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Introduction

Part-of-speech (PoS) tagging: To determine the lexical category or PoS of
each word that appears in a text

Ambiguous word: Word with more than one possible lexical category (PoS)

Lemma PoS
book book noun

book verb

Ambiguities are usually solved by looking at the context
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PoS ambiguities in machine translation (I)

Indirect MT system: Source language (SL) text is analysed and transformed
into an abstract intermediate representation, transformations are applied and,
finally, target language (TL) text is generated.

SLAR TLAR
↓ ↓

SL
text
−→ Analysis −→ Transformation −→ Generation −→TL

text

• Analysis module usually includes a PoS tagger
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PoS ambiguities in machine translation (II)

Mistranslation due to wrong PoS tagging

• Translation differs from one PoS to another:

Spanish PoS Translation into Catalan
para preposition per a (for/to)

verb para (stop)
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PoS ambiguities in machine translation (II)

Mistranslation due to wrong PoS tagging

• Translation differs from one PoS to another:

Spanish PoS Translation into Catalan
para preposition per a (for/to)

verb para (stop)

• Some transformation is applied (or not) for some PoS:

Spanish PoS Translation into Catalan gender
las calles la (article) els carrers (the streets) ←agreement

la (pronoun) * les carrers (them streets) rule applied
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PoS tagging with HMM (I)

Use of a hidden Markov model (HMM):

• Adopting a reduced tag set (grouping the finer tags delivered by the morpho-
logical analyser)

• Each HMM state corresponds to a different PoS tag

• Each input word is replaced by its corresponding ambiguity class
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PoS tagging with HMM (II)

Estimating proper HMM parameters

Training





supervised

unsupervised
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PoS tagging with HMM (II)

Estimating proper HMM parameters

Training





supervised

unsupervised
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PoS tagging with HMM (II)

Estimating proper HMM parameters

Training





supervised

unsupervised
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New idea: Use of TL information
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Target-language based training of HMM-based taggers (I)

• Transition probabilities

aγiγj =
ñ(γiγj)∑
γk∈Γ ñ(γiγk)

• Emission probabilities

bγiσ =
ñ(σ, γi)∑

σ′:γi∈σ′ ñ(σ′, γi)
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Target-language based training of HMM-based taggers (II)

SL
text
−→ Segmentation

↗
...
↘

segment s1

segment s2
...

segment sn
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Target-language based training of HMM-based taggers (II)

SL
text
−→ Segmentation

↗
...
↘

segment s1

segment s2
...

segment sn

seg.
si

↗
...
↘

disambiguations

path g1

path g2
...

path gm
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Target-language based training of HMM-based taggers (II)

SL
text
−→ Segmentation

↗
...
↘

segment s1

segment s2
...

segment sn

seg.
si

↗
...
↘

disambiguations

path g1

path g2
...

path gm

↘
...
↗

MT
↗

...
↘

translations

τ(g1, s)
τ(g2, s)

...
τ(gm, s)

TMI, Baltimore 4–6 October, 2004



Cooperative unsupervised training of the part-of-speech taggers in a bidirectional machine translation system . 8

Target-language based training of HMM-based taggers (II)

SL
text
−→ Segmentation

↗
...
↘

segment s1

segment s2
...

segment sn

seg.
si

↗
...
↘

disambiguations

path g1

path g2
...

path gm

↘
...
↗

MT
↗

...
↘

translations

τ(g1, s)
τ(g2, s)

...
τ(gm, s)

↘
...
↗

TL
model

↗
...
↘

likelihoods

pTL(τ(g1, s))
pTL(τ(g2, s))

...
pTL(τ(gm, s))
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Target-language based training of HMM-based taggers (II)

SL
text
−→ Segmentation

↗
...
↘

segment s1

segment s2
...

segment sn

seg.
si

↗
...
↘

disambiguations

path g1

path g2
...

path gm

↘
...
↗

MT
↗

...
↘

translations

τ(g1, s)
τ(g2, s)

...
τ(gm, s)

↘
...
↗

TL
model

↗
...
↘

likelihoods

pTL(τ(g1, s))
pTL(τ(g2, s))

...
pTL(τ(gm, s))

99K
99K

...
99K

p(g1|s)
p(g2|s)

...
p(gm|s)
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Target-language based training of HMM-based taggers (III)
s ≡ y la para si

{
CNJ

} {
ART
PRN

} {
VB
PR

} {
CNJ

}

p(gi|s)
g1 ≡ CNJ ART PR CNJ

τ(g1, s) ≡ i (and) la (the) per a (for/to) si (if) 0.0001
g2 ≡ CNJ ART VB CNJ

τ(g2, s) ≡ i (and) la (the) para (stop) si (if) 0.4999
g3 ≡ CNJ PRN PR CNJ

τ(g3, s) ≡ i (and) la (it/her) per a (for/to) si (if) 0.0001
g4 ≡ CNJ PRN VB CNJ

τ(g4, s) ≡ i (and) la (it/her) para (stop) si (if) 0.4999
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Target-language based training of HMM-based taggers (III)
s ≡ y la para si

