Using Alignment Templates to Infer Shallow-Transfer Machine Translation Rules

Felipe Sánchez-Martínez¹ Hermann Ney²

¹Transducens Group – Departament de Llenguatges i Sistemes Informàtics
Universitat d'Alacant
E-03071 Alacant, Spain
fsanchez@dlsi.ua.es

²Lehrstuhl für Informatik VI – Computer Science Department RWTH Aachen University D-52056 Aachen, Germany

ney@informatik.rwth-aachen.de

FinTAL, 5th International Conference on Natural Language Processing Turku/Åbo, Finland August 23rd, 2006

- Motivation and goal
- Alignment templates
- Alignment templates for shallow-transfer MT
 - Indirect rule-based MT
 - Extracting the alignment templates
 - Filtering the alignment templates
 - Alignment templates application
- Experiments
 - Experimental setup
 - Results
- Discussion
 - Concluding remarks
 - Future work

- Motivation and goal
- 2 Alignment templates
- Alignment templates for shallow-transfer MT
 - Indirect rule-based MT
 - Extracting the alignment templates
 - Filtering the alignment templates
 - Alignment templates application
- Experiments
 - Experimental setup
 - Results
- 5 Discussion
 - Concluding remarks
 - Future work

Motivation

- Building rule-based MT systems: considerable human effort is needed to code transfer rules
- Transfer rules are used:
 - to produce grammatically correct translations in the target language (TL)
 - to perform some lexical changes, such as preposition changes
 - to introduce auxiliary verbs when needed
 - etc.

Goal

- To automatically learn those transformations that produce correct translations in the TL
- How? Converting alignment templates (ATs) into transfer rules to be used within a shallow-transfer MT system

- Motivation and goal
- Alignment templates
- Alignment templates for shallow-transfer MT
 - Indirect rule-based MT
 - Extracting the alignment templates
 - Filtering the alignment templates
 - Alignment templates application
- Experiments
 - Experimental setup
 - Results
- Discussion
 - Concluding remarks
 - Future work

Alignment templates


- Introduced in the statistical machine translation framework as a feature function (Och and Ney 2004)
- ATs are learned in a 3-stage procedure:
 - 1st: Compute word alignments
 - 2nd: Extract aligned phrase pairs (*translation units*)
 - 3rd: Perform a generalization over the extracted phrases using word classes
- Word classes can be automatically extracted or manually defined
- AT $z = (S_n, T_m, A)$
 - *S_n*: sequence of *n* SL word classes
 - T_m : sequence of m TL word classes
 - A: alignment information

- Motivation and goal
- 2 Alignment templates
- Alignment templates for shallow-transfer MT
 - Indirect rule-based MT
 - Extracting the alignment templates
 - Filtering the alignment templates
 - Alignment templates application
- 4 Experiments
 - Experimental setup
 - Results
- Discussion
 - Concluding remarks
 - Future work

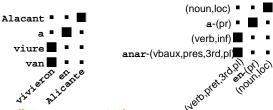
Indirect rule-based MT

 Source language (SL) text is analyzed and converted into an intermediate representation (IR), transformations are applied and, finally, target language (TL) text is generated

- For shallow-transfer MT the IR is usually based on lemma and part-of-speech information for each word
 - The green houses → the-(art) green-(adj) house-(noun,pl)

Extracting the alignment templates

Extracting ATs for shallow-transfer MT


- Linguistic information needed:
 - closed lexical categories: Categories that cannot grow by adding new words to the dictionaries: prepositions, articles, pronouns, auxiliary verbs, ...
 - dominant categories: A dominant category is a lexical category which usually propagates its inflection information (such as gender or number) to neighboring lexical categories
 - noun propagates their gender and number to the article and the adjective
- The part-of-speech is used as the word class for each word, but close words have their own single class

Extracting the alignment templates

Alignment template example 1

Bilingual phrase:

Alignment template:

Spanish intermediate representation:

```
vivieron en Alicante<sup>1</sup> → vivir-(verb, pret, 3rd, pl)
             en-(pr) Alicante-(noun, loc)
```

Catalan intermediate representation:

```
van viure a Alacant → anar-(vbaux, pres, 3rd, pl)
           viure-(verb, inf) a-(pr)
           Alacant - (noun, loc)
```

¹Translate into English as *They lived in Alicante*

Extracting the alignment templates

Alignment template example 2

Bilingual phrase:

estret = carrer

Alignment template:

```
(adj,m,sg) - -
 (noun,m,sg) ■
e1-(art,m,sg)
```

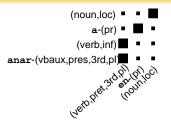
Spanish intermediate representation:

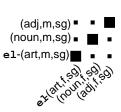
la calle estrecha²
$$\longrightarrow$$
 el-(art,f,sg) calle-(noun,f,sg) estrecho-(adj,f,sg)

Catalan intermediate representation:

