Exploring the use of target-language information to train the part-of-speech tagger of machine translation systems*

Felipe Sánchez-Martínez, Juan Antonio Pérez-Ortiz, Mikel L. Forcada
Departament de Llenguatges i Sistemes Informàtics
Universitat d'Alacant
E-03071 Alacant, Spain

{fsanchez,japerez,mlf}@dlsi.ua.es

^{*}Funded by the Spanish Government through grants TIC2003-08681-C02-01 and BES-2004-4711

Contents

- Introduction
- Part-of-speech ambiguities in machine translation
- Part-of-speech tagging with HMM
- Target-language based training of HMM-based taggers
- Target-language model
- Experiments
- Results
- Discussion
- Future work

Introduction

Part-of-speech (PoS) tagging: determining the lexical category or PoS of each word that appears in a text

Lexically ambiguous word: word with more than one possible lexical category or part-of-speech (PoS)

	Lemma	PoS
book	book	noun
	book	verb

Ambiguities are usually solved by looking at the context

PoS ambiguities in machine translation (I)

Indirect MT system: source language (SL) text is analysed and transformed into an intermediate representation (IR), transformations are applied and, finally, target language (TL) text is generated

Analysis module usually includes a PoS tagger

PoS ambiguities in machine translation (II)

Mistranslation due to wrong PoS tagging

• Translation differs from one PoS to another:

Spanish	PoS	Translation into Catalan
para	preposition	per a (for/to)
	verb	para (stop)

PoS ambiguities in machine translation (II)

Mistranslation due to wrong PoS tagging

• Translation differs from one PoS to another:

Spanish	PoS	Translation into Catalan
para	preposition	per a (for/to)
	verb	para (stop)

Some transformation is applied (or not) for some PoS:

Spanish	PoS	Translation into Catalan
la calle	la (article)	el carrer (the street)
	la (pronoun)	* $la \ carrer \ (it/her \ street)$

gender ←agreement rule applied

PoS tagging with HMM (I)

Classical use of a hidden Markov model (HMM):

- Adopting a reduced tag set (grouping the finer tags delivered by the morphological analyser)
- Each HMM state corresponds to a different PoS tag
- Each input word is replaced by its corresponding ambiguity class (set of all possible PoS tags for a given word)

PoS tagging with HMM (II)

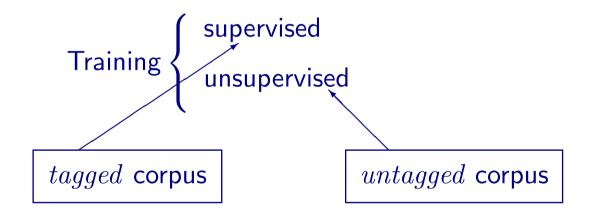
Estimating proper HMM parameters:

```
Training  

supervised unsupervised
```

PoS tagging with HMM (II)

Estimating proper HMM parameters:



PoS tagging with HMM (II)

Estimating proper HMM parameters:



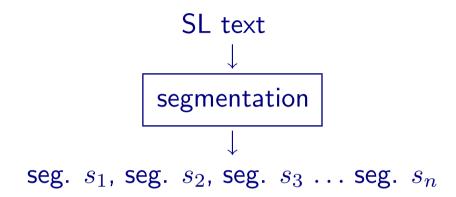
Training as if we had a tagged corpus:

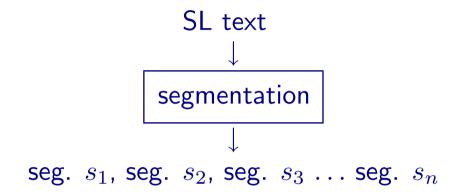
Transition probabilities

$$a_{\gamma_i\gamma_j}=rac{ ilde{n}(\gamma_i\gamma_j)}{\sum_{\gamma_k\in\Gamma} ilde{n}(\gamma_i\gamma_k)}$$
, where γ_i is a tag

