Cooperative unsupervised training of the part-of-speech taggers in a bidirectional machine translation system*

Felipe Sánchez-Martínez, Juan Antonio Pérez-Ortiz, Mikel L. Forcada Departament de Llenguatges i Sistemes Informàtics Universitat d'Alacant E-03071 Alacant, Spain

{fsanchez,japerez,mlf}@dlsi.ua.es

^{*}Funded by the Spanish Government through grants TIC2003-08681-C02-01 and BES-2004-4711

Contents

- Introduction
- Part-of-speech ambiguities in machine translation
- Part-of-speech tagging with HMM
- Target-language based training of HMM-based taggers
- Cooperative learning of HMM
- Experiments
- Discussion
- Future work

Introduction

Part-of-speech (PoS) tagging: To determine the lexical category or PoS of each word that appears in a text

Ambiguous word: Word with more than one possible lexical category (PoS)

	Lemma	PoS	
book	book	noun	
	book	verb	

Ambiguities are usually solved by looking at the context

PoS ambiguities in machine translation (I)

Indirect MT system: Source language (SL) text is analysed and transformed into an abstract intermediate representation, transformations are applied and, finally, target language (TL) text is generated.

• Analysis module usually includes a PoS tagger

PoS ambiguities in machine translation (II)

Mistranslation due to wrong PoS tagging

• Translation differs from one PoS to another:

Spanish	PoS	Translation into Catalan
para	preposition	$per \ a \ (for/to)$
	verb	para (stop)

PoS ambiguities in machine translation (II)

Mistranslation due to wrong PoS tagging

• Translation differs from one PoS to another:

Spanish	PoS	Translation into Catalan
para	preposition	$per \ a \ (for/to)$
	verb	para (stop)

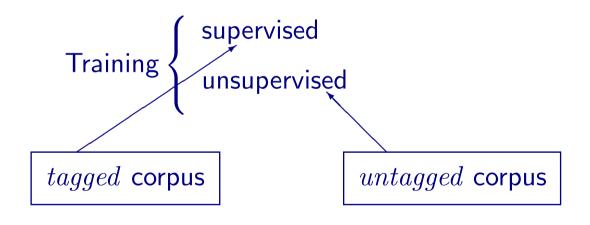
• Some transformation is applied (or not) for some PoS:

Spanish	PoS	Translation into Catalan	gender
las calles	la (article)	els carrers (the streets)	\leftarrow agreement
	la (pronoun)	* <i>les carrers</i> (them streets)	rule applied

PoS tagging with HMM (I)

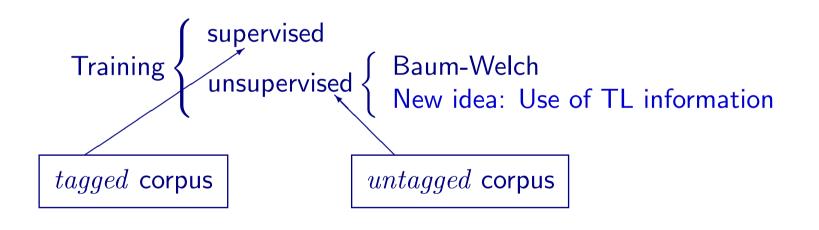
Use of a hidden Markov model (HMM):

- Adopting a reduced tag set (grouping the finer tags delivered by the morphological analyser)
- Each HMM state corresponds to a different PoS tag
- Each input word is replaced by its corresponding ambiguity class


PoS tagging with HMM (II)

Estimating proper HMM parameters

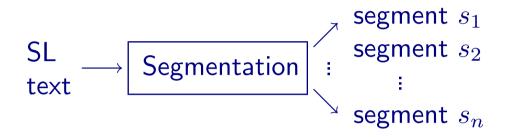
PoS tagging with HMM (II)

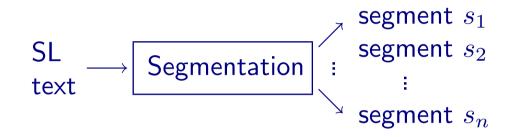

Estimating proper HMM parameters

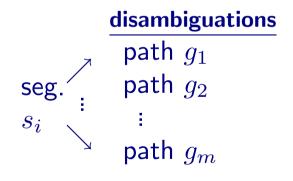
⊳ 6

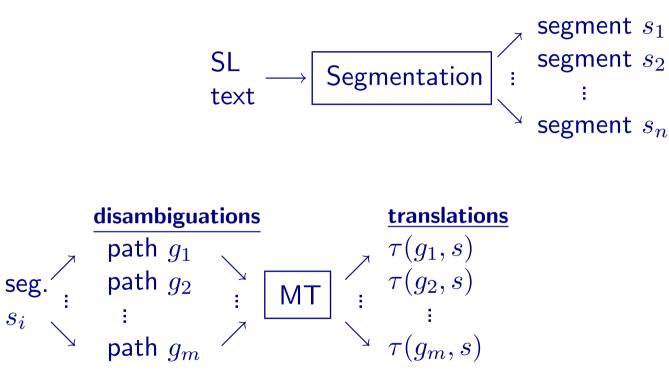
PoS tagging with HMM (II)

