
Simple strategies to encode tree automata in
sigmoid recursive neural networks

Rafael C. Carrasco and Mikel L. Forcada∗

{carrasco,mlf}@dlsi.ua.es
Departament de Llenguatges i Sistemes Informàtics

Universitat d’Alacant, E-03071 Alacant (Spain)
Fax: +34-96-5909326
Tel.: +34-96-5903772

November 2, 2001

Abstract

Recently, a number of authors have explored the use of recursive

recursive neural nets (RNN) for the adaptive processing of trees or

tree-like structures. One of the most important language-theoretical

formalizations of the processing of tree-structured data is that of de-

terministic finite-state tree automata (DFSTA). DFSTA may easily be

realized as RNN using discrete-state units such as the threshold linear

unit. A recent result by Š́ıma (Neural Network World 7(1997)679–

686) shows that any threshold linear unit operating on binary inputs

can be implemented in an analog unit using a continuous activation

function and bounded real inputs. The constructive proof finds a scal-

ing factor for the weights and re-estimates the bias accordingly. In this

paper, we explore the application of this result to simulate DFSTA in

sigmoid RNN (that is, analog RNN using monotonically growing acti-

vation functions), and also present an alternative scheme for one-hot
∗Corresponding author

1

encoding of the input that yields smaller weight values and therefore

works at a lower saturation level.

Keywords: tree automata, recursive neural networks, neural computation,
analog neural networks

1 Introduction

During the last decade, a number of authors have explored the use of analog

recursive neural nets (RNN) for the adaptive processing of data laid out as

trees or tree-like structures such as directed acyclic graphs. In this arena,

Frasconi, Gori and Sperduti [5] have recently established a rather general

formulation of the adaptive processing of structured data, which focuses on

directed ordered acyclic graphs (which includes trees); Sperduti and Starita

[18] have studied the classification of structures (directed ordered graphs,

including cyclic graphs) and Sperduti [18] has studied the computational

power of recursive neural nets as structure processors.

One of the most important language-theoretical formalizations of the pro-

cessing of tree-structured data is that of deterministic finite-state tree au-

tomata (DFSTA), also called deterministic frontier-to-root or ascending tree

automata[19, 7]. DFSTA may easily be realized as RNN using discrete-state

units such as the threshold linear unit (TLU). Sperduti, in fact, [17] has re-

cently shown that Elman-style [3] RNN using TLU may simulate DFSTA,

and provides an intuitive explanation (similar to that expressed by Kremer

[10] for the special case of deterministic finite automata) why this should

also work for sigmoid networks: incrementing the gain of the sigmoid func-

tion should lead to an arbitrarily precise simulation of a step function. We

are, however, unaware of any attempt to establish a finite value of this gain

such that exact simulation of a DFSTA may indeed be performed by an

analog RNN.

2

A recent result by Š́ıma [16] shows that any TLU operating on binary

inputs can be simulated by an analog unit using a continuous activation

function and bounded real inputs. A TLU is a neuron that computes its

output by applying a threshold or step activation function

gH(x) =

{
0 if x < 0
1 otherwise

(1)

to a biased linear combination of its binary inputs.

The corresponding analog neuron works with any activation function g(x)

having two different finite limits a and b when x→ ±∞ and for given input

and output tolerances. The constructive proof finds a scaling factor for the

weights —basically, a value for the gain of the analog activation function—

and uses the same scaling factor on a shifted value of the bias. In this

paper, we define three possible ways of encoding DFSTA in discrete-state

RNN using TLU and then explore the application of Š́ıma’s result to turn

the discrete-state RNN into a sigmoid RNN simulating the original DFSTA

(with sigmoid meaning an analog activation function that is monotonically

growing). In addition, we present an alternative scheme for analog simulation

that yields smaller weight values than Š́ıma’s scheme for both discrete-state

cases and therefore works at a lower saturation level; our goal is to find

the smallest possible scaling factor guaranteeing correct behavior. This last

approach, which assumes a one-hot encoding of inputs, is a generalization

of the approach used in [2] for the stable encoding of a family of finite-

state machines (FSM) in a variety of sigmoid discrete-time recurrent neural

networks and similar in spirit to previous work by Omlin and Giles [13, 14] for

deterministic finite automata (a class of FSM) and a particular discrete-time

recurrent neural network (DTRNN) architecture (the second-order DTRNN

used by Giles et al. [6]).

In the following section, tree automata and recursive networks are intro-

duced. Section 3 describes three different schemes to encode recursive neural

3

networks in discrete-state RNN using TLU. The main result by Š́ıma[16] is

presented in Section 4 together with a similar construction for the case of

exclusive (also called one-hot) encoding of the input. Section 5 describes the

conversion of discrete-state RNN into and their sigmoid counterparts and the

different schemes are evaluated by comparing the magnitude of the resulting

weight values. Finally, we present our conclusions in the last section.

2 Tree automata and recursive neural net-

works

Before we explore how neural networks can simulate tree automata we need

to specify the notation for trees and describe the architecture of recursive

neural networks.

