
A Trigram Part-of-Speech Tagger for the Apertium
Free/Open-Source Machine Translation Platform

Zaid Md Abdul Wahab Sheikh
Computer Science and Engineering

National Institute of Technology
Allahabad-211004, India

sheikh.zaid@gmail.com

Felipe Sánchez-Martı́nez
Dept. Llenguatges i Sistemes Informàtics

Universitat d’Alacant
E-03071 Alacant, Spain

fsanchez@dlsi.ua.es

Abstract

This paper describes the implementa-
tion of a second-order hidden Markov
model (HMM) based part-of-speech
tagger for the Apertium free/open-
source rule-based machine translation
platform. We describe the part-of-
speech (PoS) tagging approach in Aper-
tium and how it is parametrised through
a tagger definition file that defines: (1)
the set of tags to be used and (2) con-
strain rules that can be used to for-
bid certain PoS tag sequences, thus re-
fining the HMM parameters and in-
creasing its tagging accuracy. The pa-
per also reviews the Baum-Welch al-
gorithm used to estimate the HMM
parameters and compares the tagging
accuracy achieved with that achieved
by the original, first-order HMM-based
PoS tagger in Apertium.

1 Introduction

Part-of-speech (PoS) tagging is a well-known
problem and a common step in many natural-
language processing applications such as rule-
based machine translation (RBMT). A PoS tagger
attempts to assign the correct PoS tag or lexical
category to all words of a given text, usually by
relying on the assumption that a word can be as-
signed a single PoS tag by looking at the PoS tags
of the neighbouring words.

In RBMT PoS tags are usually assigned to
words by looking them up in a lexicon, or by us-

ing a morphological analyser (Merialdo, 1994). A
large portion of the words found in a text are un-
ambiguous since they can be assigned only a sin-
gle PoS tag; however, there are ambiguous words
that can be assigned more than one PoS tag. For
instance, the word chair can be, as many other
English words, either a noun or a verb.

The choice of the correct PoS tag may be cru-
cial when translating to another language. Mainly
there are two reasons why a translation can be
wrong due to PoS tagging errors:

1. Because some structural transformations are
applied, or not, as a result of the PoS tag
assigned to a word. For instance, in the
translation into Spanish of the English text
the green house, where green can be ei-
ther a noun or an adjective, a reordering
rule det+adj+noun→ det+noun+adj
is only applied if PoS tag adjective is as-
signed to word green.

2. Because the translation differs depending
on how the PoS ambiguity is solved; e.g.,
the translation into Spanish of chair is silla
when it is tagged as noun, and presidir when
it is tagged as verb.

The Apertium free/open-source RBMT plat-
form implements a first-order hidden Markov
model (HMM)-based PoS tagger (Cutting et al.,
1992; Rabiner, 1989). In this paper we describe
in detail the implementation of a second-order
HMM-based PoS tagger for Apertium and we
provide a comparative study of the tagging accu-
racy both when using the first-order HMM-based
and the second-order HMM-based PoS taggers.

J.A. Pérez-Ortiz, F. Sánchez-Mart́ınez, F.M. Tyers (eds.)
Proceedings of the First International Workshop on Free/Open-Source Rule-Based Machine Translation, p. 67–74
Alacant, Spain, November 2009

The next section overviews the Apertium
free/open-source RBMT platform with emphasis
on the tagging approach it implements. Then in
section 3 we describe in detail our implementa-
tion of a second-order HMM-based PoS tagger
for Apertium. Section 4 presents the experiments
conducted to test our implementation and the re-
sults achieved. The paper ends with some conclu-
sions and future work plans.

2 The Apertium free/open-source
machine translation platform

2.1 Machine translation approach
Apertium1 (Armentano-Oller et al., 2006) fol-
lows the typical transfer-based approach to
MT (Hutchins and Somers, 1992) that divides
the translation into three phases: analysis, trans-
fer and generation. More precisely, it follows
the shallow-transfer approach shown in Figure 1,
which may be considered to be somewhere be-
tween direct translation and full syntactic transfer,
i.e., a transformer system (Arnold et al., 1994).

Analysis in Apertium consists of the morpho-
logical analysis and PoS tagging of the source lan-
guage (SL) text to translate. The transfer phase
consists of the lexical and structural transfer-
ence; structural transference is based on the detec-
tion of fixed-length patterns of lexical categories
that need some processing for agreement, word
reordering, introduction of prepositions where
needed, etc. In the generation phase the TL text
is generated by properly inflecting the TL lexical
forms obtained after the transfer phase and by per-
forming some operation over the inflected forms
such as contractions and apostrophations.

