
Online Symbolic-Sequence Prediction with
Discrete-Time Recurrent Neural Networks?

Juan Antonio Pérez-Ortiz, Jorge Calera-Rubio, and Mikel L. Forcada

Departament de Llenguatges i Sistemes Informàtics,
Universitat d’Alacant, E-03071 Alacant, Spain

Abstract. This paper studies the use of discrete-time recurrent neural
networks for predicting the next symbol in a sequence. The focus is on
online prediction, a task much harder than the classical offline grammat-
ical inference with neural networks. The results obtained show that the
performance of recurrent networks working online is acceptable when
sequences come from finite-state machines or even from some chaotic
sources. When predicting texts in human language, however, dynamics
seem to be too complex to be correctly learned in real-time by the net.
Two algorithms are considered for network training: real-time recurrent
learning and the decoupled extended Kalman filter.

1 Introduction

Discrete-time recurrent neural networks (DTRNN) [5] are generally accepted as
a good alternative to feedforward networks for temporal-sequence processing.
Feedback enables DTRNN to develop state representations of this kind of se-
quences. This work analyses the use of DTRNN for predicting online the next
component in a symbolic sequence.

Arithmetic compression [7] is used to evaluate the quality of the predictor.
Different symbolic-sequence sources ranging from finite-state machines to texts
in human language are considered in the experiments. Unlike previous works [3,
11, 13] which performed neural offline prediction on the kind of sequences studied
here, in this paper we concentrate on online prediction.

2 Prediction with DTRNN

We have chosen two classical DTRNN: Elman’s simple recurrent network (SRN)
[4], and the recurrent error propagation network (REPN) [10]. Both architectures
are applied to online prediction of symbolic sequences. The networks work in real-
time trying to produce an output as correct as possible to every component of
the sequence supplied at each time step; this output is considered as a prediction
of the probabilities of the next symbol in the sequence.
? Work supported by the Generalitat Valenciana through grant FPI-99-14-268 and the

Spanish Comisión Interministerial de Ciencia y Tecnoloǵıa through grant TIC97-
0941. This paper completes the results in [8].

Two online supervised training algorithms are considered: the real-time re-
current learning (RTRL) [14], and the decoupled extended Kalman filter (DEKF)
[9]. Both of them update weights according to an error measure E(t) whenever
a new target or desired output is supplied. The RTRL algorithm performs gra-
dient descent along the instantaneous error hypersurface. On the other hand,
the DEKF computes recursively and efficiently a solution to the least-squares
method : finding the curve of best fit for a given set of data in terms of minimiz-
ing the average distance between the data and the curve. The DEKF also needs
the derivatives of E(t), which may be calculated the same way as in the RTRL
algorithm.

Grammatical Inference with DTRNN. Grammatical inference (GI) is a
task where DTRNN have been widely used [3] and that is related to our problem,
although it also has strong differences.

Even though one possible approach to GI consists of training the network to
predict the next symbol in the sequence, the modus operandi is far different. In
the case of GI, it can be easily shown (by writing the total quadratic prediction
error as a sum over all the prefixes of all the sequences in the sample) that the
ideal neural probability model obtained for a finite set of finite sequences through
exhaustive offline training, global quadratic error function, and exclusive coding
of outputs (see later), gives an output that approximates as much as possible
the next-symbol relative frequencies observed in the finite sample, which could
be used as approximate probabilities when treating unseen sequences.

Our problem is different in some respects: the processing is done online, a
relatively-long single sequence is used (whereas in GI the length of the sequences
is usually small), and as a result of online processing, the error function is local.
This work is based on the conjecture, similar to Elman’s [4], that even under
these different conditions the output of the model may still be considered as an
approximation to next-symbol probabilities.

Neural Online Prediction. This section shows briefly how DTRNN can be
used to predict online the next symbol in a sequence. Consider we have an alpha-
bet Σ = σ1, . . . , σ|Σ| and a temporal sequence to process s[1], . . . , s[t], . . . , s[L].
The number of neurons in the input and output layers is set equal to the size
of the alphabet, |Σ|. Inputs and targets are coded by means of exclusive coding,
that is, the symbol σi is coded with a unary vector with all the components but
the i-th set to zero.

At time t the symbol s[t] is coded in the input vector u[t] using exclusive
coding. Introducing u[t] into the network, the output vector y[t] is obtained and
normalized so as all its components add to one. Now, yi[t] can be interpreted as
the probability of next symbol being σi. After that, the next observed symbol
s[t+1] is exclusively coded in d[t], which is used as the target for weight updating
by the online training algorithm.

