Addressing class imbalance in Multilabel Prototype Generation for k-Nearest Neighbor classification

Carlos Penarrubia¹,

Jose J. Valero-Mas^{1,2}, Antonio Javier Gallego¹, and Jorge Calvo-Zaragoza¹

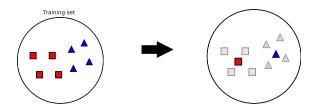
¹U.I. for Computer Research, University of Alicante

²Music Technology Group, Universitat Pompeu Fabra

11th Iberian Conference on Pattern Recognition and Image Analysis Alicante, June 2023

1/21

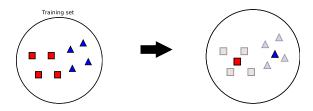
Introduction


The k-Nearest Neighbor (k-NN) classifier

- Method for supervised classification
- Features
 - Compares each query to the hole dataset following a metric
 - Non-parametric method
- Drawbacks
 - Low efficiency
 - High memory usage

The k-Nearest Neighbor (k-NN) classifier

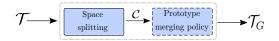
Data Reduction


- Consists in reducing the size of the reference set
- Two main approaches:
 - * Prototype selection (PS)
 - * Prototype generation (PG)

The k-Nearest Neighbor (k-NN) classifier

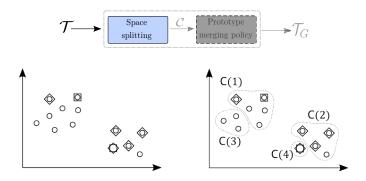
Data Reduction

- Consists in reducing the size of the reference set
- Two main approaches:
 - * Prototype selection (PS)
 - * Prototype generation (PG)

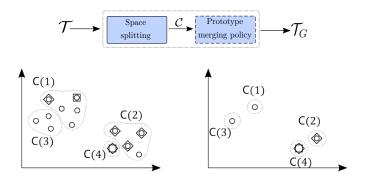

However...

- PG has been scarcely addressed in multilabel cases
- Existing methods show shortages when addressing imbalance data
- Goal: Tackle imbalance problems in multilabel PG

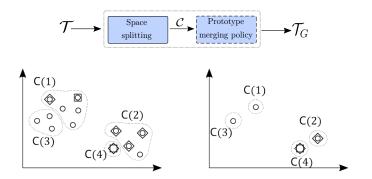
Methodology


Two stages

- 1. Space splitting
- 2. Prototype merging policy


Two stages

- 1. Space splitting
- 2. Prototype merging policy


Two stages

- 1. Space splitting
- 2. Prototype merging policy

Two stages

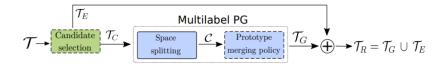
- 1. Space splitting
- 2. Prototype merging policy

Is the square in C(1) noise? Or is is simply underrepresented?

Imbalance metrics: IRLbl and MeanIR

• Imbalance ratio per label
$$(\lambda)$$
:

$$\mathsf{IRLbI}\left(\lambda\right) = \frac{\max_{\forall \lambda' \in \mathcal{Y}} \left(\sum_{i=1}^{|\mathcal{T}|} \lambda' \in \mathbf{y}_i\right)}{\sum_{i=1}^{|\mathcal{T}|} \lambda \in \mathbf{y}_i} \tag{1}$$



$$\mathsf{IRLbI}(\Box) = \frac{\mathsf{max}(12, 4, 2)}{2} = 6 \tag{2}$$

Mean imbalance ratio:

MeanIR =
$$\frac{1}{|\mathcal{Y}|} \sum_{\lambda \in \mathcal{Y}} \text{IRLbl}(\lambda) = \frac{1+2.4+6}{3} = 3.13$$
 (3)

Proposal

Two additional imbalance-aware mechanisms:

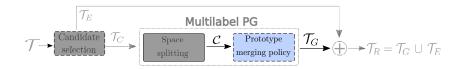
- Candidate selection
- Prototype merging policies