2.2 Part-of-speech tagging in Apertium
The HMM-based PoS tagger in Apertium gets
its input from the morphological analyser mod-
ule which segments the SL text in surface forms
(lexical units as they appear in raw corpora) and
delivers, for each surface form, all its possible
lexical forms consisting of lemma, lexical cat-
egory and morphological inflection information;
e.g., the morphological analysis of the Spanish
word cantábamos (“we sang”) has lemma cantar

1The MT engine, documentation, and linguistic data for
different language pairs can be downloaded from http://
www.apertium.org.

(“sing”), lexical category verb, and inflection in-
formation: indicative, imperfect, 1st person, plu-
ral.

The PoS tagger is trained from corpora and a
tagger definition file that specifies how the lexi-
cal forms delivered by the morphological analyser
must be grouped into coarse tags. Grouping lexi-
cal forms into coarse tags is needed to reduce the
amount of parameters of the HMM.

To reduce the amount of observable outputs,
each one is made to correspond to a word class.
Typically a word class is an ambiguity class (Cut-
ting et al., 1992), that is, the set of all possible PoS
tags that a word could receive. However, some-
times it may be useful to have finer classes, such
as a word class containing only a single, very fre-
quent, ambiguous word (Pla and Molina, 2004).
In addition, unknown words, i.e. words not found
in the lexicon, are usually assigned the ambiguity
class consisting of the set of open categories, i.e.
the set of PoS tags which are likely to grow by ad-
dition of new words to the lexicon: nouns, verbs,
adjectives, adverbs and proper nouns.

Tagger definition file. SL lexical forms deliv-
ered by the morphological analyser convey de-
tailed information about each surface form. This
information is needed in some part of the RBMT
engine, such as the structural transfer and the
morphological generator, to carry out the transla-
tion. Nonetheless, for the purpose of efficient dis-
ambiguation, lexical forms with similar syntactic
roles may be grouped in coarser tags (such as verb
in personal form). This is because, while lexi-
cal forms are more informative, at the same time
they considerably increase the number of HMM
parameters to estimate, worsening the problem
of data sparseness, and thus increasing the num-
ber of parameters that achieve a null-frequency
count. In particular, when PoS taggers are used
in MT, what really counts is to be able to distin-
guish analyses leading to different translations.

Coarse tags are defined in a XML-based2 tag-
ger definition file, the format of which is spec-
ified by DTD tagger.dtd.3 XML element
def-label defines a category or coarse tag by
means of a list of fine-tags defined by one or

2http://www.w3.org/XML/
3DTD provided by the apertium package

68

morph.
analyser

PoS
tagger

lexical
transfer

morph.
generator

post-
generator

SL
text

TL
text

chunker interchunk postchunk

structural transferanalysis generation

Figure 1: Architecture of the Apertium free/open-source RBMT platform.

more tags-item elements. It is also possible
to define lexicalised coarse tags by specifying the
lemma of the word in the attribute lemma.

In the tagger definition file it is also possible to
define constraint rules in the form of forbid and
enforce rules. Forbid rules define restrictions as
sequences of coarse tags (label-sequence)
that cannot occur. These sequences can be made
up of only two label-items for the bigram tag-
ger and up to three label-items in case of the
trigram tagger. Forbid rules are used, for exam-
ple to forbid a relative adverb at the beginning
of a sentence (SENT RELADV), or a pronoun af-
ter a noun (NOM PRNPERS). Enforce rules are
used to specify the set (label-set) of tags
(label-item) that are allowed to occur after
a particular PoS tag. These rules are applied to
the HMM parameters by introducing zeroes in the
state transition probabilities of forbidden PoS tag
sequences and re-normalising.

3 A second-order HMM-based
PoS tagger

In this section we describe our implementa-
tion of a trigram PoS tagger based on second-
order hidden Markov models (HMM). Trigram
taggers based on second-order HMMs have al-
ready been implemented in various projects, the
most well-know implementations are the TnT tag-
ger (Brants, 2000) and its open-source alternative,
HunPos (Halácsy et al., 2007).4 There is also an
implementation of a trigram tagger in Acopost (A
Collection Of Open Source PoS Taggers).5

3.1 Our implementation

In a second-order HMM the transition probabil-
ity matrix is three dimensional, as the probability

4http://code.google.com/p/hunpos/
5http://acopost.sourceforge.net

of transitioning to a new state depends not only
on the current state but also on the previous state.
Similarly, the probability of the model emitting
a given word class depends not only on the cur-
rent state but also on the previous state. Hence
the transition probability matrix has dimensions
N × N × N while the emission probability ma-
trix has dimensions N ×N ×M , where N is the
number of states (PoS tags) and M is the number
of observable outputs (ambiguity classes).