²Translated into English as *The narrow street*

Filtering the alignment templates


Filtering the alignment templates


- Not all extracted ATs are applicable
- It must be ensured that the number of open categories are the same in both languages
 - It has no sense to delete for example an adjective in the TL
 - If a category is introduced the MT will not have any information about the lemma to be used

Alignment templates matching

- The SL part of the AT must match exactly the SL text segment to which the AT will be applied
- The inflection information provided by the bilingual dictionary for those words whose lexical category is in the dominant categories set cannot be changed by the AT

Alignment templates application

- Open words are translated by looking them up in a bilingual dictionary
- Their part-of-speech and inflection information is taken from the TL part of the AT
- SL closed words are not translated
- TL closed words are printed out as they appear in the AT
- Alignment information is used to place words in their correct order

11/18

Alignment templates application: Example

```
Spanish (input): permanecieron en Alemania<sup>3</sup> ----
             permanecer - (verb, pret, 3rd, pl) en - (pr)
             Alemania - (noun, loc)
Catalan (output): anar-(vbaux, pres, 3rd, pl)
             romandre-(verb,inf) a-(pr)
             Alemanya-(noun, loc) \longrightarrow
             van romandre a Alemanya
                                                 (noun,loc) -
Word-for-word translation:
                                                     a-(pr) •
             romangueren en Alemanya
                                                  (verb,inf)
                                      anar-(vbaux,pres,3rd,pl)
```

³Translated into English as *They remained in Germany*

- Motivation and goal
- 2 Alignment templates
- 3 Alignment templates for shallow-transfer MT
 - Indirect rule-based MT
 - Extracting the alignment templates
 - Filtering the alignment templates
 - Alignment templates application
- Experiments
 - Experimental setup
 - Results
- Discussion
 - Concluding remarks
 - Future work

Experimental setup

- Using the Spanish-Catalan shallow-transfer MT system interNOSTRUM (www.internostrum.com)
- The transfer module is replaced by the transfer module that applies the ATs
- The performance of the system is compared to:
 - word-for-word translation (when no transfer rules are applied)
 - the original MT system using hand-coded transfer rules

Corpora

Corpus used for training:

Language	Sentences	Running words	Vocab. size
Spanish (training)	400 000	7 480 909	157 841
Catalan (training)	400 000	7 285 133	155 446
Spanish (ATs ext.)	15 000	288 084	31 409
Catalan (ATs ext.)	15 000	296 409	30 228

 Corpus used for evaluation (only one reference translation):

Language	Sentences	Running words	Vocab. size
Spanish	1 498	32 092	7 473
Catalan	1 498	31 468	7 088

Selecting the alignment template to apply

- Two different approximations:
 - to apply the most frequent AT that matches, and
 - to apply the longest AT that matches
- In both criteria infrequent ATs are discarded according to their frequency counts
- The second criterion is suitable for a left-to-right longest-match implementation that speeds up the translation task

Results

Spanish→Catalan translation:

MT setup	WER	PER	NIST	BLEU
word-for-word	29.41	26.99	10.07	53.07
longest AT	24.63	22.86	10.75	59.41
most frequent AT	24.50	22.70	10.77	59.75
hand-coded rules	22.94	21.05	10.88	62.50

• Catalan→Spanish translation:

MT setup	WER	PER	NIST	BLEU
word-for-word	30.01	27.46	9.76	52.59
longest AT	25.32	23.25	10.51	57.69
most frequent AT	25.90	23.78	10.44	56.66
hand-coded rules	23.77	22.19	10.53	60.23

- Motivation and goal
- 2 Alignment templates
- Alignment templates for shallow-transfer MT
 - Indirect rule-based MT
 - Extracting the alignment templates
 - Filtering the alignment templates
 - Alignment templates application
- 4 Experiments
 - Experimental setup
 - Results
- Discussion
 - Concluding remarks
 - Future work

Concluding remarks

- The use of the ATs within a shallow-transfer MT is feasible
- Some linguistic knowledge has been used; however, the linguistic information used can be easily provided
- There is a considerable improvement of the MT quality compare to word-for-word translation
- Results for both selection criteria are comparable
- Relative improvement about 70% for Spanish→Catalan, and about 60 % for Catalan→Spanish

Future work

- Study why the improvement in the MT quality is higher when translating from Spanish to Catalan
- Mix both selecting criteria into a single one
 - Use of a log-linear combination
- Avoid the use of dominant categories
- Generate transfer rules for the open-source MT engine Apertium (http://apertium.org)
- Try with less related language pairs like Catalan–English

Using Alignment Templates to Infer Shallow-Transfer Machine Translation Rules

Felipe Sánchez-Martínez¹ Hermann Ney²

¹Transducens Group – Departament de Llenguatges i Sistemes Informàtics Universitat d'Alacant E-03071 Alacant, Spain

²Lehrstuhl für Informatik VI – Computer Science Department RWTH Aachen University D-52056 Aachen, Germany ney@informatik.rwth-aachen.de

FinTAL, 5th International Conference on Natural Language Processing Turku/Åbo, Finland August 23rd, 2006