2.1 Trees and finite-state machines

We will denote with Σ a ranked alphabet, that is, a finite set of symbols

Σ = {σ1, ..., σ|Σ|} with an associated function r : Σ → N giving the rank

of the symbol.1 The subset of symbols in Σ having rank m is denoted with

Σm. The set of Σ-trees, ΣT , is defined as the set of strings (made of symbols

in Σ augmented with the parenthesis and the comma) representing ordered

labeled trees or, recursively,

1. Σ0 ⊂ ΣT (any symbol of rank 0 is a single-node tree in ΣT).

2. f(t1, ..., tm) ∈ ΣT whenever m > 0, f ∈ Σm and t1, ..., tm ∈ ΣT (a tree

having a root node with a label of f rank m and m children t1 . . . tm

which are valid trees of ΣT belongs to ΣT).

1The rank may be defined more generally as a relation r ⊆ Σ × N; both formulations

are equivalent if symbols having more than one possible rank are split.

4

A deterministic finite-state tree automaton (DFSTA) is a five-tuple A =

(Q,Σ, r,∆, F), where Q = {q1, . . . , q|Q|} is the finite set of states , Σ =

{σ1, . . . , σ|Σ|} is the alphabet of labels, ranked by function r, F ⊆ Q is the

subset of accepting states and ∆ = {δ0, δ1, . . . , δM} is a finite collection of

transition functions of the form δm : Σm ×Qm → Q, for m ∈ [0,M] with M

the maximum rank or valence of the DFSTA.

For all trees t ∈ ΣT , the result δ(t) ∈ Q of the operation of DFSTA A on

a tree t ∈ ΣT is defined as

δ(t) =

δ0(a) if t = a ∈ Σ0

δm(f, δ(t1), ..., δ(tm)) if t = f(t1, ..., tm), 0 < m ≤M, f ∈ Σm

undefined otherwise
(2)

In other words, the state δ(t) associated to a given tree t depends on the label

of the root node (f) and also on the states that the NDFSTA associates to

its children (δ(t1), δ(t2), . . . , δ(tm)).

By convention, undefined transitions lead to unaccepted trees. That is,

M is the maximum number of children for any node of any tree in L(A).

As usual, the language L(A) recognized by a DFSTA A is the subset of

ΣT defined as

L(A) = {t ∈ ΣT : δ(t) ∈ F}. (3)

One may generalize this definition so that the DFSTA produces an output

label from an alphabet Γ = {γ1, . . . , γ|Γ|} at each node visited, so that it acts

like a (structure-preserving) finite-state tree transducer; two generalizations

are possible, which correspond to the classes of finite-state string transducers

known as Mealy and Moore machines[9, 15]:

• Mealy tree transducers are obtained by replacing the subset of accepting

states F in the definition of a DFSTA by a collection of output functions

Λ = {λ0, . . . λM}, one for each possible rank, λ : Σm ×Qm → Γ.

5

• Moore tree transducers are obtained by replacing F by a single output

function whose only argument is the new state: λ : Q→ Γ.

Conversely, a DFSTA can be regarded as a particular case of Mealy or Moore

machine operating on trees whose output functions return only two values

(Γ = {yes, no}).

2.2 Neural architectures

Here we define two recursive neural architectures that are similar to that

used in related work as that of Frasconi, Gori and Sperduti [5], Sperduti

[17] and Sperduti and Starita [18]. We find it convenient to talk about

Mealy and Moore neural networks to define the way in which these networks

compute their output, using the analogy with the corresponding finite-state

tree transducers. The first architecture is a high-order Mealy RNN and the

second one is a first-order Moore RNN2.

2.2.1 A high-order Mealy recursive neural network

A high-order Mealy recursive neural network consists of two sets of single-

layer neural networks, the first one to compute the next state (playing the role

of the collection ∆ of transition functions in a finite-state tree transducer)

and the second one to compute the output (playing the role of the collection

Λ of output functions in a Mealy finite-state tree transducer).

The next-state function is realized as a collection of M + 1 high-order

single-layer networks, one for each possible rank m = 0, . . . ,M , having nX

neurons and m+1 input ports: m for the input of subtree state vectors, each

2The remaining two combinations are high-order Moore RNN (which may easily be

shown to have the same computational power as their Mealy counterparts) and first-order

Mealy machines (which need an extra layer to compute arbitrary output functions, see

[2]).

6

of dimensionality nX , and one for the input of node labels, represented by a

vector of dimensionality nU .

The node label input port takes input vectors equal in dimensionality to

the number of input symbols, that is nU = |Σ|. In particular, if µ is a node

in the tree with label l(µ) and u[µ] is the input vector associated with this

node, the component uk[µ] is equal to 1 if the input symbol at node µ is σk

and 0 for all other input symbols (one-hot or exclusive encoding).

For a node µ with label l(µ) ∈ Σm and children ν1, ..., νm the next state

x[µ] is computed by the corresponding m+ 1-th order single-layer neural net

as follows:

xi[µ] = g

(
wmi +

nU∑
k=1

nX∑
j1=1

· · ·
nX∑
jm=1

wmij1j2...jmk xj1 [ν1]xj2 [ν2] · · ·xjm [νm]uk[µ]

)
(4)

where wmi represents the bias for the network of rank m and i = 1, . . . , nX .