The tagger supports both the normal (bigram)
forbid and enforce rules as well as extended rules
to match three consecutive PoS tags. A sequence
of three PoS tags is forbidden if it matches any ex-
tended forbid rule or does not match an extended
enforce rule or if any of the two consecutive tag
pairs in the sequence of three PoS tags matches
a bigram forbid rule or fails to match a bigram
enforce rule.

3.1.1 Assumptions
1. The text sequence O1 . . . OT being disam-

biguated is always preceded by two unam-
biguous word O−1 = {I} and O0 = {I}.

2. The text to disambiguate is ended by two un-
ambiguous words OT = {E1} and OT+1 =
{E2}.

3. All word classes (observable outputs) con-
tain, at least, the correct PoS tag.

We have chosen the end-of-sentence tag for I , E1

and E2; this makes the PoS tagging of each sen-
tence independent of the position of the text in
which it appears.

3.1.2 Parameter estimation
The process of estimating the HMM parame-

ters consists in finding the set of parameters that
maximises the mathematical expectation of the

69

observed sequences. The classic methods to es-
timate these parameters are:

1. Training the model in an unsupervised way
from untagged corpora via the Baum-Welch
expectation-maximisation (EM) algorithm
(Baum, 1972). In an untagged corpus each
word has been assigned the set of all pos-
sible PoS tags that it can receive; untagged
corpora can be easily obtained if a morpho-
logical analyser is available.

2. Training the model in a supervised manner
with hand-tagged corpora via the maximum-
likelihood estimate (MLE; Gale and Church
1990). In a hand-tagged corpus all ambigui-
ties have been manually solved; thus, this is
a direct method to estimate the HMM param-
eters that consists of collecting frequency
counts from the training corpus and using
these counts to estimate the HMM parame-
ters.

3.1.3 Baum-Welch EM algorithm
The Baum-Welch algorithm is an iterative al-

gorithm that works by giving the highest prob-
ability to the state transitions and output emis-
sions used the most. After each Baum-Welch it-
eration the new HMM parameters may be shown
to give a higher probability to the observed se-
quence (Baum, 1972).

A description of the Baum-Welch algorithm for
a first-order HMM is provided by Rabiner (1989),
formulas for a second-order HMM are described
by Kriouile et al. (1990). What follows is a re-
vision of the Baum-Welch algorithm using the
notation used by Rabiner (1989) and Sánchez-
Martı́nez (2008, Appendix B).

Along this section we assume a second-order
HMM λ whose parameters are aijk (transition
probability) and bjk(Ot) (emission probability)
for the sequence of states (PoS tags) sisjsk and
the observable output Ot.

Forward probabilities. The forward function
is defined as the probability of the partial observa-
tion sequence from 1 to time t+ 1, and transition
sjsk at times t, t+ 1, given the model λ :

αt+1(j, k) =

[
N∑
i=1

αt(i, j)aijk

]
bjk(Ot+1)

α0(i, j) =

{
1 si, sj = unambiguous

0 otherwise

Backward probabilities. The backward func-
tion is defined as the probability of the partial ob-
servation sequence from t + 1 to T , given transi-
tion sisj at times t− 1, t and the model λ :

βt(i, j) =
N∑
k=1

aijkbjk(Ot+1)βt+1(j, k)

βT+1(i, j) = 1

Other probabilities. The probability of a se-
quence O = O1...OT can be calculated using the
forward and backward probabilities in the follow-
ing way:

P (O|λ) =
N∑
i=1

N∑
j=1

αt(i, j)βt(i, j)

where t can be freely chosen from the interval
[0, T]; in particular,

P (O|λ) = αT (E1, E2)

This equality is a direct consequence of the sec-
ond assumption (see Section 3.1.1).

