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Speech prediction

• No preprocessing: we work on sampled waveform u[t].

• Importance of real-time speech prediction.

• Assumption: u[t] may be estimated from u[t− 1], u[t− 2], . . ..
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Predictive coding

u[t-1], ...

u[t]

~ u[t] r[t]^
SPEECH

PREDICTOR

• r[t] is sent instead of u[t].

• Bit rate is lowered if predictor is accurate.

• Predicting is compressing.
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Speech predictors

• Linear predictors.

• Nonlinear predictors:

* In this work, we focus on recurrent neural networks.

* They are supposed to take into account speech nonlinearities.
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Linear predictors

• Simple predictor taken as baseline: û[t] = u[t− 1].

• Finite impulse response filter (FIR):
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Elman’s simple recurrent network

• Elman (1990).
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Recurrent error propagation network (REPN)

• Robinson and Fallside (1991).
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Pipelined recurrent neural network (PRNN)

• Haykin and Li (1995).

• Weights are shared by all the recurrent error propagation networks
(REPN) in the PRNN.
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Cascade configuration
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RECURRENT NEURAL NET

LINEAR FIR FILTER

• Nonlinear block is supposed to linearize the input signal.

• We use general-purpose recurrent networks for the upper block.
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Training algorithms

• Linear FIR predictor:

* Least-mean-square (LMS).

* Recursive least-squares (RLS).

• Recurrent neural networks:

* Real-time recurrent learning (RTRL).

* Decoupled extended Kalman filter (DEKF).
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Experiments

• Results are the average for 7 different weight initializations (except for
PRNN).

• Results are similar for different signals.

• The linear FIR filter order is q = 12.

• Both neural architectures PRNN and REPN have been chosen to have a
similar number of parameters (around 35 adjustable weights).
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Prediction quality

• Performance is measured by means of prediction gain G:

G = 10 log10

(
S2

u

S2
e

)

* S2
u is the estimated variance of the speech signal u[t].

* S2
e is the estimated variance of the error signal u[t]− û[t]
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Worst results

Architecture (training) G (dB)

REPN + FIR ≤ 3.99

? û[t + 1] = u[t] 4.61

REPN (RTRL) 5.80

FIR (LMS) 5.82
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Best results

Architecture (training) G (dB)

PRNN (RTRL) + FIR (LMS) 7.30

REPN (DEKF) 8.61

PRNN (RTRL) + FIR (RLS) 9.24

? FIR (RLS) 9.66

PRNN (DEKF) + FIR (RLS) 10.90
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Conclusions

• Problems to deal with speech series for classical recurrent networks.

• The decoupled extended Kalman filter partially overcomes some of these
limitations.

• Only PRNN trained with the Kalman filter followed by a FIR filter trained
by recursive least-squares (RLS) attains better results than a simple FIR
filter trained by RLS.
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