Proposal Candidate selection

Initial set T is split:

- Set \mathcal{T}_E of samples with imbalanced samples
- Set \mathcal{T}_C of samples with non-imbalanced samples

Proposal Candidate selection

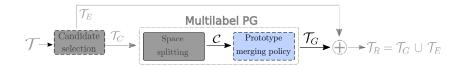


Initial set T is split:

- Set \mathcal{T}_E of samples with imbalanced samples
- Set \mathcal{T}_C of samples with non-imbalanced samples

Imbalanced samples:

$$\mathcal{T}_{E} = (\mathbf{x}_{i}, \mathbf{y}_{i}) : \mathsf{IRLbl}(\lambda) > \mathsf{MeanIR} \ \forall \lambda \in \mathbf{y}_{i}$$

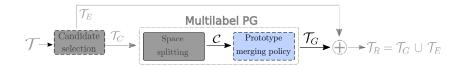

< ロ > < 同 > < 回 > < 回 >

10/21

• Policies for merging prototypes in C:

- Features (x_i): Feature-wise mean
- Label space (y_i) :

- Base case:
$$|C(m)|_{\lambda} \geq \frac{|C(m)|}{2}$$



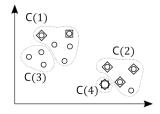
• Policies for merging prototypes in C:

- Features (x_i): Feature-wise mean
- Label space (y_i) :

- Base case:
$$|C(m)|_{\lambda} \geq rac{|C(m)|}{2}$$

- Proposal I:
$$|C(m)|_{\lambda} \ge \left\lfloor \frac{|C(m)|}{2 \cdot \text{IRLbl}(\lambda)} \right\rfloor$$

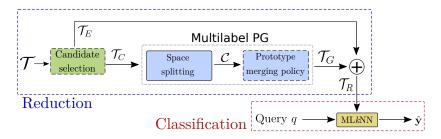
• Policies for merging prototypes in C:

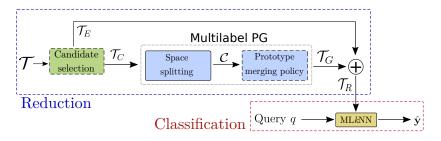

- Features (x_i): Feature-wise mean
- Label space (**y**_i):

- Base case:
$$|C(m)|_{\lambda} \geq \frac{|C(m)|}{2}$$

- Proposal I:
$$|C(m)|_{\lambda} \ge \left\lfloor \frac{|C(m)|}{2 \cdot \text{IRLbl}(\lambda)} \right\rfloor$$

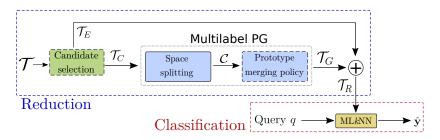
- Proposal II: (Base case) \lor (IRLbl(λ) > MeanIR)




- Base policy: C(1) = $\{\circ\}$
- Policy 1: $C(1) = \{\circ, \Box\}$
- Policy 2: $C(1) = \{\circ, \Box\}$

Experimental set-up and results

Scheme and algorithms


Scheme and algorithms

Multilabel k-NN algorithm:

-
$$MLkNN(k = 1)$$

Scheme and algorithms

- Multilabel k-NN algorithm:
 - MLkNN (k = 1)
- Multilabel PG methods:
 - Multilabel Reduction through Homogeneous Clustering (MRHC)
 - Multilabel Chen (MChen)
 - Multilabel Reduction through Space Partitioning (MRSP3)

Datasets and metrics

Datasets:

Name	Set	MeanIR				
	Train	Test	meann			
Low imbalance						
Scene	1,211	1,196	1.33			
Emotions	391	202	1.49			
Birds	322	323	6.10			
Yeast	1,500	917	7.27			
Bibtex	4,880	2,515	12.78			
High imbalance						
Genbase	463	199	31.60			
Medical	333	645	48.59			
rcv1subset4	3,000	3,000	170.84			
rcv1subset2	3,000	3,000	177.89			
Corel5k	4,500	500	183.29			
rcv1subset1	3,000	3,000	191.42			
rcv1subset3	3,000	3,000	192.48			

