Speeding up target-language driven part-of-speech tagger training for machine translation

Felipe Sánchez-Martínez Juan Antonio Pérez-Ortiz Mikel L. Forcada

Transducens Group – Departament de Llenguatges i Sistemes Informàtics Universitat d'Alacant, E-03071 Alacant, Spain

{fsanchez,japerez,mlf}@dlsi.ua.es

MICAI, 5th Mexican International Conference on Artificial Intelligence Apizaco, México November 16, 2006

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Introduction

• Part-of-speech tagging for machine translation

・ロト・雨・・ヨト・ヨー うへで

- Part-of-speech tagging with HMM
- 2 Target-language driven HMM training
 - Method overview
 - Disadvantage
- Pruning of disambiguation paths
 - Pruning method
 - HMM updating
- 4

Experiments

- Overview
- Results

5 Discussion

- Concluding remarks
- Future work

Speeding up TL driven part-of-speech tagger training for MT Introduction

Outline

Introduction

• Part-of-speech tagging for machine translation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Part-of-speech tagging with HMM
- 2 Target-language driven HMM training
 - Method overview
 - Disadvantage
- Pruning of disambiguation paths
 - Pruning method
 - HMM updating

4 Experiments

- Overview
- Results

5 Discussion

- Concluding remarks
- Future work

Speeding up TL driven part-of-speech tagger training for MT Introduction

Part-of-speech tagging for machine translation

Part-of-speech tagging

- Part-of-speech tagging: determining the lexical category or part-of-speech (PoS) of each word that appears in a text
- Lexically ambiguous word: word with more than one possible lexical category or PoS

book	Lemma	PoS
	book	noun
	book	verb

 Ambiguities are usually solved according to the surrounding context Speeding up TL driven part-of-speech tagger training for MT Introduction

Part-of-speech tagging for machine translation

PoS tagging for machine translation /1

Indirect rule-base machine translation (MT) systems usually perform PoS tagging as a subtask of the analysis procedure

$$\underbrace{ \text{source} }_{text} \rightarrow \boxed{\text{Analysis}} \rightarrow \boxed{\text{Transfer}} \rightarrow \boxed{\text{Generation}} \rightarrow \underbrace{ \text{target} }_{text}$$

3/22 < □ > < @ > < ≥ > < ≥ > ≥ 少へで Speeding up TL driven part-of-speech tagger training for MT Introduction

Part-of-speech tagging for machine translation

PoS tagging for machine translation /2

PoS tagging becomes crucial

• Translation may differ from one PoS to another

English	PoS	Spanish
book	noun	libro
	verb	reservar

Some transformation is applied (or not) for some PoS

English	PoS	Spanish	reordering
the green house	<i>green</i> -adj	la casa verde	←rule
	<i>green</i> -noun	* el césped casa	applied

Speeding up TL driven part-of-speech tagger training for MT Introduction Part-of-speech tagging with HMM

PoS tagging with HMM

 Hidden Markov models are one of the standard statistical solutions for PoS tagging

- Each HMM state corresponds to a different PoS tag
- Each input word is replaced by its corresponding ambiguity class

ж

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Speeding up TL driven part-of-speech tagger training for MT Introduction Part-of-speech tagging with HMM

HMM parameter estimation

- Supervisedly (non-ambiguous corpora available):
 - Maximum-likelihood estimate (MLE)
- Unsupervisedly (only ambiguous corpora available):
 - Baum-Welch (Expectation-maximization, EM)
 - Our recently proposed (Sánchez-Martínez et al. 2004) target-language (TL) driven method

6/22

(日) (日) (日) (日) (日) (日) (日)

• ...

Outline

Introduction

Part-of-speech tagging for machine translation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Part-of-speech tagging with HMM
- 2 Target-language driven HMM training
 - Method overview
 - Disadvantage
- Pruning of disambiguation paths
 - Pruning method
 - HMM updating

4 Experiments

- Overview
- Results

5 Discussion

- Concluding remarks
- Future work

Target-language driven method overview

- The method uses the MT system in which the resulting tagger will be embedded; however it will also work for other natural language processing tasks
- A target-language (TL) model is used to choose the best disambiguations
- HMM parameters are calculated according to the likelihood of the corresponding translations into TL
- The resulting tagger is tuned to the translation quality

Example

- Source-language (SL) sentence (English):
 - \bullet $He\mbox{-}\mbox{prn}$ books-noun|verb the-art $room\mbox{-}\mbox{noun}\mbox{|verb}$
- Possible translations (Spanish) according to each disambiguation and their normalized likelihoods according to a target-language (TL) model:
 - Él-prn reserva-verb la-art habitación-noun 0.75
 - Él-prn reserva-verb la-art aloja-verb
 - Él-prn libros-noun la-art habitación-noun
 - Él-prn libros-noun la-art aloja-verb

