

(7)

where

Λ =
∑

σ:γ∈T (σ)

C(−):E(−)∈T
′(C(−))

C(+):E(+)∈T
′(C(+))

nE(−)σE(+)

1

|V ′(C(−)σC(+))|
(8)

where, the validity of E(−)γE(+) is determined by forbid
and enforce rules, and the function V ′ returns the collec-
tion of valid (enforced or not forbidden) tag sequences con-
tained in the ambiguity class sequence C(−)σC(+).

3. Experiments
3.1. Training data and test set
The experiments are conducted on three languages:
Spanish (apertium-en-es-0.8.0), Cata-
lan (apertium-es-ca-1.1.0), and English
(apertium-en-es-0.8.0). We obtain the train-
ing data for Spanish and English by sampling text from
the Europarl corpus (Koehn, 2005), and for Catalan
by sampling text from the Catalan Wikipedia. The
statistics on the training data and test data are shown in
Table 1. Test data for Catalan and Spanish come from
apertium-es-ca-1.1.0. It is worth noting that the
English test set has been built by mapping the results form
the TnT (Brants, 2000) tagger as an approximation.

3.2. The LSW tagger vs. the SW tagger
We firstly study whether there is a difference between the
LSW tagger and the SW tagger, keeping all other settings
the same. Then we study whether rules can help improve
the accuracy for the LSW tagger. “Accuracy” in the graph
refers to the tagging precision of a tagger on the hand-
tagged test set. Figure 1 shows that rules help significantly
for improving accuracy, and that the SW tagger behaves
similarly to the LSW tagger without rules, which is consis-
tent with the conclusion in (Sánchez-Villamil et al., 2005).

Figure 1: Performance evaluation for (1) the LSW(-1, +1) tag-
ger, (2) the LSW(-1, +1) tagger without rules, denoted as LSW(-
1, +1)-No-Rules, and (3) the SW(-1, +1) tagger, all on Spanish,
Catalan, and English.

3.3. Different window settings for the LSW tagger
We study the performances of the LSW tagger with differ-
ent window settings, and of the HMM tagger, on the three
languages, as shown in Figure 2. We can see that the HMM
tagger performs best among all the taggers, especially when
there is enough training data. However, when training data
is limited, the LSW taggers learn faster (need less words to
learn) and more stably than the HMM tagger.
Among all the LSW taggers, the LSW(-1, +1), i.e. left con-
text 1 and right context 1, performs best. When there are
enough training data, the performances of the HMM tagger
and the LSW(-1, +1) tagger are quite close.
Note that under some window settings, the performances
of the LSW taggers even decrease as more training lines

were added, e.g. LSW(-1) and LSW(-2, -1) for Spanish
and Catalan. This is an unexpected phenomenon, and the
reason for it would require further investigation.

Figure 2: Different window settings and their performance, tested
on Spanish, Catalan, and English.

3.4. Using Constraint Grammar rules to support the
HMM and LSW

We also tested whether the use of Constraint Gram-
mar (CG) rules helps to improve the accuracy obtained
by both HMM and LSW taggers, along the lines sug-
gested in (Hulden and Francom, 2012). For that,
we used the CG rules already present in Apertium
packages apertium-eo-es-0.8.2 for Spanish and
apertium-eo-ca-0.8.2 for Catalan respectively (a
CG module is integrated in many Apertium language pairs).
Figure 3 shows that CG helps almost in all settings. It is
also shown that CG rules help the two taggers in different
situations: for the HMM tagger, the positive contribution of
CG rules is larger when training data is limited than when
training data is relatively enough; while for the LSW tagger,
the trend is almost the opposite, that CG rules contribute
even more when training data is relatively enough. Note
that the logical approach would be to use CG rules both
for reducing ambiguity for the training corpus (denoted as
cgTrain in Figure 3) and for reducing ambiguity right after
morphological analyzer and before the PoS tagger (denoted
as cgTag in Figure 3); the results are however almost in-
distinguishable from those obtained applying CG in either
step.

Figure 3: Performance evaluation for HMM and LSW with and
without CG.