{
CNJ

} {
ART
PRN

} {
VB
PR

} {
CNJ

}

p(gi|s)
g1 ≡ CNJ ART PR CNJ

τ(g1, s) ≡ i (and) la (the) per a (for/to) si (if) 0.0001
g2 ≡ CNJ ART VB CNJ

τ(g2, s) ≡ i (and) la (the) para (stop) si (if) 0.4999
g3 ≡ CNJ PRN PR CNJ

τ(g3, s) ≡ i (and) la (it/her) per a (for/to) si (if) 0.0001
g4 ≡ CNJ PRN VB CNJ

τ(g4, s) ≡ i (and) la (it/her) para (stop) si (if) 0.4999

Free ride: word translated the same way independently of the tag selected
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Target-language based training of HMM-based taggers (IV)

p(gi|s) ∝ p(gi|τ(gi, s)) pTL(τ(gi, s))

• p(gi|s): Probability of path gi to be the correct disambiguation of segment s

• pTL(τ(gi, s)): Likelihood of the translation into TL of segment s according to
the disambiguation given by path gi

– Language model based on trigrams of words
– Hidden Markov model
– ...

• p(gi|τ(gi, s)): Contribution of the disambiguation path gi to the translation
given by τ(gi, s)
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Cooperative learning of HMM (I)

• Use of the prevoius idea ...
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Cooperative learning of HMM (I)

• Use of the prevoius idea ...

• Bidirectional MT system translating between languages A and B
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Cooperative learning of HMM (I)

• Use of the prevoius idea ...

• Bidirectional MT system translating between languages A and B

• Morphological generation is not done when performing translations
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Cooperative learning of HMM (I)

• Use of the prevoius idea ...

• Bidirectional MT system translating between languages A and B

• Morphological generation is not done when performing translations

• Before morphological generation we have a sequence of lexical categories (tags)
in the TL
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Cooperative learning of HMM (I)

• Use of the prevoius idea ...

• Bidirectional MT system translating between languages A and B

• Morphological generation is not done when performing translations

• Before morphological generation we have a sequence of lexical categories (tags)
in the TL

• Use of such a TL model based on tags: HMM as a TL model
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Cooperative learning of HMM (II)

Lang. A Lang. B

MB[0]���������)MA[1] MB[1]-
���������)MA[2] MB[2]-qqqqqq
qqq

MB[k−1]���������)MA[k] MB[k]-qqqq
qqqq
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Experiments

• We used the Spanish↔Catalan MT system interNOSTRUM
(www.internostrum.com)

Language A: Catalan
Language B: Spanish
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Experiments

• We used the Spanish↔Catalan MT system interNOSTRUM
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Language A: Catalan
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• Use of various corpus sizes and three different corpora for each size
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Experiments

• We used the Spanish↔Catalan MT system interNOSTRUM
(www.internostrum.com)

Language A: Catalan
Language B: Spanish

• Use of various corpus sizes and three different corpora for each size

• Evaluation with an independent corpus for each language:

– PoS error rate with hand-tagged corpus
– Translation error rate with human-corrected translations
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Results

Proof of two different initial models MB[0]:

• “Good” HMM: Trained from 1 000 000-word untagged SL corpus with the
Baum-Welch algorithm (PoS error rate: 34.2%)

• “Bad” HMM: Equiprobable transition and emission probabilities (PoS error
rate: 76.5%)
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Results

Proof of two different initial models MB[0]:

• “Good” HMM: Trained from 1 000 000-word untagged SL corpus with the
Baum-Welch algorithm (PoS error rate: 34.2%)

• “Bad” HMM: Equiprobable transition and emission probabilities (PoS error
rate: 76.5%)

Avg. PoS error Avg. translation error Avg. It.
Spanish Catalan Spanish Catalan

“good start” → 24.9% 27.5% 6.2% 6.7% 2
“bad start” → 25.9% 26.4% 6.1% 6.8% 5

Baum-Welch → 31.7% 37.8% 8.4% 13.6% 14
supervised → 10.4% 16.5% 2.6% 3.0%
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Discussion

• PoS error and translation error rates lie between those produced by supervised
and unsupervised methods
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Discussion

• PoS error and translation error rates lie between those produced by supervised
and unsupervised methods

• There is no need for good initial information to achieve good results

• The method described needs a relatively small amount of words compare with
common corpus sizes used with the Baum-Welch algorithm
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Discussion

• PoS error and translation error rates lie between those produced by supervised
and unsupervised methods

• There is no need for good initial information to achieve good results

• The method described needs a relatively small amount of words compare with
common corpus sizes used with the Baum-Welch algorithm

• The training method produces PoS taggers tuned not only with SL texts, but
also with TL texts and the underlying MT system
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Future work

• Research on better estimates for p(gi|τ(gi, s))

– Estimate the HMM parameters iteratively
Use the parameters of the previous iteration to estimate p(gi|τ(gi, s))
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Future work

• Research on better estimates for p(gi|τ(gi, s))

– Estimate the HMM parameters iteratively
Use the parameters of the previous iteration to estimate p(gi|τ(gi, s))

• Time complexity reduction

– Use of a k-best Viterbi algorithm with the current parameters to calculate
approximate likelihood and translate only the k most promising paths
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Future work

• Research on better estimates for p(gi|τ(gi, s))

– Estimate the HMM parameters iteratively
Use the parameters of the previous iteration to estimate p(gi|τ(gi, s))

• Time complexity reduction

– Use of a k-best Viterbi algorithm with the current parameters to calculate
approximate likelihood and translate only the k most promising paths

• Better formalization

– Different disambiguation paths from different segments can produce the
same translation
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Thank you very much for your attention !!
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