• The HMM parameters involved in these 4 disambiguations are updated according to their likelihoods in TL

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 目 マ

Example

- Source-language (SL) sentence (English):
 - He-prn books-noun|verb the-art room-noun|verb
- Possible translations (Spanish) according to each disambiguation and their normalized likelihoods according to a target-language (TL) model:
 - Él-prn reserva-verb la-art habitación-noun 0.75
 - Él-prn reserva-verb la-art aloja-verb
 - Él-prn libros-noun la-art habitación-noun
 - Él-prn libros-noun la-art aloja-verb + 0.04

• The HMM parameters involved in these 4 disambiguations are updated according to their likelihoods in TL

0.15

0.06

1.00

・ロット (雪) (日) (日) (日)

Example

- Source-language (SL) sentence (English):
 - He-prn books-noun|verb the-art room-noun|verb
- Possible translations (Spanish) according to each disambiguation and their normalized likelihoods according to a target-language (TL) model:
 - Él-prn reserva-verb la-art habitación-noun 0.75
 - Él-prn reserva-verb la-art aloja-verb
 - Él-prn libros-noun la-art habitación-noun
 - Él-prn libros-noun la-art aloja-verb + 0.04

 The HMM parameters involved in these 4 disambiguations are updated according to their likelihoods in TL

0.15

0.06

1.00

Disadvantage

- The number of possible disambiguations to translate grows exponentially with the segment length
- Translation is the most time-consuming task
- Consequence: Segment length must be constrained to keep complexity under control
 - Potential benefits of likelihood estimated from longer segments is rejected
- Goal: To overcome this problem
- How? Pruning unlikely disambiguation paths by using *a priori* knowledge

Speeding up TL driven part-of-speech tagger training for MT Pruning of disambiguation paths

Outline

Introduction

Part-of-speech tagging for machine translation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Part-of-speech tagging with HMM
- 2 Target-language driven HMM training
 - Method overview
 - Disadvantage
- Pruning of disambiguation paths
 - Pruning method
 - HMM updating
- 4 Experiments
 - Overview
 - Results
- 5 Discussion
 - Concluding remarks
 - Future work

Speeding up TL driven part-of-speech tagger training for MT Pruning of disambiguation paths Pruning method

Pruning method /1

- Based on an initial model of SL tags (*M*_{tag})
- Assumption: Any reasonable model of SL tags may be useful to choose a set of possible disambiguation paths, being the correct one in that set
 - It is not necessary to translate all possible disambiguation paths, but the "promising" ones
- The model used for pruning can be update dynamically

Speeding up TL driven part-of-speech tagger training for MT Pruning of disambiguation paths Pruning method

Pruning method /2

- The *a priori* likelihood $p(g_i|s, M_{tag})$ of each possible disambiguation path g_i of segment *s* is calculated using the model M_{tag}
- Then, the set of disambiguation paths to take into account is determined:
 - Only the most likely disambiguation paths
 - A mass probability threshold ρ is introduced
 - The set of disambiguation paths taken into account satisfies

$$ho \leq \sum_{\forall \boldsymbol{g_i} \in T(s)} p(\boldsymbol{g_i} | \boldsymbol{s}, \boldsymbol{M_{\mathrm{tag}}})$$

11/22 ・ロト・(局)・(ヨ)・(ヨ) ヨックへの Speeding up TL driven part-of-speech tagger training for MT Pruning of disambiguation paths HMM updating

HMM updating

- The model *M*_{tag} used for pruning can be updated with the new evidences collected from the TL
- The update consist of:
 - Calculating the HMM parameters with the counts collected from the TL
 - 2 Mixing the parameters of the new HMM with the initial one

12/22

Speeding up TL driven part-of-speech tagger training for MT Pruning of disambiguation paths HMM updating

HMM parameters mixing

- Let $\theta = (a_{\gamma_1\gamma_1}, ..., a_{\gamma_{|\Gamma|}\gamma_{|\Gamma|}}, b_{\gamma_1\sigma_1}, ..., b_{\gamma_{|\Gamma|}\sigma_{|\Sigma|}})$ be a vector containing all the parameters of a given HMM
- Mixing equation:

$$\theta_{\text{mixed}}(x) = \lambda(x) \, \theta_{\text{TL}}(x) + (1 - \lambda(x)) \, \theta_{\text{init}}$$

- λ(x) assigns a weight to the model estimated using the counts collected from the TL (θ_{TL})
 - This weight function is made to depend on the number *x* of SL words processed so far

$$\lambda(\mathbf{x}) = \mathbf{x}/\mathbf{C}$$

13/22 ・ロト・(局)・(ヨ)・(ヨ) ヨックへへ Speeding up TL driven part-of-speech tagger training for MT Experiments