Emission probabilities

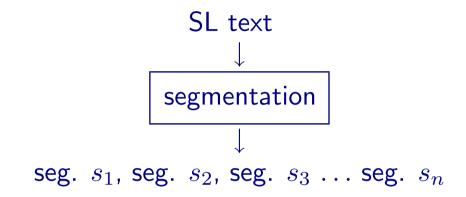
$$b_{\gamma_i\sigma} = \frac{\tilde{n}(\sigma,\gamma_i)}{\sum_{\sigma':\gamma_i\in\sigma'}\tilde{n}(\sigma',\gamma_i)}, \text{ where } \sigma \text{ is an ambiguity class}$$

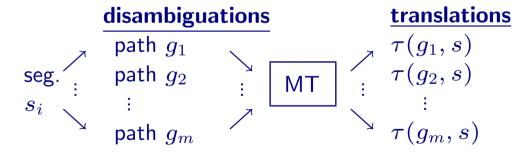


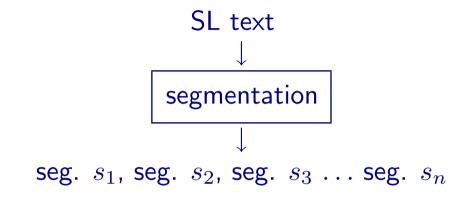


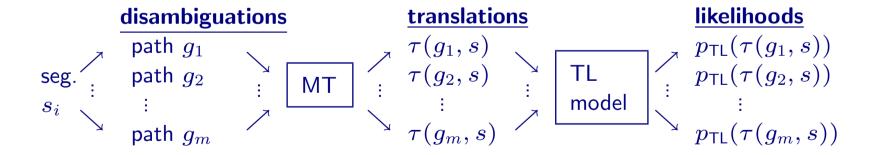
disambiguations

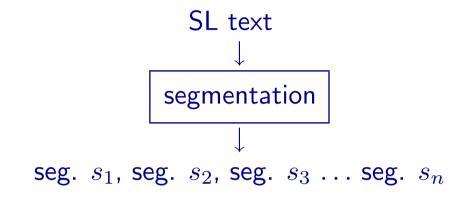
```
egin{array}{lll} & \mathsf{path} \ g_1 \ & \mathsf{path} \ g_2 \ & dots \ & dots \ & dots \ & dots \ & \mathsf{path} \ g_m \ \end{array}
```

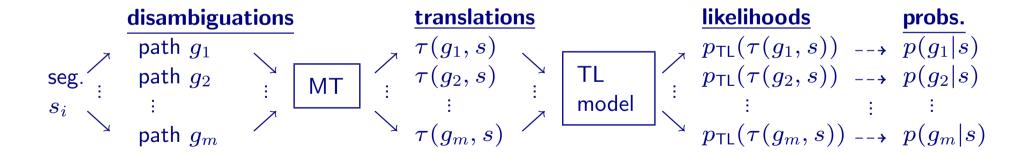












Free ride: word translated the same way independently of the tag selected

$$p(g_i|s) \propto p(g_i| au(g_i,s)) \, p_{\scriptscriptstyle \mathsf{TL}}(au(g_i,s))$$

- $p(g_i|s)$: Probability of g_i to be the correct disambiguation of segment s
- $p_{\mathsf{TL}}(\tau(g_i,s))$: Likelihood of the translation into TL of segment s according to the disambiguation given by path g_i
 - Language model based on trigrams of words
 - **–** ...
- $p(g_i|\tau(g_i,s))$: Contribution of the disambiguation path g_i to the translation given by $\tau(g_i,s)$

Target-language model

- Trigram model of TL surface forms (words as they appear in raw text)
- Probabilities smoothed via deleted interpolation and Good-Turing
- Likelihood evaluation of a segment:
 - taking into account the two preceding words of the segment, and
 - taking into account the two first words of the next segment
- Problem: Shorter translations receive higher scores than larger ones