If µ is a leaf, i.e., l(µ) ∈ Σ0 the expression above for the component xi[µ]

reduces to

xi[µ] = g

(
w0
i +

nU∑
k=1

w0
ikuk[µ]

)
, (5)

that is, there is a set of |Σ| weights of type w0
k = (w0

1k, ..., w
0
nxk

) which play

the role of the initial state in recurrent networks [4].

The output function is realized as a collection of M + 1 high-order single-

layer networks having nY units and the same input structure. The output

function for a node of rank m is evaluated as

yi[µ] = g(vmi +

nU∑
k=1

nX∑
j1=1

· · ·
nX∑
jm=1

vmij1j2...jmk xj1 [ν1]xj2 [ν2] · · ·xjm [νm]uk[µ]) (6)

where i = 0, . . . , nY and m = 1, . . .M .

7

2.2.2 A first-order Moore recursive neural network

The first-order Moore recursive neural network has a collection of M + 1

next-state functions (one for each rank m) of the form

xi[µ] = g

(
wmi +

nU∑
k=1

wmuik uk[µ] +
m∑
p=1

nX∑
j=1

w
mxp
ij xj[νp]

)
i = 1, . . . , nX (7)

having the same structure of input ports as its high-order counterpart, and

a single output function of the form

yi[µ] = g

(
vi +

nX∑
j=1

vijxj[µ]

)
i = 1, . . . , nY (8)

taking nX inputs and producing nY outputs.

3 Encoding tree automata in discrete-state

recursive neural networks

We will present three different ways to encode finite-state recursive trans-

ducers in discrete-state RNN using TLU as activation functions. The first

two use the discrete-state version of the high-order Mealy RNN described

in Section 2.2.1 and the third one uses the discrete-state version of first-

order Moore RNN described in Section 2.2.2. The first two encodings are

straightforward; the third one is explained in more detail.

All of the encodings are based on an exclusive or one-hot encoding of the

states of the finite-state transducers (nX = |Q|): the RNN is said to be in

state i when component xi of the nX-dimensional state vector x takes a high

value (xi = 1) and all other components take a low value (xj = 0, j 6= i). In

addition, exclusive encoding of inputs (nU = |Σ|) and outputs (nY = |Γ|) is

used.

Each one of these discrete-state RNN encodings will be converted in Sec-

tion 5 into sigmoid RNN encodings by using each of the two strategies de-

scribed in Section 4.

8

3.1 A high-order Mealy encoding using biases

Assume that we have a Mealy finite-state tree transducerA = (Q,Σ, r,Γ,∆,Λ).

Then, a discrete-state high-order Mealy RNN with weights

Wm
ij1,...,jmf

=

{
1 if δ(f, q1, ..., qm) = qi
0 otherwise

, (9)

bias Wm
i = −1/2, m ∈ [0,M], output weights

V m
kj1,...,jmf

=

{
1 if λm(f, q1, ..., qm) = γk
0 otherwise

, (10)

and bias V m
i = −1/2, m ∈ [0,M] behaves as a stable simulator for the

finite-state tree transducer (note that uppercase letters are used to designate

weights in discrete-state neural nets). This would also be the case if biases

V m
i were set to any value in (0, 1); the value −1/2 happens to be the best

value for the conversion into a sigmoid RNN.

3.2 A high-order Mealy encoding using no biases

A second possible encoding (the tree-transducing counterpart of a string-

transducer encoding described in [12, 2]), which uses no bias, has the next-

state weights

Wm
ij1,...,jmf

=

{
1 if δ(f, q1, ..., qm) = qi
−1 otherwise

(11)

and all biases Wm
i = 0, and the output weights

V m
kj1,...,jmf

=

{
1 if λm(f, q1, ..., qm) = γk
−1 otherwise

(12)

and all biases V m
i = 0, m ∈ [0,M] (as in the case of the biased construction,

the encoding also works if biases are set to any value in (−1, 1), with 0 being

the optimal value for conversion into a sigmoid RNN).

9

3.3 A first-order Moore encoding

Consider a Moore finite-state tree transducer of the formA = (Q,Σ, r,Γ,∆, λ).

Before encoding this DFSTA in a first-order RNN we need to split its states

first; state-splitting has been found necessary to implement arbitrary finite-

state machines in first-order discrete-time recurrent neural networks [8, 1, 2]

and has also been recently described by Sperduti [17] for the encoding of

DFSTA in RNN.

A DFSTA A′ = (Q′,Σ, r,Γ,∆′, λ′), which can easily be shown to be equiv-

alent to A is easily constructed by using the method described by Sperduti

[17] as follows:

• The new set of states Q′ is the subset of
⋃M
m=0 Σm ×Qm defined as

Q′ = {(f, qj1 , qj2 , . . . , qjm) : δm(f, qj1 , qj2 , . . . , qjm) ∈ Q}, (13)

• The next-state functions in the new set ∆′ = {δ′0, δ′1, . . . , δ′M}, δ′m :

Σm × (Q′)m → Q′ are defined as follows:

∀a ∈ Σ0, δ′(a) = (a) (14)

and

∀f ∈ Σm, m > 0, ∀q′jk ∈ Q
′, (15)

δ′m(f, q′j1 , q
′
j2
, . . . , q′jm) = (f, δ(q′j1), δ(q′j2), . . . , δ(q′jm)) (16)

where the shorthand notation

δ(q′) = δm(f, qj1 , qj2 , . . . , qjm) (17)

has been used.