The number of times the transition sisj is seen
during the generation of the sequence of observ-
able outputs O is defined as:

Γij =
1

P (O|λ)

T∑
t=1

αt(i, j)βt(i, j)

The expected number of times that the transi-
tion sisjsk is performed during the generation of
the sequence of observable outputs O, Ξijk , is:

1
P (O|λ)

T∑
t=1

αt(i, j)aijkbjk(Ot+1)βt+1(j, k)

The number of times the model emits the word
class vk from hidden state sj with the previous
state being si when generating the sequence of
observable outputs O is defined as:

Φijk =
1

P (O|λ)

T∑
t=1

αt(i, j)βt(i, j)δvk,Ot

δvk,Ot =

{
1 vk = Ot

0 otherwise

70

New parameters. From the previous equations,
and after processing the whole corpus, the HMM
parameters can be updated through the following
Baum-Welch general equations:

aijk =
Ξijk
Γij

bij(k) =
Φijk

Γij

Here, Ξijk is an estimation of ñ(sisjsk), the
number of times the state si is followed consecu-
tively by sj and sk in the training corpus. Γij is
an estimation of ñ(sisj), the number of times the
state si is followed by sj . Φijk is an estimation
of ñ(vk, sisj), the number of times word class vk
is emitted from tag sj when the previous tag is
si. These count estimations of bigrams, trigrams
and ambiguity classes are used to calculate the bi-
gram and trigram probabilities and smoothing co-
efficients during parameter smoothing (See Sec-
tion 3.1.4). Number of occurrences ñ(si) of PoS
tags si can be estimated as

Γi =
N∑
j=1

Γij

The number of times ñ(vk, sj) ambiguity class
vk is emitted from PoS tag sj can be estimated as

Φjk =
N∑
i=1

Φijk

Finally, the word-class frequency count m(vk)
can be calculated from the training corpus.

Segmentation. When a given text contains a se-
quence of two unambiguous words, the HMM
can only be in the state corresponding to the PoS
tag of the second ambiguity class with the pre-
vious state being the PoS tag corresponding to
the first ambiguity class. This property allows
for a more efficient implementation, because it is
not necessary to store the whole text, but the se-
quence of words between two unambiguous word
pairs (both included) and treat that sequence of
words as the whole text. Thus the above equa-
tions can be applied locally to each segment g as
if they were completely independent texts. Then
the needed values can be calculated as:

Ξijk =
G∑
g=1

Ξ(g)
ijk

Φijk =
G∑
g=1

Φ(g)
ijk

Γij =
G∑
g=1

Γ(g)
ij

where G is the total number of segments.

Parameter initialisation. Baum-Welch algo-
rithm assumes that the HMM parameters have
been previously initialised. In absence of knowl-
edge the HMM parameters can be initialised us-
ing the method proposed by Kupiec (1992).

Kupiec’s (1992) method estimates the fre-
quency counts needed to calculate the HMM pa-
rameters by processing the training corpus and
collecting: observable output occurrences m(vl),
observable output pair occurrences m(vlvm) and
observable output triple occurrences m(vlvmvn).
Then the frequency counts aforementioned are es-
timated:

ñ(sisjsk) =
∑

vl:siεvl

∑
vm:sjεvm

∑
vn:skεvn

m(vlvmvn)
|vl||vm||vn|

ñ(sisj) =
∑

vl:siεvl

∑
vm:sjεvm

m(vlvm)
|vl||vm|

ñ(si) =
∑

vl:siεvl

m(vl)
|vl|

ñ(vk, sisj) =

{∑
vl:siεvl

m(vlvk)
|vl||vk| sjεvk

0 otherwise

ñ(vk, sj) =

{
m(vk)
|vk| sjεvk

0 otherwise

3.1.4 Parameter Smoothing
The data sparseness problem which occurs due

to the number of parameters to estimate in re-
lation to the size of the training data, becomes
even more acute in the case of a trigram tag-
ger. To avoid null probabilities for those state-
to-state transitions and output emissions that have
not been seen in the training corpus, we employ
a form of deleted interpolation (Jelinek, 1997)

71

for parameter smoothing in which weighted esti-
mates are taken from second-order and first-order
models and a uniform probability distribution.
The smoothed trigram probabilities consist of a
linear combination of trigram and bigram prob-
abilities where the values of the smoothing co-
efficients are computed using the successive lin-
ear abstraction method (Brants and Samuelsson,
1995).

3.1.5 Viterbi algorithm
The Viterbi algorithm for a second-order

HMM, as described by Thede and Harper (1999)
is used to disambiguate a sentence using the
model we have trained above. It can be applied
to text segments delimited by two unambiguous
words.