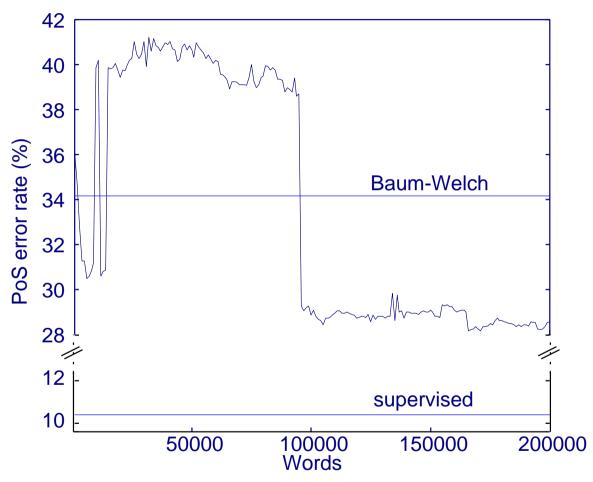
Experiments (I)

- We used the Spanish ← Catalan MT system interNOSTRUM
 www.internostrum.com
- Translating from Spanish to Catalan
- Catalan trigram language model from $1\,822\,067$ -word corpus
- Use of three different corpora with 200 000 words each
- We calculate the HMM parameters after every 1000 words

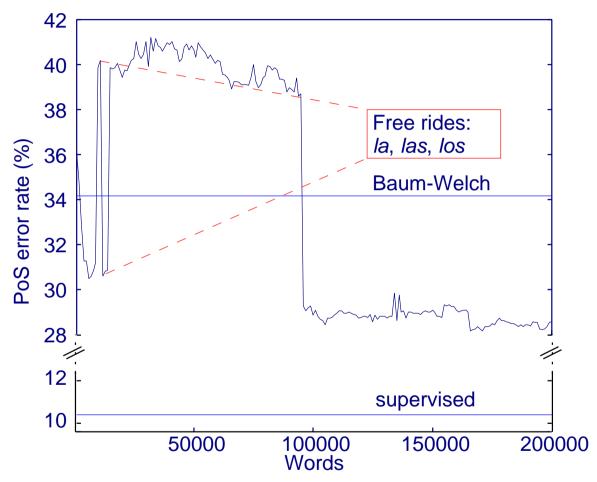
Experiments (II)

- Performance measures with an independent Spanish corpus:
 - PoS error rate with $8\,031$ -word hand-tagged corpus
 - Translation error rate with human corrected translations
- For comparison purpose:
 - HMM-based PoS tagger trained from $1\,000\,000$ -word Spanish untagged corpus with the Baum-Welch algorithm (unsupervised)
 - HMM-based PoS tagger trained from $20\,000$ -word Spanish hand-tagged corpus (supervised)

