Using unsupervised corpus-based methods to build rule-based machine translation systems

Felipe Sánchez Martínez

fsanchez@dlsi.ua.es

Ph.D. thesis supervised by

Mikel L. Forcada

Juan Antonio Pérez Ortiz

Departament de Llenguatges i Sistemes Informàtics Departamento de Lenguajes y Sistemas Informáticos

30th June 2008

∃ > < ∃ >

Outline

Motivation & goal

Part-of-speech taggers for machine translation

- Part-of-speech tagging
- MT-oriented hidden Markov model training

Pruning of disambiguation paths

- Disadvantages of the MT-oriented method
- Pruning method

Part-of-speech tag clustering

- Best HMM topology for taggers used in MT
- Bottom-up agglomerative clustering

Automatic inference of transfer rules

- Alignment templates for shallow-transfer machine translation
- Generation of Apertium transfer rules

Concluding remarks

∃ ► < ∃ ►</p>

Image: A matrix

Outline

Motivation & goal

- Part-of-speech taggers for machine translation
 - Part-of-speech tagging
 - MT-oriented hidden Markov model training
- Pruning of disambiguation paths
 - Disadvantages of the MT-oriented method
 - Pruning method
- Part-of-speech tag clustering
 - Best HMM topology for taggers used in MT
 - Bottom-up agglomerative clustering
- Automatic inference of transfer rules
 - Alignment templates for shallow-transfer machine translation
 - Generation of Apertium transfer rules
- Concluding remarks

< 6 ×

Motivation

- Experience in the development of shallow-transfer MT systems interNOSTRUM Spanish⇔Catalan Traductor Universia Spanish⇔Portuguese Apertium Several language pairs available
- Huge human effort to code all the linguistic resources
- Resources usually needed by shallow-transfer MT systems
 - Monolingual dictionaries
 - Part-of speech (PoS) taggers
 - Bilingual dictionaries
 - Structural transfer rules

Goal

Goal:

- To reduce the human effort
- Using corpus-based methods
- In an unsupervised way

Focus on:

- the PoS taggers used in the analysis phase
- the set of shallow structural transfer rules used in translation

 \Rightarrow Benefiting from the rest of resources \Leftarrow

Outline

Motivation & goal

Part-of-speech taggers for machine translation

- Part-of-speech tagging
- MT-oriented hidden Markov model training
- - Disadvantages of the MT-oriented method
 - Pruning method
- - Best HMM topology for taggers used in MT ۲
 - ۲
- - Alignment templates for shallow-transfer machine translation

Part-of-speech tagging /1

Problem: Selecting the correct PoS tag for those words with more than one (ambiguous words)

 \Rightarrow Hidden Markov models (HMM) are one of the standard statistical solutions

- Each HMM state corresponds to a different PoS tag
- Each input word is replaced by its corresponding ambiguity class

Part-of-speech tagging /2

In MT PoS tagging becomes crucial:

• Translation may differ from one PoS tag to another

English	PoS	Spanish
book	noun	libro
DOOK	verb	reservar

Structural transformations may be applied (or not) for some PoS tag

English	PoS	Spanish	reordering
the green house	<i>green</i> -adj	la casa verde	←rule
	<i>green</i> -noun	* el césped casa	applied

General-purpose HMM training methods

General-purpose HMM training methods:

- Supervised (hand-tagged corpora available):
 - Maximum-likelihood estimate (MLE)
- Unsupervised (only untagged corpora available):
 - Baum-Welch (expectation-maximization, EM)

Main features:

- Only use information from the language being tagged
- Independent of the natural language processing application
- To get high tagging accuracy supervised resources (hand-tagged corpora) must be built

・ロト ・ 同ト ・ ヨト ・ ヨト

MT-oriented HMM training method

- PoS tagging is just an intermediate task for the whole translation procedure
- Good translation performance, rather than PoS tagging accuracy, becomes the real objective

Idea: As the goal is to get good translations into TL, let a TL model decide whether a given "construction" in the TL is good or not

MT-oriented HMM training method: overview /1

- Unsupervised training
- Resources required:
 - an SL untagged text automatically obtained from an SL raw corpus
 - the other modules of the MT system following the PoS tagger
 - a TL model trained from a raw TL corpus