• Finally, the new output function λ′ : Q′ → Γ is defined as follows:

∀q′ = (f, qj1 , qj2 , . . . , qjm) ∈ Q′, λ′(q′) = λ(δm(f, qj1 , qj2 , . . . , qjm)).

(18)

10

The split DFSTA A′ is then encoded into a discrete-state RNN in eqs. (7)

and (8) by choosing its parameters as follows:3

• nX = |Q′|;

• Wmu
ik = 1 if there exist q′j1 , . . . , q

′
jm such that δ′m(σk, q

′
j1
, . . . , q′jm) = q′i

and zero otherwise;

• Wmxp
ij = 1 if there exist q′i1 , . . . q

′
ip−1

, q′ip+1
, . . . , q′im and σl such that

δ′m(q′i1 , . . . q
′
ip−1

, q′j, q
′
ip+1

, . . . , q′im) = q′i and zero otherwise;

• Wm
i = −(m+ 1

2
);

• Vij = 1 if λ′(q′j) = γi and zero otherwise;

• Vi = −1
2
;

It is not difficult to show that the operation of this discrete-state RNN is

equivalent to that of the corresponding DFSTA A′, and therefore to that

of A (as was the case with the previous constructions, different values for

the biases are also possible but the ones shown happen to be optimal for

conversion into a sigmoid RNN).

4 Stable simulation of discrete-state units on

analog units

4.1 Using Š́ıma’s theorem

The following is a restatement of a theorem by Š́ıma [16] which is included

for convenience. Only the notation has been slightly changed in order to

adapt it to the present study.

3Remember that uppercase letters are used to denote the weights in discrete-state RNN.

11

A threshold linear unit (TLU) is a neuron computing its output as

y(x) = gH(W0 +
n∑
j=1

Wjxj) (19)

where gH the threshold activation function, the Wj (j = 0, . . . , n) are real-

valued weights and x = (x1, ..., xn) ∈ {0, 1}n is a binary input vector.

Consider an analog neuron with weights w0, w1, ...wn having an activation

function g with two different limits a = limx→−∞ g(x) and b = limx→∞ g(x).

Now, let W = max1≤j≤n{|Wj|}, ξ = min{|W0 +
∑n

j=1 Wjxj| > 0 : x ∈

{0, 1}n} and

δmax =
ξ

2nW
. (20)

The magnitude δmax will be called the maximum input tolerance.

Finally, let also the mapping τε be defined as:

τε(x) =

0 if x ∈ (a− ε, a+ ε)
1 if x ∈ (b− ε, b+ ε)
undefined otherwise

(21)

This mapping classifies the output of an analog neuron into three categories:

low (0), high (1), or forbidden (undefined). Then, let rδ : {0, 1} → R be the

inverse mapping rδ(k) = {x ∈ R : τδ(x) = k}. Š́ıma’s theorem states that,

for any input tolerance δ such that 0 < δ < δmax and for any output tolerance

ε such that 0 < ε ≤ δ, there exists an analog neuron with activation function

g and weights w0, . . . , wn ∈ R such that, for all x ∈ {0, 1}n,

gH(W0 +
n∑
j=1

Wjxj) = τε(g(w0 +
n∑
j=1

wjrδ(xj))) (22)

According to the constructive proof of the theorem [16] a set of sufficient

conditions for the above equation to hold is

w0 = H(W0 +
ξ

2
− a

b− a

n∑
j=1

Wj) (23)

12

and

wj =
HWj

b− a
∀j = 1, . . . , n (24)

with

H >
2

ξ − 2nδW
max{−α, β} (25)

where α and β are such that |g(x)−a| < ε for all x < α and |g(x)−b| < ε for

all x > β and |α| and |β| are as small as possible. That is, Š́ıma’s prescription

simply scales the weights of the TLU to get those of the analog network and

does the same with the bias but only after shifting it conveniently to avoid

a zero value for the argument of the activation function.

Note that inputs to the analog unit are allowed to be within δ of 0 and 1

whereas outputs are allowed to be within ε of a and b. When constructing a

recursive network , the outputs of one analog unit are normally used as inputs

for another analog unit and therefore the most natural choice is a = 0, b = 1,

and ε ≤ δ. This choice is compatible, for instance, with the use of the

logistic function gL(x) = 1/(1 + exp(−x)) whose limits are exactly a = 0 and

b = 1 but not with other activation functions such as the hyperbolic tangent

tanh(x). In particular, for the case g = gL, eqs. (23) and (24) reduce to

w0 = H(W0 +
ξ

2
) (26)

and

wj = HWj ∀j = 1, . . . , n (27)

and (25) becomes

H >
2

ξ − 2nδW
g−1
L (1− ε) (28)

In the following, we rederive simple sufficient conditions for stable simu-

lation of a TLU by an analog unit which are suitable for any strictly growing

activation function but restricted to exclusive encoding of the input (whereas

Š́ıma’s construction is valid for any binary input vector). The simplicity of

the prescriptions allows for an alternate straightforward worst-case analysis

13

that leads to weights that are, in most common situations, smaller than those

obtained by direct application of Š́ıma’s theorem.

