International Conference on Document Analysis and Recognition 2024, Athens, Greece

University of Alicante, Spain Pattern Recognition and Artificial Intelligence Group

A region-based approach for layout analysis of music score images in scarce data scenarios

Francisco J. Castellanos, Juan P. Martinez-Esteso, Alejandro Galán-Cuenca, Antonio Javier Gallego fcastellanos@dlsi.ua.es - juan.martinez11@ua.es - a.galan@ua.es - jgallego@dlsi.ua.es

- Optical Music Recognition (OMR) enables preservation and accessibility of historical manuscripts.
- Neural network-based methods require a large amount of labeled data, which must be obtained at a high cost.
- This paper focuses on detecting bounding boxes of staves, a common step in OMR so-called Layout Analysis (LA).
- The main goal is to train a LA method using scarce labeled training sets.

Staff retrieval experiments

Fig. 2: Study of the number of random samples training with only 1 labeled staff.

FSAE: Few-shot Selectional Auto-Encoder

Our proposal (FSAE) is based on the adaptation of an existing approach (Selectional Auto-Encoder) to work with partial annotations for LA. It consists in several steps:

- 1. Manually **annotating** bounding boxes.
- 2. Adaptation of **image scale** according to the half of a window height ($\sigma = 0.5$).
- 3. Extracting λ random patch samples around the annotation, as many as needed (oversampling).
- 4. **Training** the model that includes a masking layer to ignore non-annotated pixels while training.

Fig. 3: Average results with respect to the number of labeled staves (λ).

					F	ew-shot	scenaric	o (with λ	training annc	tated stave	es)
	SOTA (with all training data)				SAE				FSAE (ours)		
Metric	RetinaNet	YOLO	SAE		λ = 8	λ = 16	λ = 32		λ = 8	λ = 16	λ = 32
F ₁ (%)	75.1	88.6	73.4		21.5	8.3	14.1		57.0	63.7	66.0

Tab. 1: Average F_1 (%)^{10U=0.5} results comparing SOTA with the few-shot cases.

Fig. 1: Scheme of the proposed few-shot method.

Experiments

Corpora

(a) CAPITAN

(b) SEILS

(c) FMT-M

(d) Ground truth.

(e) SAE (baseline).

(f) FSAE (ours).

Fig. 4: Qualitative results with SAE (SOTA) and FSAE.

Transcription experiments

Fig. 5: Transcription results in terms of Symbol Error Rate (%).

	T				 *
	-x-y-	111-	200	* 6 5	1 9 2 9 9
i si nă à ni	ii mio	TI	Gamia	Print	

(d) GUATEMALA

(d) FMT-C

Fig. 2: Examples of the corpora considered with their ground truth.

Fig. 6: Examples of retrieved staves by using λ training staves.

Conclusions

- We introduced a novel layout analysis framework for OMR working under few-shot conditions.
- Our approach, FSAE, enables partial manual annotations to train a robust staff-retrieval model.
- Annotating between 8 and 32 staves is sufficient to obtain competitive performances.

Funded by the **European Union NextGenerationEL**