Datasets and metrics

Datasets:

Set size							
Name	Set	MeanIR					
	Train Test						
Low imbaland	e						
Scene	1,211	1,196	1.33				
Emotions	391	202	1.49				
Birds	322	323	6.10				
Yeast	1,500	917	7.27				
Bibtex	4,880	2,515	12.78				
High imbalance							
Genbase	463	199	31.60				
Medical	333	645	48.59				
rcv1subset4	3,000	3,000	170.84				
rcv1subset2	3,000	3,000	177.89				
Corel5k	4,500	500	183.29				
rcv1subset1	3,000	3,000	191.42				
rcv1subset3	3,000	3,000	192.48				

Metrics:

- Macro F1 score
- Reduction rate: $|\mathcal{T}_R|/|\mathcal{T}|$

3

イロト イヨト イヨト イヨト

Results

	No candidate selection $(\mathcal{T}_{C}=\mathcal{T})$				Using candidate selection $(\mathcal{T}_C \subseteq \mathcal{T})$			
	Size (%)	N	Merging policy		Size (%)	Merging policy		
	5120 (70)		Policy 1	Policy 2	0.20 (70)	Base	Policy 1	Policy 2
Low imbalance								
MRHC	57.83	42.44	43.70	42.87	70.65	42.34	43.36	42.34
$MChen_{10}$	9.98	30.11	36.87	27.81	40.98	36.36	40.33	36.36
MChen ₅₀	49.97	37.15	41.64	38.26	67.17	40.46	41.66	40.46
MChen ₉₀	89.89	42.20	42.29	42.26	93.23	42.99	43.00	42.99
MRSP3	66.84	40.73	43.58	41.43	78.12	41.76	43.04	41.76

- General improvement with proposed policies
- Best results with Policy 1
- Worse efficiency when using Candidate Selection

Results

	No candidate selection ($\mathcal{T}_{\mathcal{C}}=\mathcal{T}$)				Using candidate selection $(\mathcal{T}_{\mathcal{C}} \subseteq \mathcal{T})$			
	Size (%)	Merging policy		Size (%)	Merging policy			
	5126 (70)	Base	Policy 1	Policy 2	5126 (70)	Base	Policy 1	Policy 2
High imbalance								
MRHC	47.55	12.03	12.48	12.03	46.89	11.92	12.48	11.92
MChen ₁₀	9.98	7.23	9.80	7.36	12.64	7.48	9.94	7.48
MChen ₅₀	49.96	9.96	11.93	10.04	51.45	9.97	11.78	9.97
MChen ₉₀	89.58	11.91	12.08	11.91	89.74	11.83	12.04	11.83
MRSP3	60.94	11.65	13.96	12.11	61.08	8.80	10.59	8.80

- General improvement with proposed policies
- Best results Policy 1
- Similar efficiency when using Candidate Selection

Conclusions

Conclusions

- Two novel policy methods for imbalance aware
- Mechanism to prevent severely imbalanced samples from undergoing a reduction process
- Experimental validation in low imbalance and high imbalance datasets
- Promising results with different levels of imbalance ratio

Future works

- Develop similar policies for other stages of Multilabel PG
- ► Full pipeline
- Use other measurement for imbalance

This work was supported by the I+D+i project TED2021-132103A-I00 (DOREMI), funded by MCIN/AEI/10.13039/501100011033.

Addressing class imbalance in Multilabel Prototype Generation for k-Nearest Neighbor classification

Carlos Penarrubia¹,

Jose J. Valero-Mas^{1,2}, Antonio Javier Gallego¹, and Jorge Calvo-Zaragoza¹

¹U.I. for Computer Research, University of Alicante

²Music Technology Group, Universitat Pompeu Fabra

11th Iberian Conference on Pattern Recognition and Image Analysis Alicante, June 2023

21 / 21