We will study empirically whether the probabilities obtained this way are a
good approximation to the real ones. Online learning makes this difficult because

the net is simultaneously learning how much history to keep and how to predict
from that history, and proving convergence to the real probabilities is not trivial;
this is worth further theoretical study.

3 Measure of Prediction Quality

Mean squared error may be a way of measuring the quality of a predictor. But in
the common case where we do not know the real next-symbol probabilities, the
error may only be based on the difference between the predicted symbol (usually
the one with the highest probability) and the symbol observed at next time
step. An alternative error measure which considers the whole vector of predicted
probabilities is necessary: arithmetic compression is a possible solution.

An arithmetic compressor [7] derives its performance from a correct model
of next-symbol probabilities. The important property that makes it appropiate
for evaluating the quality of a predictor (neural or not) is that the better this
probability model, the larger the compression ratio (CR) obtained. Besides that,
this model can be adaptive, which is the case when the processing is online and
probabilities change dynamically at every time step.

With the object of comparising, in addition to DTRNN, n-grams are used
as an alternative probability model for arithmetic compression. In an n-gram
model, next-symbol probability depends only on the n − 1 symbols preceding
it. Very good results are obtained when various models of different orders n
are maintained simultaneously and the probability estimation is computed by
mixing them [7]. The predictor considered in our experiments uses n ∈ [0, 4].

4 Results

This section presents the results of the experiments developed with some sym-
bolic sequences. The graphs illustrate the CR versus the number of state neurons,
denoted with nX .1 Results are shown for both the RTRL and the DEKF training
algorithms (using a quadratic prediction error), and SRN and REPN architec-
tures. Note that nX = 0 means that there is no recurrence at all (in the case of
SRN, only output biases are adjusted).

RTRL was used with learning rate 0.9 and momentum 0.4 (chosen after
preliminary experiments). In the case of the DEKF, some experiments were
carried out in order to determine correct values for the tunable parameters of
the algorithm; the values proposed by Haykin [5, p. 771] proved to be correct.

The results are the average of 7 experiments (the variance was very small in
all cases so it is omitted). The initial values for the weights were taken randomly
from a uniform distribution in [−0.2, 0.2]. We consider three different kinds of
symbolic sequences: generated by finite-state machines, chaotic, and texts in
human language. A discussion of one particular sequence of each group and the
results obtained follows.
1 The code used for the arithmetic coder was written by Nelson [7] and is freely

available at http://dogma.net/markn/articles/arith.

 1

 2

 3

 4

 0 2 4 10 16

C
R

nX

Reber Sequence

RTRL, REPN
RTRL, SRN

DEKF, REPN
DEKF, SRN

Fig. 1. Compression ratios for the continual embedded Reber sequence. The [0, 4]-gram
model gives a CR of 4.23.

Finite-State Sequences. The experiments consider the continual embedded
Reber sequence [12]. From the outset, good results are expected since DTRNN
are capable of learning offline regular languages [3] and even emulating finite-
state machines [2]. On the other hand, languages derived from this automaton
have been proved [12] to be hard to learn with common recurrent architectures
due to the existence of long-term dependencies [1] (see also [6]).

The graph in Fig. 1 illustrates the CR for this sequence (20000 symbols long,
|Σ| = 7). The CR with the [0, 4]-gram model is 4.23. As can be seen, the number
of state neurons nX affects the CR attained, although for values of nX ≥ 10
the influence is not very significant. Both architectures, REPN and SRN, give
comparable results. The DEKF training algorithm gives CR near those of the
[0, 4]-gram model, whereas those of RTRL are lower.

Chaotic Sequences. We show the results for a symbolic sequence composed
of the activation measures of a chaotic laser [13]. Figure 2 shows the CR for this
sequence (length 10000, |Σ| = 4). The [0, 4]-gram model gives a CR of 2.73.

When using RTRL, differences between REPN and SRN are bigger than
before. Again, the DEKF surpasses the results of RTRL. Anyway, RTRL and
the REPN give CR (for nX > 4) similar to those of the [0, 4]-gram model, and
the DEKF (independently of the architecture) attains much higher ones (near 4).

Human Language Texts. Finally, we considere an essay in English about
Polish film director Krzysztof Kieslowski. Figure 3 illustrates the results for this
sequence in human language (length 62648, |Σ| = 27). The CR with the [0, 4]-
gram model is 1.85.