MT-oriented HMM training method: overview /2

- Procedure:
 - SL corpus is segmented
 - 2 All possible disambiguations of each segment are translated into TL
 - A TL model is used to score each translation
 - HMM parameters are computed according to the likelihood of the corresponding translations into TL

 \Rightarrow The resulting tagger is tuned to the translation fluency \Leftarrow

Example: English→Spanish

- SL segment (English):
 - He-prn rocks-noun | verb the-art table-noun | verb

∃ >

Example: English \rightarrow Spanish

- SL segment (English):
 - He-prn rocks-noun | verb the-art table-noun | verb
- Possible translations (Spanish) according to each disambiguation and their normalized likelihoods according to a TL model:
 - Él-prn mece-verb la-art mesa-noun 0.75
 - Él-prn mece-verb la-art presenta-verb 0.15
 - Él-prn rocas-noun la-art mesa-noun 0.06
 - Él-prn rocas-noun la-art presenta-verb + 0.04

1.00

Example: English→Spanish

- SL segment (English):
 - He-prn rocks-noun | verb the-art table-noun | verb
- Possible translations (Spanish) according to each disambiguation and their normalized likelihoods according to a TL model:
 - Él-prn mece-verb la-art mesa-noun 0.75
 - Él-prn mece-verb la-art presenta-verb 0.15
 - Él-prn rocas-noun la-art mesa-noun 0.06
 - Él-prn rocas-noun la-art presenta-verb + 0.04 1.00
- The HMM parameters involved in these 4 disambiguations are updated according to their likelihoods in the TL

∃ > + ∃

• • • • • • • • •

Experiments /1

- Task: training PoS tagger for Spanish, French and Occitan to be used in MT into Catalan
- TL model: trigram language model trained from a Catalan corpus with $\approx 2\cdot 10^6$ words
- Experiments conducted with
 - 5 disjoint corpora with 0.5 · 10⁶ words for Spanish
 - 5 disjoint corpora with 0.5 · 10⁶ words for French
 - Only one corpus with 0.3 · 10⁶ words for Occitan

Experiments /2

• Reference results:

- Baum-Welch expectation maximization on 10 · 10⁶ words corpora
- Supervised: MLE from a hand-tagged corpus $\approx 21.5\cdot 10^3$ words (only for Spanish)
- TLM-best: when a TL model is used at translation time to select always the most likely translation
 - approximate indication of the best results the MT-oriented method could achieve

・ 同 ト ・ ヨ ト ・ ヨ ト

Some results: Spanish→Catalan /1

Mean and std. dev. of the translation performance, WER (% of words)

Some results: Spanish → Catalan /2

Mean and std. dev. of the PoS tagging error rate (% of words)

・ロト ・ 同ト ・ ヨト ・ ヨト -

30th June 2008

16/45

Some results: Spanish→Catalan /3

Why are the translation performances for the supervised and the MT-oriented method comparable, but no the PoS tagging error rates?

 TL information does not discriminate among the SL analyses of a segment leading to the same translation

French	PoS	Spanish
la ville	<i>la</i> -art <i>la</i> -prn	la ciudad

• *Free-ride*: phenomenon by which choosing the incorrect interpretation for an ambiguous word does not result in a translation error

Outline

- Motivation & goal
 - Part-of-speech taggers for machine translation
 - Part-of-speech tagging
 - MT-oriented hidden Markov model training
- Pruning of disambiguation paths
 Disadvantages of the MT-oriented method
 Pruning method
 - Part-of-speech tag clustering
 - Best HMM topology for taggers used in MT
 - Bottom-up agglomerative clustering
 - Automatic inference of transfer rules
 - Alignment templates for shallow-transfer machine translation
 - Generation of Apertium transfer rules
 - Concluding remarks

日本にも日

Disadvantages of the MT-oriented method

- The number of possible disambiguations to translate grows exponentially with segment length
- Translation is the most time-consuming task
- Goal: To overcome this problem
- How: Pruning unlikely disambiguation paths by using *a priori* knowledge

Pruning method /1

Based on an initial model of SL tags

Assumption: Any reasonable model of SL tags may be useful to choose a subset of possible disambiguation paths so that the correct one is in that subset

The model used for pruning can be updated dynamically during training

Pruning method /2

- The a priori likelihood of each possible disambiguation path of SL segment s is calculated using the pruning model
- Provide the set of disambiguation paths to take into account is determined by using a mass probability threshold ρ
 - Only the minimum number of paths to reach the mass probability threshold ρ are taken into account