4.2 Using a simple scheme for exclusive encoding of
the input

The conditions for stable simulation of finite-state machines (FSM) in DTRNN

have been studied, following an approach related to that of Š́ıma[16], by Car-

rasco et al. [2] (see also [12, 11]; these conditions assume the special but usual

case of one-hot or exclusive encoding of the input and strictly growing ac-

tivation functions. These assumptions, together with a worst-case analysis,

allow one to obtain a prescription for the choice of suitable weights for sta-

ble simulation that works at lower saturation levels than the general scheme

(eqs. 23–25). Usually, the prescription can be realized as a single-parameter

scaling of all of the weights in the TLU including the bias; this scaling is

equivalent to finding a finite value of the gain of the sigmoid function which

ensures correct behavior.

Note that, in the case of exclusive encoding (as the ones used in Section 3,

there are only n possible inputs: the binary vectors b1, . . . ,bn (bi being the

vector whose i-th component is one and the rest are zero). Therefore, the

argument W0 +
∑n

j=1 Wjxj of (22) may only take n different values W0 +Wi

for i = 1, ..., n (for the binary input x = bi, however, the analog neuron

with input tolerance δ may receive input vectors in rδ(bi) = {x ∈ Rn : xi ∈

(1 − δ, 1 + δ) ∧ xj ∈ (−δ, δ), ∀j 6= i}). This property of exclusive encoding

makes it possible to formulate a condition such that (22) holds for all possible

inputs x = bi. Two cases have to be distinguished:

1. gH(W0 + Wi) = 1, that is, W0 + Wi ≥ 0. In this case, (22) holds if

g(w0 +
∑n

j=1 wjxj) ∈ (b − ε, b + ε) for all x ∈ rδ(bi). As g is strictly

growing, we may also write w0+
∑n

j=1 wjxj > g−1(b−ε). Obviously, the

14

minimum value of w0 +
∑

j wjxj in rδ(bi) is bounded by w0 +wi−nδw,

with w = max1≤j≤n{|wj|}. Therefore,

w0 + wi − nδw > g−1(b− ε) (29)

is a sufficient condition for the analog neuron to simulate the corre-

sponding TLU with input bi.

2. gH(W0 + Wi) = 0, that is, W0 + Wi < 0. A similar argument leads to

the sufficient condition

w0 + wi + nδw < g−1(a+ ε). (30)

For instance, if we choose wi = HWi (and, therefore, w = HW), then

eqs. (29) and (30) are fulfilled either if

H >
g−1(b− ε)

|W0 +Wi| − nδW
(31)

and W0 +Wi − nδW > 0 or

H >
−g−1(a+ ε)

|W0 +Wi| − nδW
(32)

and W0 + Wi + nδW > 0. In order to compare with eqs. (23–25), the last

two conditions may be written as a single, more restrictive pair of conditions

H >
max{−g−1(a+ ε), g−1(b− ε)}
mini=1,...,n |W0 +Wi| − nδW

(33)

and

δ < min
i=1,...,n

|W0 +Wi|
nW

. (34)

The simple choice wi = HWi is not adequate in case that W0 +Wi = 0, but

this case does not appear in any of the encodings proposed in Section 3.

15

5 Encoding tree automata in sigmoid recur-

sive neural networks

As mentioned before, the theorem in section (4) leads to the natural choice

a = 0, b = 1 in addition to ε ≤ δ when applying it to neurons in recursive

neural networks. Due to its widespread use, we will consider and compare

in this section various possible encodings using the logistic function gL =

1/(1 + exp(−x)) although results for different activation functions having

a = 0 and b = 1 may also be obtained. Indeed, monotonic growth of the

function along the real line is enough for the following derivation (as it was

the case for eqs. (29) and (30)). In our case, we want to simulate a DFSTA

with a sigmoid RNN.

Consider first the high-order Mealy RNN architecture. As the input xj

in (22) is, in the case of the RNN described in (4), the product of m outputs

xj1 · · ·xjm , each one in the range (0, ε) ∪ (1 − ε, 1), the product is always in

the range (0, ε(1− ε)m−1)∪ ((1− ε)m, 1). In other words, there is a forbidden

region between ε(1 − ε)m−1 and (1 − ε)m. It is not difficult to show that

1− (1− ε)m ≥ ε(1− ε)m−1 with the equality holding only if m = 1 or ε = 0.

Therefore, the conditions

δ = 1− (1− ε)m (35)

and δ < δmax suffice for our purposes, as (δ, 1− δ) ⊆ (ε(1− ε)m−1, ((1− ε)m).

If we want to use the same scaling factor for all weights and all possible ranks

m, we can use m = M .

Consider now the first-order Moore RNN architecture. In this case, there

are no products, and the conditions

δ = ε (36)

and δ < δmax are sufficient.

16

The previous section describes two different schemes to simulate discrete-

state neurons taking exclusive input vectors in sigmoid neurons. This section

describes the application of these two schemes to the three recursive neural

network architectures described in Section 2.2.