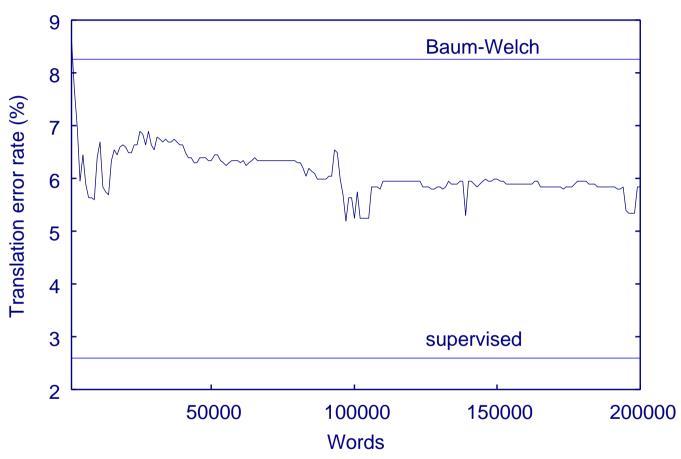
Results: PoS error



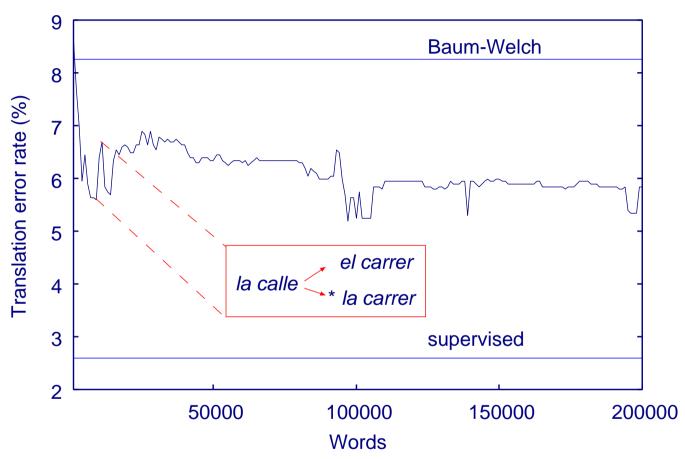
Results: PoS error



Results: Translation error



Results: Translation error



Results: Reducing the impact of free rides

Common free rides: la, las, los

- $\bullet~6.14\%$ of all words, and 22.98% of ambiguous words
- Ambiguity class:

 ART
 PRN

Results: Reducing the impact of free rides

Common free rides: *la, las, los*

- \bullet 6.14% of all words, and 22.98% of ambiguous words
- Ambiguity class:

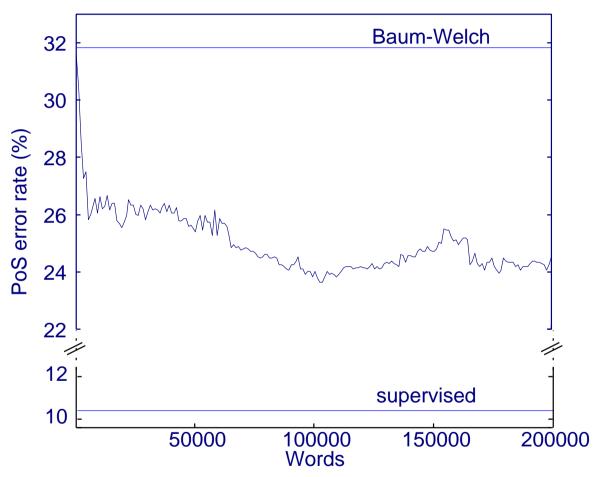
 ART
 PRN

Solution: Use of linguistic information. Some impossible tag bigrams are forbidden

- We forbid, for example:
 - article or preposition before verb in personal form
 - article before proclitic pronouns

Use: Do not take into account disambiguation paths with one or more forbidden bigram

Results: Reducing the impact of free rides (PoS error)



 PoS error and translation error rates lie between those produce by supervised and unsupervised methods

- PoS error and translation error rates lie between those produce by supervised and unsupervised methods
- The presence of free rides make the algorithm behaves unstably due to the kind of TL model used
 - The problem is partially solved using an small amount of linguistic information

- PoS error and translation error rates lie between those produce by supervised and unsupervised methods
- The presence of free rides make the algorithm behaves unstably due to the kind of TI model used
 - The problem is partially solved using an small amount of linguistic information
- ullet Reduction of the translation error rate around 2% with an small amount of text, even when no linguistic information was used

- PoS error and translation error rates lie between those produce by supervised and unsupervised methods
- The presence of free rides make the algorithm behaves unstably due to the kind of TL model used
 - The problem is partially solved using an small amount of linguistic information
- ullet Reduction of the translation error rate around 2% with an small amount of text, even when no linguistic information was used
- The training method produces PoS tagger that are tuned not only with SL texts, but also with TL texts and the underlying MT system

Future work

- Research on better estimates for $p(g_i|\tau(g_i,s))$
 - Estimate the HMM parameters iteratively Use the parameters of the previous iteration to estimate $p(g_i|\tau(g_i,s))$

Future work

- Research on better estimates for $p(g_i|\tau(g_i,s))$
 - Estimate the HMM parameters iteratively Use the parameters of the previous iteration to estimate $p(g_i|\tau(g_i,s))$
- Time complexity reduction
 - Use of a k-best Viterbi algorithm with the current parameters to calculate approximate likelihood and translate only the k most promising paths