As can be seen, the networks are not capable of developing a useful state
representation of sequence dynamics. The influence of nX on the prediction

 1

 2

 3

 4

 0 2 4 10 16

C
R

nX

Chaotic Laser

RTRL, REPN
RTRL, SRN

DEKF, REPN
DEKF, SRN

Fig. 2. Compression ratios for the chaotic laser sequence. The [0, 4]-gram model gives
a CR of 2.73

with the REPN and both training algorithms is not noticeable, although DEKF
consistently gives better results. The SRN partially overcomes this limitation,
although the CR are lower than those of the REPN. The results of the DEKF
are once more slightly better than the results of RTRL, but they are still far
lower than those achieved with the [0, 4]-gram model.

5 Concluding Remarks

The DEKF training algorithm outperforms RTRL when predicting online the
symbols in a sequence. It has to be pointed out, however, that the DEKF has
greater complexity because it has to compute the same number of derivatives
plus some matrix operations (including an inversion) at every time step.

In the case of the regular sequence the results of the DEKF are comparable
to those obtained with n-grams. When processing the chaotic sequence, even
the results obtained with RTRL are similar to those of an [0, 4]-gram probability
model, and the DEKF clearly outperforms it.

When dealing with sequences in human language, however, DEKF results are
much worse than [0, 4]-gram results. Prediction over texts in human language
seems to be a difficult task for RTRL and the DEKF. It has to be noted, anyway,
that the number of free parameters used in a [0, 4]-gram model is far greater than
the number of parameters in the recurrent neural networks used in this paper.

A more detailed and theoretical study has to be carried out in order to
analyse how a DTRNN approximates symbol probabilities when working online.
We have found that acceptable approximations are possible for regular or simple
chaotic sequences and that the problem is far more arduous with more complex
sequences. Besides that, it would be very interesting to analyse the evolution of
the network state while processing the different kind of sequences used in this
paper.

 1.1

 1.3

 1.5

 0 2 4 10 16

C
R

nX

Human Language Text

RTRL, REPN
RTRL, SRN

DEKF, REPN
DEKF, SRN

Fig. 3. Compression ratios for the natural language sequence. The [0, 4]-gram model
gives a CR of 1.85

References

1. Bengio, Y., P. Simard and P. Frasconi (1994), “Learning long-term dependencies
with gradient descent is difficult”, IEEE Transactions on Neural Networks , 5(2).

2. Carrasco, R. C. et al. (2000), “Stable-encoding of finite-state machines in discrete-
time recurrent neural nets with sigmoid units”, Neural Computation, 12(9).

3. Cleeremans, A., D. Servan-Schreiber and J. L. McClelland (1989), “Finite state
automata and simple recurrent networks”, Neural Computation, 1(3), 372–381.

4. Elman, J. L. (1990), “Finding structure in time”, Cognitive Science, 14, 179–211.
5. Haykin, S. (1999), Neural networks: a comprehensive foundation , Chapter 15,

Prentice-Hall, New Jersey, 2nd edition.
6. Hochreiter, J. (1991), Untersuchungen zu dynamischen neuronalen Netzen ,

Diploma thesis, Institut für Informatik, Technische Universität München.
7. Nelson, M. (1991), “Arithmetic coding + statistical modeling = data compression”,

Dr. Dobb’s Journal , Feb. 1991.
8. Pérez-Ortiz, J. A., J. Calera-Rubio, M. L. Forcada (2001), “Online text prediction

with recurrent neural networks”, Neural Processing Letters, in press.
9. Puskorius, G. V. and L. A. Feldkamp (1991), “Decoupled extended Kalman filter

training of feedforward layered networks”, in International Joint Conference on
Neural Networks, volume 1, pp. 771–777.

10. Robinson, A. J. and F. Fallside (1991), “A recurrent error propagation speech
recognition system”, Computer Speech and Language, 5, 259–274.

11. Schmidhuber, J. and S. Heil (1996), “Sequential neural text compression”, IEEE
Transactions on Neural Networks, 7(1), pp. 142-146.

12. Smith, A. W. and D. Zipser (1989), “Learning sequential structures with the real-
time recurrent learning algorithm”, International Journal of Neural Systems , 1(2).

13. Tiňo, P., M. Köteles (1999), “Extracting finite-state representations from recurrent
neural networks trained on chaotic symbolic sequences”, IEEE Transactions on
Neural Networks, 10(2), pp. 284–302.

14. Williams, R. J. and R. A. Zipser (1989), “A learning algorithm for continually
training recurrent neural networks”, Neural Computation, 1, 270–280.