5.1 Using Sima’s prescription

Š́ıma’s construction (Section 4.1) gives for the biased high-order Mealy RNN

in Section 3.1 the following: n = (nX)m, ξ = 1
2
, W = 1, δmax = 1

4(nX)m

and, therefore, wmi = −H/4, wmij1j2...jmk = HWm
ij1j2...jmk

, vmi = −H/4, and

vmij1j2...jmk = HV m
ij1j2...jmk

with

H >
4 log 1−ε

ε

1− 4(nX)m(1− (1− ε)m)
, (37)

where the condition (35) has been applied4, together with 1 − (1 − ε)m <

δmax, a condition that ensures a positive value of H. As shown in (37),

the minimum value allowed for H depends both on nX and ε. For a given

architecture, nX and the maximum value of m (M) are fixed, so only ε can

be changed. There exists at least one value of ε that allows one to choose the

minimum value of H needed for stable simulation. In this sense, minimization

of H by choosing an appropriate ε can be performed as in [2] and leads to

the values shown in Table 1 (minimum required H as a function of nX and

M). The weights obtained grow slower than log(mnmx) with m and nX , and,

as can be seen, are inordinately large and lead therefore to a very saturated

analog RNN.

Applying Š́ıma’s construction to the biasless high-order Mealy RNN (Sec-

tion 3.2), we get n = (nX)m, ξ = 1, W = 1, δmax = 1
2(nX)m

and, there-

fore, wmi = H/2, wmij1j2...jmk = HWm
ij1j2...jmk

, vmi = H/2, and vmij1j2...jmk =

4We have used n = (nX)m; equations (4) and (6) have nU (nX)m terms but, due to

the exclusive encoding of the inputs, (nU − 1)(nX)m of terms are identically zero with no

uncertainty at all.

17

HV m
ij1j2...jmk

with

H >
2 log 1−ε

ε

1− 2(nX)m(1− (1− ε)m)
, (38)

together with 1 − (1 − ε)m < δmax (for positive values of H). The weights

obtained by searching for the minimum H satisfying the conditions are shown

in Table 2; as can be seen, weights (which show the same asymptotic behavior

as the ones in the previous construction) are smaller but still too large to

avoid saturation.

Finally, applying Š́ıma’s construction5 to the first-order Moore RNN in

Section 3.3, we have, for a next-state function of rank m, n = mnX , ξ = 1
2
,

W = 1, δmax = 1
4mnX

, and, accordingly, weights are:

• wmuij = H if there exist q′j1 , . . . , q
′
jm such that δ′m(σj, q

′
j1
, . . . , q′jm) = q′i

and zero otherwise;

• wmxpij = H if there exist q′i1 , . . . q
′
ip−1

, q′ip+1
, . . . , q′im and σl such that

δ′m(q′i1 , . . . q
′
ip−1

, q′j, q
′
ip+1

, . . . , q′im) = q′i and zero otherwise

• wmi = (−m+ 3
4
)H;

with

H >
4 log 1−ε

ε

1− 4(mnX)ε
(39)

(where (36) has been used), together with ε < 1
4(mnX)

.

For the output function, n = nX , ξ = 1
2
, W = 1, δmax = 1

4nX
, and

accordingly, weights are

• vij = H if λ′(q′j) = γi and zero otherwise;

5Š́ıma’s construction can be applied provided that we consider each possible Wm
i +∑nU

k=1W
mu
ik uk[µ] in the next-state function as a different bias W0 with u[µ] ∈ {0, 1}n and

choose the safest prescription (valid for all possible values of the bias). In the present

case, this bias has always the value −(m − 1
2), and n = mnX (number of additive terms

in (19)).

18

• vi = −H
4

,

with

H >
4 log 1−ε

ε

1− 4(nX)ε
. (40)

provided that ε < 1
4nX

where we have used δ < ε.

If we want a single value of H to assign weights both to all of the next-

state functions and the output function, we have to use

H >
4 log 1−ε

ε

1− 4nε
. (41)

with n = max(nX ,MnX) = MnX . The weights obtained by searching for the

minimum H satisfying the conditions are shown in Table 3; they grow slower

than log(MnX), and, as can be seen, they are equal or smaller than the ones

for the biased high-order construction, but larger than those for the biased

construction. However, the fact that state splitting leads to larger values of

nX for automata having the same transition function has to be taken into

account.

5.2 Using the encoding for exclusive inputs

If we choose wi = HWi for all weights, including biases we obtain for the

biased high-order Mealy encoding in Section 3.1, by substituting in eqs. (31)

and (32),

H >
2g−1

L (1− ε)
1− 2nmX(1− (1− ε)m)

(42)

together with 1− (1− ε)m < 1
2nmX

, which happens to be the same expression

as the one obtained in the previous section by using Š́ıma’s construction

on the biasless encoding (Section 3.2); results are shown in Table 2. The

results for M = 1 are obviously identical to those reported for second-order

discrete-time recurrent neural networks using the biased construction in [2].