Outline

Introduction

Part-of-speech tagging for machine translation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Part-of-speech tagging with HMM
- 2 Target-language driven HMM training
 - Method overview
 - Disadvantage
- Pruning of disambiguation paths
 - Pruning method
 - HMM updating
- 4

Experiments

- Overview
- Results

Discussion

- Concluding remarks
- Future work

Speeding up TL driven part-of-speech tagger training for MT Experiments Overview

Overview

- Task: Training a Spanish PoS tagger Catalan being the TL
- TL model: Trigram language model trained from a Catalan corpus with around 2 000 000 words
- SL corpora: 5 Spanish disjoint corpora of 500 000 words
- Initial model: estimated through Kupiec's method
- HMM updating: after every 1 000 words
- Mass probability threshold: $0.1 \le \rho \le 1.0$, increment: 0.1
- Evaluation: hand-tagged corpus with around 8 000 words

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

Speeding up TL driven part-of-speech tagger training for MT Experiments Overview

Framework

- Open-source shallow transfer MT engine Apertium, http://apertium.org
- Packages: lttoolbox-1.0.1, apertium-1.0.1,
 apertium-es-ca-1.0.1
- The method presented (including the language model) is implemented inside package apertium-tagger-training-tools
- All packages, including source code, can be freely downloaded from http://sourceforge.net/projects/apertium

Speeding up TL driven part-of-speech tagger training for MT Experiments Overview

Apertium working scheme

Shallow-transfer machine translation architecture

- PoS tagger is trained by using the rest of the modules of the MT engine after it
- The morphological analyzer is used to preprocess SL texts

Speeding up TL driven part-of-speech tagger training for MT Experiments

Results

Results /1

Mean and std. dev. of the PoS tagging error rate achieved after training for each value of ρ

Speeding up TL driven part-of-speech tagger training for MT Experiments Results

Results /2

Evolution of the mean and std. dev. of the PoS tagging error rate of the mixed model used for pruning for $\rho = 0.6$

▲ロ > ▲ 圖 > ▲ 画 > ▲ 画 > の Q @

Speeding up TL driven part-of-speech tagger training for MT Experiments Results

Results /3

Percentage of translated words for each value of ρ

Speeding up TL driven part-of-speech tagger training for MT Discussion

Outline

Introduction

Part-of-speech tagging for machine translation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Part-of-speech tagging with HMM
- 2 Target-language driven HMM training
 - Method overview
 - Disadvantage
- Pruning of disambiguation paths
 - Pruning method
 - HMM updating

4 Experiments

- Overview
- Results

5 Discussion

- Concluding remarks
- Future work

Speeding up TL driven part-of-speech tagger training for MT Discussion Concluding remarks

Concluding remarks

- The pruning method avoids more than 80% of the translations to perform
- The results achieved are even better than when no pruning is performed, when $\rho = 1.0$
 - HMM parameters involved in those discarded disambiguations have a null count
 - When no pruning is done their counts are small but never null

Speeding up TL driven part-of-speech tagger training for MT Discussion

Future work

- Try other weighting functions giving earlier a higher weight to the model being learned from the TL
 - Test how fast the TL-driven method learns
- Test two additional strategies to select the disambiguation paths to take into account
 - Dynamically change the value of the mass probability threshold ρ while training

21/22

 Instead of using ρ, always select a fix number k of disambiguation paths to translate Speeding up TL driven part-of-speech tagger training for MT

Discussion

Future work

Further reading

Sánchez-Martínez F., J.A. Pérez-Ortiz and M. L. Forcada Exploring the use of target-language information to train the part-of-speech tagger of machine translation systems Lecture Notes in Computer Science 3230 (Advances in Natural Language Processing, Proceedings of EsTAL - España for Natural Language Processing), p. 137–148, 2004.

Corbí-Bellot A. M., M. L. Forcada, S. Ortiz-Rojas, J. A. Pérez-Ortiz, G. Ramírez-Sánchez, F. Sánchez-Martínez, I. Alegria, A. Mayor, K. Sarasola An open-source shallow-transfer machine translation engine for the Romance languages of Spain

Proceedings of the Tenth Conference of the European Associtation for Machine Translation, p. 79–80, 2005.

Speeding up TL driven part-of-speech tagger training for MT

Discussion

Future work

Speeding up target-language driven part-of-speech tagger training for machine translation

Felipe Sánchez-Martínez Juan Antonio Pérez-Ortiz Mikel L. Forcada

Transducens Group – Departament de Llenguatges i Sistemes Informàtics Universitat d'Alacant, E-03071 Alacant, Spain

{fsanchez,japerez,mlf}@dlsi.ua.es

MICAI, 5th Mexican International Conference on Artificial Intelligence Apizaco, México November 16, 2006

(ロ) (同) (三) (三) (三) (○) (○)