4 Experiments

We studied the PoS tagging performance of the
second-order HMM-based PoS tagger on the
Spanish language when it is trained both in a su-
pervised way from hand-tagged corpora and in
an unsupervised way from untagged corpora of
different sizes. We compare the tagging accu-
racy achieved with that achieved by the first-order
HMM-based PoS tagger in Apertium. In addition,
we report the tagging accuracy both when using
forbid and enforce rules and when these rules are
not used.

For the supervised training, a Spanish hand-
tagged corpus with 21,803 words was used.6

The PoS tagging error rate was evaluated using
an independent Spanish hand-tagged corpus hav-
ing 8,068 words; the percentage of ambiguous
words (according to the lexicon) in this corpus is
23.71%, while the percentage of unknown words
is 3.88%.

For the unsupervised training we used Span-
ish raw corpora coming from texts of the Span-
ish news agency EFE.7 Different corpus sizes
ranging from 6 to 145 million words have been
used; larger corpora including shorter ones. The
PoS tagging accuracy of the PoS taggers trained

6We have not used larger, freely-available annotated cor-
pora such as the Spanish Ancora corpus (http://clic.
ub.edu/ancora/) because they are not fully compatible
with the lexical forms and multiword units defined in the
Spanish monolingual dictionary used.

7http://www.efe.com

in an unsupervised way was evaluated using the
hand-tagged corpus with 21,803 words aforemen-
tioned; the percentage of ambiguous words and
unknown words in this corpus are 22.41% and
3.25%, respectively.

The tagger definition file used is the one pro-
vided in the Apertium language-pair package
apertium-es-ca-1.0.2. The tagset defines
99 coarse tags (85 single-word and 14 multi-word
tags for contractions, etc) grouping the 2,116 fine
tags (377 single-word and 1,739 multi-word tags)
delivered by the morphological analyser. The tag-
ger definition file also defines 357 bigram forbid
rules and one bigram enforce rule. The number of
ambiguity classes is 291.

Table 1 reports the PoS tagging error rate over
the ambiguous words only, over all the ambigu-
ous words (including unknown words) and over
all words (ambiguous and unambiguous). Both
the trigram tagger and the bigram tagger performs
better when using the forbid and enforce rules de-
fined in the tagger definition file. Notice that the
bigram tagger provides better results than the tri-
gram tagger in both cases.

Figure 2 shows the PoS tagging error rate of
the bigram tagger and the supervised tagger both
when using the forbid and enforce rules defined
in the tagger definition file, and when this rules
are not used. The results reported show that the
trigram tagger performs worse than the bigram
tagger even when a large corpus with around 145
million words is used for training.

The results in Table 1 and Figure 2 clearly show
that the use of forbid and enforce rules consid-
erably increases the PoS tagging accuracy, espe-
cially when the unsupervised training is applied.
In addition, the improvement in accuracy is much
larger in the case of the trigram tagger.

5 Discussion and future work

The experiments conducted show that the bigram
tagger performs better than the trigram tagger
in all cases. The fact that the trigram tagger
performs worse than the bigram tagger when both
are trained in a supervised way seems reasonable
given the small amount of hand-tagged corpora
used and the number of parameters to estimate.
However, in the case of the unsupervised training
one would expect the trigram tagger to out-

72

training method errors over bigram trigram
with rules no rules with rules no rules

supervised
ambiguous words 7.37 % 7.42 % 7.99 % 8.47 %
ambiguous & unknown words 14.37 % 14.37 % 14.96 % 15.45 %
all words 4.76 % 4.76 % 4.92 % 5.06 %

unsupervised
ambiguous words 22.76 % 24.98 % 24.94 % 32.28 %
ambiguous & unknown words 26.83 % 30.70 % 31.77 % 38.50 %
all words 8.64 % 9.12 % 9.39 % 11.12 %

Table 1: PoS tagging error rate over the ambiguous words, over all ambiguous words (including un-
known words) and over all words (ambiguous and unambiguous) when the Spanish PoS tagger is trained
in a supervised manner on a 21,803 word hand-tagged corpus and in an unsupervised manner on a 145
million raw text corpus.