19

If we instead apply our alternate encoding to the biasless high-order Mealy

construction in Section 3.2 we get

H >
g−1
L (1− ε)

1− (nX)m(1− (1− ε)m)
(43)

together with 1 − (1 − ε)m < 1
(nX)m

, which, after suitable minimization of

H, leads to the best possible weights of all encodings. Weights grow with m

and nX slower than log(mnmX); some results are shown in Table 4. As in the

previous case, the results for M = 1 are obviously identical to those reported

for second-order discrete-time recurrent neural networks using no biases in

[2].

Finally, we apply our alternate encoding scheme to the first-order Moore

construction in Section 3.3. Now n = mnX and

H >
g−1
L (1− ε)

|W0 +Wi| − nεW
(44)

(the particular form of (33) in this case) has to be valid for all combinations

W0 +Wi. As W0 can take any value in

{Wm
i +Wmu

ik : i = 1, . . . , nX ; k = 1, . . . , nU},

and Wi can take any value in

{Wmxp
ij : i = 1, . . . , nX ; j = 1, . . . , nX ; p = 1, . . . ,m},

the minimum value of |W0 + Wi| is then, for binary, exclusive values of all

state vectors, equal to 1
2
. Therefore,

H >
2g−1

L (1− ε)
1− 2mnXε

(45)

together with δ < 1
2mnX

, which, after suitable minimization, leads weights

that grow with m and nX slower than log(mnX); values are shown in Table 5.

The values are smaller than the ones obtained with Š́ıma’s construction for

the same first-order network but are still very large, especially if one considers

that splitting leads to very large values of nX .

20

6 Conclusion

We have studied four strategies to encode deterministic finite-state tree au-

tomata (DFSTA) on high-order sigmoid recursive neural networks (RNN)

and two strategies to encode them in first-order sigmoid RNN. These six

strategies are derived from three different strategies to encode DFSTA in

discrete-state RNN (that is, RNN using threshold linear units) by applying

two different weight mapping schemes to convert each one of them into a

sigmoid RNN. The first mapping scheme is the one described by Š́ıma[16].

The second one is an alternate scheme devised by us. All of the strate-

gies yield analog RNN with a very simple “weight alphabet” containing only

three weights all of which are proportional to a single parameter H. The best

results (i.e., smallest possible value of H, as would be desired in a derivative-

based learning setting) are obtained by appling the alternate scheme to a

biasless discrete-state high-order RNN (it has to be mentioned that Š́ıma’s

mapping yields larger weights in all cases but is more general and would

also work with distributed encodings which allow the construction of smaller

RNN). In all of the constructions, the values of H suggest that, even though

in principle RNN with finite weights are able to simulate exactly the behavior

of DFSTA, it will in practice be very difficult to learn the exact finite-state

behavior from examples because of the very small gradients present when

weights reach adequately large values.

Smaller weights are obtained at the cost of enlarging the size of the RNN

due to exclusive encoding of states and inputs (Š́ıma’s result also works for

distributed encodings).

Acknowledgements: This work has been supported by the Spanish Comi-

sion Interministerial de Ciencia y Tecnoloǵıa through grant TIC97-0941.

21

References

[1] R. Alquézar and A. Sanfeliu. An algebraic framework to represent fi-

nite state automata in single-layer recurrent neural networks. Neural

Computation, 7(5):931–949, 1995.

[2] R. C. Carrasco, M. L. Forcada, M. Ángeles Valdés-Muñoz, and Ramón P.

Ñeco. Stable encoding of finite-state machines in discrete-time recurrent

neural nets with sigmoid units. Neural Computation, 12, 2000. In press.

[3] J. L. Elman. Finding structure in time. Cognitive Science, 14:179–211,

1990.

[4] M. L. Forcada and R. C. Carrasco. Learning the initial state of a second-

order recurrent neural network during regular-language inference. Neural

Computation, 7(5):923–930, 1995.

[5] P. Frasconi, M. Gori, and A. Sperduti. A general framework for adaptive

data structures processing. IEEE Transactions on Neural Networks,

9(5):768–786, 1998.

[6] C. L. Giles, C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun, and Y. C.

Lee. Learning and extracted finite state automata with second-order

recurrent neural networks. Neural Computation, 4(3):393–405, 1992.

[7] R. C. Gonzalez and M. G. Thomason. Syntactical pattern recognition.

Addison-Wesley, Menlo Park, CA, 1978.

[8] M. W. Goudreau, C. L. Giles, S. T. Chakradhar, and D. Chen. First-

order vs. second-order single layer recurrent neural networks. IEEE

Transactions on Neural Networks, 5(3):511–513, 1994.

[9] J. E. Hopcroft and J. D. Ullman. Introduction to automata theory,

languages, and computation. Addison–Wesley, Reading, MA, 1979.

22

[10] S. C. Kremer. On the computational power of Elman-style recurrent net-

works. IEEE Transactions on Neural Networks, 6(4):1000–1004, 1995.

[11] S. C. Kremer, R. P. Ñeco, and M. L. Forcada. Constrained second-order

recurrent networks for finite-state automata induction. In L. Niklasson,

M. Bodén, and T. Ziemke, editors, Proceedings of the 8th International

Conference on Artificial Neural Networks ICANN’98, volume 2, pages

529–534, London, 1998. Springer.

[12] R. P. Ñeco, M. L. Forcada, R. C. Carrasco, and M. A. Valdés-Muñoz.