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example (English \rightarrow Spanish)

• SL segment (English):

• He-prn rocks-noun | verb the-art table-noun | verb

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example (English \rightarrow Spanish)

• SL segment (English):

• He-prn rocks-noun | verb the-art table-noun | verb

• Normalized a priori likelihoods:

프 > + 프 >

Example (English \rightarrow Spanish)

• SL segment (English):

• He-prn rocks-noun | verb the-art table-noun | verb

• Normalized a priori likelihoods:

• With $\rho = 0.8$, \boldsymbol{g}_3 and \boldsymbol{g}_4 are discarded because $0.69 + 0.14 \ge 0.8$

Some results: Spanish→Catalan

Mean and std. dev. of the translation performance, WER (% of words)

Some results

Ratio of translated words

ъ

Image: A matrix

Outline

- Motivation & goal
- Part-of-speech taggers for machine translation
 - Part-of-speech tagging
 - MT-oriented hidden Markov model training
- Pruning of disambiguation paths
 - Disadvantages of the MT-oriented method
 - Pruning method
- Part-of-speech tag clustering
 - Best HMM topology for taggers used in MT
 - Bottom-up agglomerative clustering
- Automatic inference of transfer rules
 - Alignment templates for shallow-transfer machine translation
 - Generation of Apertium transfer rules
- Concluding remarks

日本にも日

Best HMM topology for taggers used in MT

- Large tagsets (set of PoS tags) for richly-inflected languages
 - fine PoS tags convey lot of information

e.g. verb.pret.3rd.pl, noun.m.sg

- A reduced tagset manually defined following linguistic guidelines is usually used
 - Maps fine tags into coarse ones
 - Should allow for better parameter estimation
- Goal: To automatically determine the set of states to be used
 - Avoid the human intervention in defining the tagset

 \Rightarrow *Model merging* approach (Stolcke and Omohundro, 1994) cannot be applied using untagged corpora

・ロト ・ 同ト ・ ヨト ・ ヨト

Bottom-up agglomerative clustering

Bottom-up agglomerative clustering

- Place each object in its own cluster (singleton)
- Iteratively compare all pairs of clusters and choose the two closest 2 clusters according to a distance measure
 - If the distance between the selected clusters is below a certain threshold, merge both clusters
 - Otherwise, stop

Clustering of PoS tag

- First model trained using the large tagset via the MT-oriented method
- Distance between cluster based on the state-to-state transition probabilities
- An additional constraint ensures that it is possible to restore the information about the fine tag from the coarse one

25/45

Felipe Sánchez Martínez (Univ. d'Alacant)

Some results: Spanish→Catalan

Mean and std. dev. of the translation performance, WER

Some results: French→Catalan

Mean and std. dev. of the translation performance, WER

Outline

- Motivation & goal
- Part-of-speech taggers for machine translation
 - Part-of-speech tagging
 - MT-oriented hidden Markov model training
- Pruning of disambiguation paths
 - Disadvantages of the MT-oriented method
 - Pruning method
- Part-of-speech tag clustering
 - Best HMM topology for taggers used in MT
 - Bottom-up agglomerative clustering
- Automatic inference of transfer rules
 - Alignment templates for shallow-transfer machine translation
 - Generation of Apertium transfer rules
- Concluding remarks

∃ > + ∃

Automatic inference of transfer rules

Goal:

• To automatically learn those transformations that produce correct translations in the TL

How:

• Adapting the alignment templates (ATs) already used in statistical MT to the shallow-transfer approach

30th June 2008

28/45

- AT $z = (S_n, T_m, G)$
 - S_n: sequence of n SL word classes
 - *T_m*: sequence of *m* TL word classes
 - G: alignment information

AT for shallow-transfer MT: overview /1

Resources required:

- A SL–TL parallel corpus
- The morphological analyzers and PoS taggers of the MT system
- The bilingual dictionary of the MT system

Procedure:

- Analyze both sides of the training corpus
- 2 Compute word alignments
- Extract bilingual phrase pairs and derive ATs from them
- Generate shallow-transfer rules