4. Discussion and future work
We reviewed the mechanism and unsupervised parameter
estimation methods for both the SW and LSW taggers.
Compared with previous work (Sánchez-Villamil et al.,
2004; Sánchez-Villamil et al., 2005), firstly, we proposed
a method for incorporating the forbid and enforce rules al-
ready used for HMM taggers in Apertium into the LSW
tagger; and secondly, the implementation is the first time
that the LSW tagger is integrated into a real machine trans-
lation system (Apertium), and at the same time, its code is
free/open-source.
We also conducted experiments to compare the perfor-
mances of the LSW tagger with different settings, and with
respect to the original HMM tagger. Firstly, the HMM tag-
ger performs slightly better than the LSW(-1, +1) tagger
when there is enough training data, while the LSW(-1, +1)
tagger learns faster and is more stable when training data
is limited. Secondly, the LSW(-1, +1) tagger performs best

among all the other window settings, and better than the
SW(-1, +1) tagger, which behaves similarly with LSW(-1,
+1)-No-Rules. Thirdly, we have found that the use of CG
rule sets already existing in some Apertium taggers helps
significantly to improve accuracy based both on the HMM
and LSW taggers, and that for the HMM tagger CG rules
help more when training data is limited, while for the LSW
tagger CG rules help more when training data is relatively
enough.
The reason why the performance of the LSW tagger under
some window settings worsens as more training lines are
added also requires more efforts to study. Source code is
available through the Apertium Subversion repository2 un-
der a free/open-source license.

Acknowledgements: Support from Google Summer of
Code (summer scholarship for Gang Chen) and from
the Spanish Ministry of Economy and Competitiveness
through grant TIN2012-32615 are gratefully acknowl-
edged. The authors also thank Francis M. Tyers and Jim
O’Regan for useful comments.

5. References
T. Brants. 2000. TnT: a statistical part-of-speech tagger. In

Proceedings of the sixth conference on Applied natural
language processing, pages 224–231.

D. Cutting, J. Kupiec, J. Pedersen, and P. Sibun. 1992.
A practical part-of-speech tagger. In Proceedings of the
third conference on Applied natural language process-
ing, pages 133–140.

M. Hulden and J. Francom. 2012. Boosting statistical
tagger accuracy with simple rule-based grammars. In
N. Calzolari, K. Choukri, T. Declerck, M. Ugur Dogan,
B. Maegaard, J. Mariani, J. Odijk, and S. Piperidis, ed-
itors, LREC, pages 2114–2117. European Language Re-
sources Association (ELRA).

P. Koehn. 2005. Europarl: A Parallel Corpus for Statistical
Machine Translation. In Conference Proceedings: the
tenth Machine Translation Summit, pages 79–86, Phuket,
Thailand. AAMT, AAMT.

E. Sánchez-Villamil, M. L. Forcada, and R. C. Carrasco.
2004. Unsupervised training of a finite-state sliding-
window part-of-speech tagger. In Advances in Natural
Language Processing, pages 454–463. Springer.

E. Sánchez-Villamil, M. L. Forcada, and R. C. Carrasco.
2005. Parameter reduction in unsupervisedly trained
sliding-window part-of-speech taggers. In Proceedings
of Recent Advances in Natural Language Processing,
Borovets, Bulgaria, September, 2005.

Z. M. A. W. Sheikh and F. Sánchez-Martı́nez. 2009.
Parameter reduction in unsupervisedly trained sliding-
window part-of-speech taggers. In Proceedings of the
First International Workshop on Free/Open-Source Rule-
Based Machine Translation, pages 67–74. Universidad
de Alicante. Departamento de Lenguajes y Sistemas In-
formáticos.

F. M. Tyers, F. Sánchez-Martı́nez, S. Ortiz-Rojas, and M. L.
Forcada. 2010. Free/open-source resources in the Aper-

2https://svn.code.sf.net/p/apertium/svn/
branches/apertium-swpost

https://svn.code.sf.net/p/apertium/svn/branches/apertium-swpost
https://svn.code.sf.net/p/apertium/svn/branches/apertium-swpost

tium platform for machine translation research and de-
velopment. The Prague Bulletin of Mathematical Lin-
guistics, 93:67–76.

	1. Introduction
	2. Methods
	2.1. The SW tagger
	2.1.1. Overview
	2.1.2. Unsupervised parameter estimation

	2.2. The LSW tagger
	2.2.1. Overview
	2.2.2. Unsupervised parameter estimation

	2.3. LSW with forbid and enforce rules

	3. Experiments
	3.1. Training data and test set
	3.2. The LSW tagger vs. the SW tagger
	3.3. Different window settings for the LSW tagger
	3.4. Using Constraint Grammar rules to support the HMM and LSW

	4. Discussion and future work
	5. References