Encoding of sequential translators in discrete-time recurrent neural nets.

In Proceedings of the European Symposium on Artificial Neural Networks

ESANN’99, pages 375–380, 1999.

[13] C. W. Omlin and C. L. Giles. Constructing deterministic finite-state

automata in recurrent neural networks. Journal of the ACM, 43(6):937–

972, 1996.

[14] C. W. Omlin and C. L. Giles. Stable encoding of large finite-state au-

tomata in recurrent neural networks with sigmoid discriminants. Neural

Computation, 8:675–696, 1996.

[15] A. Salomaa. Formal Languages. Academic Press, New York, NY, 1973.

[16] J. Š́ıma. Analog stable simulation of discrete neural networks. Neural

Network World, 7:679–686, 1997.

[17] A. Sperduti. On the computational power of neural networks for struc-

tures. Neural Networks, 10(3):395–400, 1997.

[18] A. Sperduti and A. Starita. Supervised neural networks for the classifi-

cation of structures. IEEE Transactions on Neural Networks, 8(3):714–

735, 1997.

23

[19] J. W. Thatcher. Tree automata: An informal survey. In A.V. Aho,

editor, Currents in the theory of computing. Prentice-Hall, Englewood-

Cliffs, NJ, 1973.

Rafael C. Carrasco was born in Alacant, Spain in 1963. He received the

B.Sc. degree in Physics in 1987, and the Ph.D. in Physics in 1991, both

from the University of Valencia, Spain, and the Ph.D. in Computer Engi-

neering in 1997 from the University of Alacant, Spain. In 1992, Dr. Carrasco

joined the Department of Languages and Information Systems (Departament

de Llenguatges i Sistemes Informàtics) of the University of Alacant, where

he is currently an Associate Professor and head of the Depratment. His re-

search interests are in recurrent neural networks and statistical grammatical

inference.

Mikel L. Forcada was born in Caracas, Venezuela in 1963. He received

the B.Sc. degree in Chemistry in 1986, and the Ph.D. in Physics in 1991, both

from the University of Alacant, Spain. In 1993, Dr. Forcada joined the De-

partment of Languages and Information Systems (Departament de Llenguat-

ges i Sistemes Informàtics) of the University of Alacant, where he is currently

an Associate Professor and director of the Department’s graduate program

on language engineering and pattern recognition. His research interests are

in recurrent neural networks, grammatical inference, nearest-neighbor meth-

ods in pattern recognition, and, more recently, machine translation. He is a

member of the IEEE and its Computer Society, of the International Neural

Network Society, and of the International Association for Machine Transla-

tion.

24

M = 1 M = 2 M = 3 M = 4 M = 5
nX = 2 18.29 25.20 30.36 34.84 38.95
nX = 3 20.39 29.03 35.90 42.09 47.89
nX = 4 21.84 31.80 39.77 47.14 54.13
nX = 5 22.94 33.72 42.73 51.03 58.93

Table 1: Minimum values of the scaling factor H as a function of the number
of state units nX and the maximum rankM for Š́ıma’s construction as applied
to the biased high-order Mealy RNN (Section 3.1).

25

M = 1 M = 2 M = 3 M = 4 M = 5
nX = 2 7.18 10.91 13.56 15.84 17.93
nX = 3 8.37 12.88 16.38 19.51 22.43
nX = 4 9.15 14.24 18.33 22.05 25.57
nX = 5 9.73 15.28 19.83 24.01 27.96

Table 2: Minimum values of the scaling factor H as a function of the number
of state units nX and the maximum rankM for Š́ıma’s construction as applied
to the biasless high-order Mealy RNN (Section 3.2).

26

M = 1 M = 2 M = 3 M = 4 M = 5
nX = 2 18.29 21.84 23.83 25.21 26.27
nX = 3 20.39 23.83 25.77 27.13 28.18
nX = 4 21.84 25.21 27.13 28.48 29.52
nX = 5 22.94 26.27 28.18 29.52 30.54

Table 3: Minimum values of the scaling factor H as a function of the number
of state units nX and the maximum rankM for Š́ıma’s construction as applied
to the biasless first-order Moore RNN (Section 3.3).

27

M = 1 M = 2 M = 3 M = 4 M = 5
nX = 2 2.00 4.56 5.95 7.12 8.18
nX = 3 3.12 5.60 7.40 8.98 9.69
nX = 4 3.59 6.30 8.39 10.26 12.03
nX = 5 3.93 6.83 9.14 11.25 13.24

Table 4: Minimum values of the scaling factor H as a function of the number
of state units nX and the rank M for the alternate construction construction
as applied to the biasless Mealy RNN (Section 3.2).

28

M = 1 M = 2 M = 3 M = 4 M = 5
nX = 2 7.18 9.15 10.20 10.92 11.47
nX = 3 8.37 10.20 11.21 11.92 12.45
nX = 4 9.15 10.92 11.92 12.61 13.14
nX = 5 9.73 11.47 12.45 13.14 13.67

Table 5: Minimum values of the scaling factor H as a function of the number
of state units nX and the rank M for the alternate construction construction
as applied to the first-order Moore RNN (Section 3.3).

29