AT for shallow-transfer MT: overview /2

- Word class: part-of-speech (including all the inflection information)
 - Exception: lexicalized words are placed in single-word classes
- Lexicalized categories: categories that are known to be involved in lexical changes, such as prepositions
 - the method can learn not only syntactic changes

AT for shallow-transfer MT: overview /3

- ATs are extended with a set *R* of restrictions over the TL inflection information of non-lexicalized words
 - AT $z = (S_n, T_m, G, R)$

AT for shallow-transfer MT: overview /3

- ATs are extended with a set *R* of restrictions over the TL inflection information of non-lexicalized words
 - AT $z = (S_n, T_m, G, R)$
- Restrictions are derived from the bilingual dictionary
 - Bilingual entry that does not change inflection information <e><l>castigo<s n="noun"/></l>

```
<r>càstig<s n="noun"/></r></e>
```

R: w=noun.*

• Bilingual entry that does change inflection information

```
<e>
<l>calle<s n="noun"/><s n="f"/></l>
<r>carrer<s n="noun"/><s n="m"/></r>
```

• The bilingual dictionary is also used to discard phrase pairs that cannot be reproduced by the MT system

イロト イポト イヨト イヨト

4 D N 4 B N 4 B N

Alignment template example /1

Alignment template:

Restrictions: W₂ =verb.*, W₄=noun.*

¹Translated into English as They lived in Alicante

4 D N 4 B N 4 B N

Alignment template example /2

²Translated into English as *The narrow street*

Felipe Sánchez Martínez (Univ. d'Alacant)

Generation of Apertium transfer rules

Procedure:

- Discard useless AT
- Select the AT to use according to their frequency
- Is For all ATs with the same SL part a rule is generated

Rule generation:

- The rule matches the SL part all ATs have in common
- In decreasing order of AT frequency counts code is generated to
 - test the restrictions *R* over the TL inflection information
 - if they hold, apply the AT and stop rule execution
- code that translates word-for-word is added
 - it is executed only if none of the AT were applicable

• • • • • • • • •

AT applicability test /1

Restrictions *R* are tested by looking at the bilingual dictionary

Example:

- *R*: *w*₂ =noun.m.*, *w*₃=adj.*
- Input string (Spanish): la señal roja →
 el-(art.f.sg) señal-(noun.f.sg)
 rojo-(adj.f.sg)
- Translation of non-lexicalized words:
 - *señal*-(noun.f.sg)→*senyal*-(noun.m.sg)
 - *rojo*-(adj.f.sg)→*vermell*-(adj.f.sg)
 - Restriction holds, AT can be applied

モトィモト

(adj.m.sg) ■ (noun.m.sg) ■

el-(art.m.sg)

A D A A D A A

AT applicability test /2

Restrictions R are tested by looking at the bilingual dictionary

Example:

- *R*: *w*₂ =noun.m.*, *w*₃=adj.*
- Input string (Spanish): la silla blanca →
 el-(art.f.sg) silla-(noun.f.sg)
 blanco-(adj.f.sg)
- Translation of non-lexicalized words:
 - *silla*-(noun.f.sg)→*cadira*-(noun.f.sg)
 - *blanco*-(adj.f.sg)→*blanc*-(adj.f.sg)

Restriction does not hold, AT cannot be applied

The 14 and 14

A D A A D A A

Alignment templates application, an example

Catalan (output): anar-(vbaux.pres.3rd.pl) romandre-(verb.inf) a-(pr) Alemanya-(noun.loc) → van romandre a Alemanya

Word-for-word translation:

romangueren *en Alemanya

R: W1 =verb.*, W3=noun.*

(noun.loc) • •

■ (pr) (verb.inf)

anar-(vbaux.pres.3rd.pl)

Experiments

- Task: Inference of shallow-transfer rules for Spanish⇔Catalan, Spanish⇔Galician and Spanish→Portuguese
- \approx 8 lexicalized categories
- Two different training corpora:
 - One with 2 · 10⁶ words
 - Another with only 0.5 · 10⁶ words
- Two different evaluation corpora:

post-edit reference translation is a post-edited version of the MT performed using hand-coded transfer rules

parallel text to translate and reference translation comes from a parallel corpus analogous to the one used for training

