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Introduction

Part-of-speech tagging for machine translation

Part-of-speech tagging

Part-of-speech tagging: determining the lexical category or
part-of-speech (PoS) of each word that appears in a text

Lexically ambiguous word: word with more than one
possible lexical category or PoS

Lemma PoS
book book noun

book verb

Ambiguities are usually solved according to the
surrounding context
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Introduction

Part-of-speech tagging for machine translation

PoS tagging for machine translation /1

Indirect rule-base machine translation (MT) systems usually
perform PoS tagging as a subtask of the analysis procedure

source
text

→ Analysis → Transfer → Generation → target
text
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Introduction

Part-of-speech tagging for machine translation

PoS tagging for machine translation /2

PoS tagging becomes crucial

Translation may differ from one PoS to another

English PoS Spanish
book noun libro

verb reservar

Some transformation is applied (or not) for some PoS

English PoS Spanish reordering
the green house green-adj la casa verde ←rule

green-noun * el césped casa applied
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Introduction

Part-of-speech tagging with HMM

PoS tagging with HMM

Hidden Markov models are one of the standard statistical
solutions for PoS tagging

verb

noun
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verb | noun

verb verb | noun | adj
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Each HMM state corresponds to a different PoS tag
Each input word is replaced by its corresponding ambiguity
class
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Introduction

Part-of-speech tagging with HMM

HMM parameter estimation

Supervisedly (non-ambiguous corpora available):
Maximum-likelihood estimate (MLE)

Unsupervisedly (only ambiguous corpora available):
Baum-Welch (Expectation-maximization, EM)
Our recently proposed (Sánchez-Martínez et al. 2004)
target-language (TL) driven method
...
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Target-language driven HMM training

Method overview

Target-language driven method overview

The method uses the MT system in which the resulting
tagger will be embedded; however it will also work for other
natural language processing tasks

A target-language (TL) model is used to choose the best
disambiguations

HMM parameters are calculated according to the likelihood
of the corresponding translations into TL

The resulting tagger is tuned to the translation quality
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Target-language driven HMM training

Method overview

Example

Source-language (SL) sentence (English):
He-prn books-noun|verb the-art room-noun|verb

Possible translations (Spanish) according to each
disambiguation and their normalized likelihoods according
to a target-language (TL) model:
• Él-prn reserva-verb la-art habitación-noun 0.75
• Él-prn reserva-verb la-art aloja-verb 0.15
• Él-prn libros-noun la-art habitación-noun 0.06
• Él-prn libros-noun la-art aloja-verb + 0.04

1.00

The HMM parameters involved in these 4 disambiguations
are updated according to their likelihoods in TL 8/22
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Target-language driven HMM training

Disadvantage

Disadvantage

The number of possible disambiguations to translate grows
exponentially with the segment length

Translation is the most time-consuming task

Consequence: Segment length must be constrained to
keep complexity under control

Potential benefits of likelihood estimated from longer
segments is rejected

Goal: To overcome this problem

How? Pruning unlikely disambiguation paths by using a
priori knowledge
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Pruning of disambiguation paths

Pruning method

Pruning method /1

Based on an initial model of SL tags (Mtag)

Assumption: Any reasonable model of SL tags may be
useful to choose a set of possible disambiguation paths,
being the correct one in that set

It is not necessary to translate all possible disambiguation
paths, but the “promising” ones

The model used for pruning can be update dynamically
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Pruning of disambiguation paths

Pruning method

Pruning method /2

1 The a priori likelihood p(gi |s, Mtag) of each possible
disambiguation path gi of segment s is calculated using
the model Mtag

2 Then, the set of disambiguation paths to take into account
is determined:

Only the most likely disambiguation paths
A mass probability threshold ρ is introduced
The set of disambiguation paths taken into account satisfies

ρ ≤
∑

∀gi∈T (s)

p(gi |s, Mtag)
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Pruning of disambiguation paths

HMM updating

HMM updating

The model Mtag used for pruning can be updated with the
new evidences collected from the TL

The update consist of:
1 Calculating the HMM parameters with the counts collected

from the TL
2 Mixing the parameters of the new HMM with the initial one
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Pruning of disambiguation paths

HMM updating

HMM parameters mixing

Let θ = (aγ1γ1 , ..., aγ|Γ|γ|Γ| , bγ1σ1 , ..., bγ|Γ|σ|Σ|) be a vector
containing all the parameters of a given HMM

Mixing equation:

θmixed(x) = λ(x) θTL(x) + (1− λ(x))θinit

λ(x) assigns a weight to the model estimated using the
counts collected from the TL (θTL)

This weight function is made to depend on the number x of
SL words processed so far

λ(x) = x/C
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Experiments

Overview

Overview

Task: Training a Spanish PoS tagger Catalan being the TL

TL model: Trigram language model trained from a Catalan
corpus with around 2 000 000 words

SL corpora: 5 Spanish disjoint corpora of 500 000 words

Initial model: estimated through Kupiec’s method

HMM updating: after every 1 000 words

Mass probability threshold: 0.1 ≤ ρ ≤ 1.0, increment: 0.1

Evaluation: hand-tagged corpus with around 8 000 words
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Experiments

Overview

Framework

Open-source shallow transfer MT engine Apertium,
http://apertium.org

Packages: lttoolbox-1.0.1, apertium-1.0.1,
apertium-es-ca-1.0.1

The method presented (including the language model) is
implemented inside package
apertium-tagger-training-tools

All packages, including source code, can be freely
downloaded from
http://sourceforge.net/projects/apertium
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Experiments

Overview

Apertium working scheme

Shallow-transfer machine translation architecture

lexical
transfer
l

SL
text
→ morph.

analyser →
PoS
tagger →

struct.
transfer

→ morph.
generator →

TL
text

PoS tagger is trained by using the rest of the modules of
the MT engine after it

The morphological analyzer is used to preprocess SL texts
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Experiments

Results

Results /1

Mean and std. dev. of the PoS tagging error rate achieved after
training for each value of ρ
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Experiments

Results

Results /2

Evolution of the mean and std. dev. of the PoS tagging error
rate of the mixed model used for pruning for ρ = 0.6
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Experiments

Results

Results /3

Percentage of translated words for each value of ρ
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Discussion

Concluding remarks

Concluding remarks

The pruning method avoids more than 80% of the
translations to perform

The results achieved are even better than when no pruning
is performed, when ρ = 1.0

HMM parameters involved in those discarded
disambiguations have a null count
When no pruning is done their counts are small but never
null
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Discussion

Future work

Future work

Try other weighting functions giving earlier a higher weight
to the model being learned from the TL

Test how fast the TL-driven method learns

Test two additional strategies to select the disambiguation
paths to take into account

Dynamically change the value of the mass probability
threshold ρ while training
Instead of using ρ, always select a fix number k of
disambiguation paths to translate
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