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

%
 o

f e
rr

or
s

ov
er

 a
ll

w
or

ds

words (in millions) for unsupervised training

Performance Evaluation of Apertium tagger

trigram, unsupervised, no rules
trigram, unsupervised

bigram, unsupervised, no rules
bigram, unsupervised

Figure 2: PoS tagging error rate over all words when the taggers are trained in an unsupervised way
from untagged corpora of different sizes (horizontal axis).

perform the bigram tagger. The differences in
the output of the trigram tagger and the bigram
tagger when tagging the test corpus do not give
any insights on this. To further investigate this
phenomenon we plan to use even larger corpora
and a better smoothing method. We also plan
to train PoS taggers for other languages in

Apertium such as French or English. Source
code is available through the Apertium SVN
repository (https://apertium.svn.sf.
net/svnroot/apertium/branches/
gsoc2009/disismt/)

73

Acknowledgements

We acknowledge Google for sponsoring this
project through the Google Summer of Code
2009 program, and the Spanish Ministry of Sci-
ence and Innovation for partially supporting this
work under project TIN2009-14009-C02-01. We
also thank Mikel L. Forcada for his help with
the Baum-Welch expectation-maximisation algo-
rithm.

References

Armentano-Oller, C., Carrasco, R. C., Corbı́-
Bellot, A. M., Forcada, M. L., Ginestı́-
Rosell, M., Ortiz-Rojas, S., Pérez-Ortiz, J. A.,
Ramı́rez-Sánchez, G., Sánchez-Martı́nez, F.,
and Scalco, M. A. (2006). Open-source
Portuguese-Spanish machine translation. In
Computational Processing of the Portuguese
Language, Proceedings of the 7th Interna-
tional Workshop on Computational Processing
of Written and Spoken Portuguese, PROPOR
2006, volume 3960 of Lecture Notes in Com-
puter Science, pages 50–59. Springer-Verlag.

Arnold, D., Balkan, L., Meijer, S., Humphreys,
R., and Sadler, L. (1994). Machine transla-
tion: An introductory guide. NCC Blackwell,
Oxford.

Baum, L. E. (1972). An inequality and associ-
ated maximization technique in statistical esti-
mation of probabilistic functions of a markov
process.

Brants, T. (2000). Tnt - a statistical part-of-speech
tagger.

Brants, T. and Samuelsson, C. (1995). Tagging
the Teleman corpus. In Proceedings of the 10th
Nordic Conference of Computational Linguis-
tics.

Cutting, D., Kupiec, J., Pedersen, J., and Sibun,
P. (1992). A practical part-of-speech tagger.
In Third Conference on Applied Natural Lan-
guage Processing. Association for Computa-
tional Linguistics. Proceedings of the Confer-
ence., pages 133–140.

Gale, W. A. and Church, K. W. (1990). Poor esti-
mates of context are worse than none. In HLT
’90: Proceedings of the workshop on Speech

and Natural Language, pages 283–287, Mor-
ristown, NJ, USA. Association for Computa-
tional Linguistics.

Halácsy, P., Kornai, A., and Oravecz, C. (2007).
HunPos - an open source trigram tagger. In
Proceedings of the 45th Annual Meeting of
the Association for Computational Linguistics
Companion Volume. Proceedings of the Demo
and Poster Sessions, pages 209–212, Prague,
Czech Republic.

Hutchins, W. J. and Somers, H. L. (1992). An In-
troduction to Machine Translation. Academic
Press.

Jelinek, F. (1997). Statistical Methods for Speech
Recognition. The MIT Press.

Kriouile, A., Mari, J.-F., and Haon, J.-P. (1990).
Some improvements in speech recognition al-
gorithms based on hmm. In Acoustics, Speech,
and Signal Processing, 1990. ICASSP-90.,
1990 International Conference on, pages 545–
548 vol.1.

Kupiec, J. (1992). Robust part-of-speech tagging
using a hidden markov model.

Merialdo, B. (1994). Tagging English text with
a probabilistic model. Computational Linguis-
tics, 20(2):155–171.

Pla, F. and Molina, A. (2004). Improving part-
of-speech tagging using lexicalized HMM.
Journal of Natural Language Engineering,
10(2):167–189.

Rabiner, L. R. (1989). A tutorial on hidden
Markov models and selected applications in
speech recognition. Proceedings of the IEEE,
77(2):257–286.

Sánchez-Martı́nez, F. (2008). Using unsupervised
corpus-based methods to build rule-based ma-
chine translation systems. PhD thesis, Univer-
sitat d’Alacant.

Thede, S. M. and Harper, M. P. (1999). A second-
order hidden markov model for part-of-speech
tagging. In In Proceedings of the 37th Annual
Meeting of the ACL, pages 175–182.

74