• • • • • • • • • •

モトィモト

30th June 2008

38/45

Some results

Spanish \rightarrow Catalan, WER \pm 95% confidence interval

Training	Test	Word-for-word	AT transfer	Hand
2 · 10 ⁶	post-edit	12.6 ± 0.9	8.7 ± 0.7	$\textbf{6.7}\pm\textbf{0.7}$
	parallel	$\textbf{26.4} \pm \textbf{1.2}$	$\textbf{20.3} \pm \textbf{1.1}$	20.7 ± 1.0
0.5 · 10 ⁶	post-edit	12.6 ± 0.9	9.9 ± 0.7	$\textbf{6.7}\pm\textbf{0.7}$
	parallel	$\textbf{26.4} \pm \textbf{1.2}$	21.4 ± 1.1	20.7 ± 1.0

Spanish \rightarrow Portuguese, WER \pm 95% confidence interval

Training	Test	Word-for-word	AT transfer	Hand
2 · 10 ⁶	post-edit	11.9 ± 0.8	12.1 ± 0.9	$\textbf{7.0} \pm \textbf{0.7}$
	parallel	47.9 ± 1.7	46.5 ± 1.7	47.6 ± 1.8
0.5 · 10 ⁶	post-edit	11.9 ± 0.8	12.1 ± 0.9	$\textbf{7.0} \pm \textbf{0.7}$
	parallel	47.9 ± 1.7	47.4 ± 1.7	47.6 ± 1.8

Some results

Why such a large difference between Spanish \rightarrow Catalan and Spanish \rightarrow Portuguese?

• Because of how training corpora have been built

- Spanish→Catalan, by translating one language into another (newspaper *El Periódico de Catalunya*)
 - 22% of discarded ATs
- Spanish→Portuguese, by translating from a third language (*JRC-ACQUIS* parallel corpus)
 - 53% of discarded ATs

・ロト ・ 同ト ・ ヨト ・ ヨト

Outline

- Motivation & goal
- Part-of-speech taggers for machine translation
 - Part-of-speech tagging
 - MT-oriented hidden Markov model training
- Pruning of disambiguation paths
 - Disadvantages of the MT-oriented method
 - Pruning method
- Part-of-speech tag clustering
 - Best HMM topology for taggers used in MT
 - Bottom-up agglomerative clustering
- Automatic inference of transfer rules
 - Alignment templates for shallow-transfer machine translation
 - Generation of Apertium transfer rules

日本にも日

Concluding remarks /1

Steps towards more efficient development of RBMT systems

- A new method to train PoS tagger to be used in MT
 - focuses on the task in which it will be used
 - uses TL information without using parallel corpora
 - benefits from information in the rest of modules
 - using *a priori* knowledge saves around 80% of the translations to perform while training

30th June 2008

41/45

- better translation quality than tagging accuracy
- PoS tags clustering
 - has not provided the expected results, but
 - may be useful if the number of states is crucial

Concluding remarks /2

- A method to infer shallow-transfer rules from parallel corpora
 - extends the definition of alignment template
 - small amount of information provided by human is used
 - the process followed to build the parallel corpus deserves special attention
 - inferred rules are human-readable
 - they can coexist with hand-coded rules

Concluding remarks /3

Open-source software

- Can be downloaded from sf.net/projects/apertium
 - Packages apertium-tagger-training-tools and apertium-transfer-tools
- Ensures reproducibility
- Allows other researchers to improve them
- Eases the development of new language pairs for Apertium
- apertium-tagger-training-tools is being used by Prompsit Language Enginnering S.L.

イロト イポト イラト イラト

Future research lines

This thesis opens several research lines:

- the use of TL information to train other statistical models that run on the SL
- the use of more than one TL (triangulation)
- the use of a TL model of different nature
- linguistically-driven extraction of bilingual phrases
- a more flexible way to use lexicalized categories
- a bootstrapping method to learn both the PoS tagger and the set of transfer rules cooperatively

Ο...

Acknowledgments

- Spanish Ministry of Education and Science, and European Social Fund; research grant BES-2004-4711
- Spanish Ministry of Industry, Commerce and Tourism; projects TIC2003-08681-C02-01, FIT340101-2004-3 and FIT-350401-2006-5
- Autonomous Government of Catalonia; project *Traducció* automàtica de codi obert per al català
- Spanish Ministry of Education and Science; project TIN2006-15071-C03-01

\Rightarrow Thank you very much for your attention \Leftarrow

• • • • • • • • •