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Part-of-speech tagging for machine translation

Part-of-speech tagging

@ Part-of-speech tagging: determining the lexical category or
part-of-speech (PoS) of each word that appears in a text

@ Lexically ambiguous word: word with more than one
possible lexical category or PoS

Lemma | PoS
book | book noun
book verb

@ Ambiguities are usually solved according to the
surrounding context
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PoS tagging for machine translation /1

Indirect rule-base machine translation (MT) systems usually
perform PoS tagging as a subtask of the analysis procedure

source : _ target
text — [Transfer | — | Generation | — toxt
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PoS tagging for machine translation /2

PoS tagging becomes crucial

@ Translation may differ from one PoS to another

English | PoS | Spanish
book noun | libro
reservar

verb

@ Some transformation is applied (or not) for some PoS

English | PoS | Spanish reordering
the green house | green-ad la casa verde —rule
green—-noun | * el césped casa applied
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PoS tagging with HMM

@ Hidden Markov models are one of the standard statistical
solutions for PoS tagging

Veﬁb verb | noun | adj
verb [ noun (5", 0.02 /"
2)\1\\ LS noun | verb  MGEN noun | prp
' < 008 102 %

noun < ---- S Yo--. 7 0.01

0.12 hN .
__--~verb
0

0.4

e Each HMM state corresponds to a different PoS tag
e Each input word is replaced by its corresponding ambiguity
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Part-of-speech tagging with HMM

HMM parameter estimation

@ Supervisedly (non-ambiguous corpora available):
e Maximum-likelihood estimate (MLE)

@ Unsupervisedly (only ambiguous corpora available):
e Baum-Welch (Expectation-maximization, EM)
@ Our recently proposed (Sanchez-Martinez et al. 2004)
target-language (TL) driven method
o ...
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Target-language driven method overview

@ The method uses the MT system in which the resulting
tagger will be embedded; however it will also work for other
natural language processing tasks

@ A target-language (TL) model is used to choose the best
disambiguations

@ HMM parameters are calculated according to the likelihood
of the corresponding translations into TL

@ The resulting tagger is tuned to the translation quality
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Example

@ Source-language (SL) sentence (English):
@ He-prn books—-noun | verb the-art room-noun |verb
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Example

@ Source-language (SL) sentence (English):
@ He-prn books—-noun | verb the-art room-noun |verb

@ Possible translations (Spanish) according to each
disambiguation and their normalized likelihoods according
to a target-language (TL) model:

e El-prn reserva-verb la-art habitacién-noun 0.75
e El-prn reserva-verb la-art aloja-verb 0.15
e El-prn libros—noun la-art habitacién-noun 0.06
e El-prn libros-noun la-art aloja-verb + 0.04

1.00
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Example

@ Source-language (SL) sentence (English):
@ He-prn books—-noun | verb the-art room-noun |verb

@ Possible translations (Spanish) according to each
disambiguation and their normalized likelihoods according
to a target-language (TL) model:

e El-prn reserva-verb la-art habitacién-noun 0.75
e El-prn reserva-verb la-art aloja-verb 0.15
e El-prn libros—noun la-art habitacién-noun 0.06
e El-prn libros-noun la-art aloja-verb + 0.04

1.00

@ The HMM parameters involved in these 4 disambiguations
are updated according to their likelihoods in TL 8/22
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Disadvantage

@ The number of possible disambiguations to translate grows
exponentially with the segment length

@ Translation is the most time-consuming task

@ Consequence: Segment length must be constrained to
keep complexity under control

o Potential benefits of likelihood estimated from longer
segments is rejected

@ Goal: To overcome this problem

@ How? Pruning unlikely disambiguation paths by using a

priori knowledge
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Pruning method

Pruning method /1

@ Based on an initial model of SL tags (M)

@ Assumption: Any reasonable model of SL tags may be
useful to choose a set of possible disambiguation paths,
being the correct one in that set

e It is not necessary to translate all possible disambiguation
paths, but the “promising” ones

@ The model used for pruning can be update dynamically
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Pruning method /2

@ The a priorilikelihood p(gi|s, M) of each possible
disambiguation path g; of segment s is calculated using
the model M.,

© Then, the set of disambiguation paths to take into account
is determined:

@ Only the most likely disambiguation paths
@ A mass probability threshold p is introduced
e The set of disambiguation paths taken into account satisfies

P < Z P(gi|37 /V,tag)
vgieT(s)
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HMM updating

@ The model M,,, used for pruning can be updated with the
new evidences collected from the TL

@ The update consist of:

@ Calculating the HMM parameters with the counts collected
from the TL
@ Mixing the parameters of the new HMM with the initial one
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HMM parameters mixing

° Letd = (37171 )y a7|r|7\r\ ’ b"/1<71 LA bW\r\Um) be a vector
containing all the parameters of a given HMM

@ Mixing equation:

Omixed(X) = A(X) O1L(X) + (1 — A(X)) Oinit

@ )\(x) assigns a weight to the model estimated using the
counts collected from the TL (61r)
e This weight function is made to depend on the number x of
SL words processed so far

Ax)=x/C
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Overview

@ Task: Training a Spanish PoS tagger Catalan being the TL

@ TL model: Trigram language model trained from a Catalan
corpus with around 2000 000 words

@ SL corpora: 5 Spanish disjoint corpora of 500 000 words
@ Initial model: estimated through Kupiec’s method

@ HMM updating: after every 1000 words

@ Mass probability threshold: 0.1 < p < 1.0, increment: 0.1

@ Evaluation: hand-tagged corpus with around 8 000 words
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Framework

@ Open-source shallow transfer MT engine Apertium,
http://apertium.org

@ Packages: 1ttoolbox-1.0.1, apertium-1.0.1,
apertium-es-ca-1.0.1

@ The method presented (including the language model) is
implemented inside package
apertium-tagger-training-tools

@ All packages, including source code, can be freely
downloaded from
http://sourceforge.net/projects/apertium
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Apertium working scheme

@ Shallow-transfer machine translation architecture

SL
_
text

morph.
analyser

PoS
tagger

lexical
transfer

!

struct.
transfer

morph.

generator

TL
_
text

@ PoS tagger is trained by using the rest of the modules of
the MT engine after it

@ The morphological analyzer is used to preprocess SL texts
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Results /1

Mean and std. dev. of the PoS tagging error rate achieved after

training for each value of p
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Results /2

Evolution of the mean and std. dev. of the PoS tagging error
rate of the mixed model used for pruning for p = 0.6
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Results /3

Percentage of translated words for each value of p
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Concluding remarks

@ The pruning method avoids more than 80% of the
translations to perform

@ The results achieved are even better than when no pruning
is performed, when p = 1.0
e HMM parameters involved in those discarded
disambiguations have a null count

e When no pruning is done their counts are small but never
null
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Future work

@ Try other weighting functions giving earlier a higher weight
to the model being learned from the TL
o Test how fast the TL-driven method learns

@ Test two additional strategies to select the disambiguation
paths to take into account

e Dynamically change the value of the mass probability

threshold p while training
e Instead of using p, always select a fix number k of

disambiguation paths to translate
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