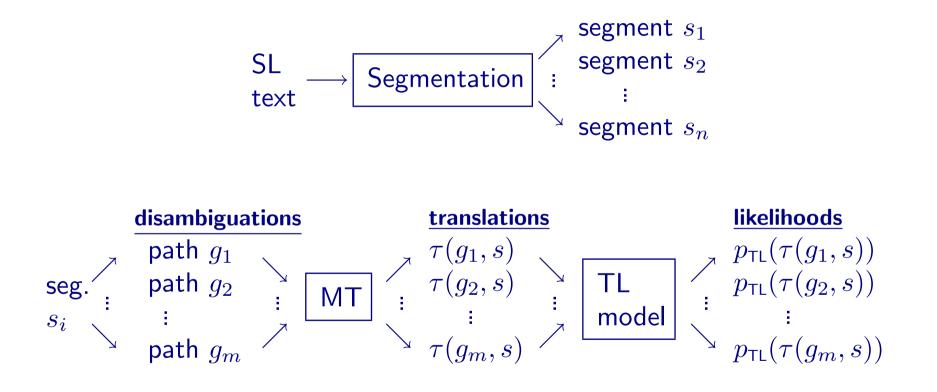
Estimating proper HMM parameters

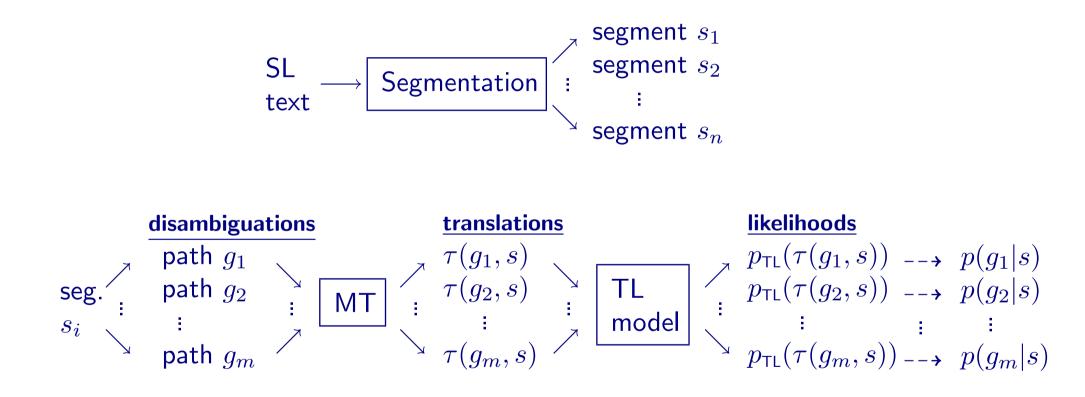



• Transition probabilities


$$a_{\gamma_i \gamma_j} = \frac{\tilde{n}(\gamma_i \gamma_j)}{\sum_{\gamma_k \in \Gamma} \tilde{n}(\gamma_i \gamma_k)}$$


• Emission probabilities


$$b_{\gamma_i \sigma} = \frac{\tilde{n}(\sigma, \gamma_i)}{\sum_{\sigma': \gamma_i \in \sigma'} \tilde{n}(\sigma', \gamma_i)}$$



⊳ 8

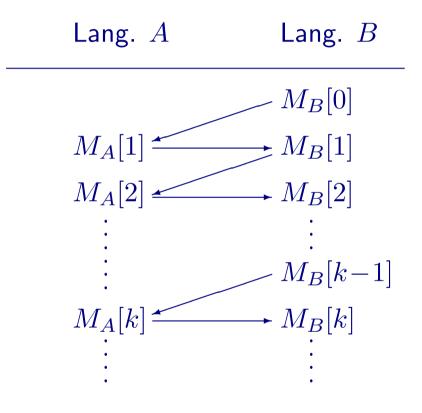
Target-language based training of HMM-based taggers (III)							
$s\equiv$	y	la	para	si			
	$\{ CNJ \}$	$\left\{\begin{array}{c} ART \\ PRN \end{array}\right\}$	$\left\{ \begin{array}{c} VB \\ PR \end{array} \right\}$	$\{ CNJ \}$			
					$p(g_i s)$		
$g_1 \equiv$	CNJ	ART	PR	CNJ			
$ au(g_1,s)\equiv$	i (and)	la (the)	$per \; a \; ({\sf for/to})$	si (if)	0.0001		
$g_2 \equiv$	CNJ	ART	VB	CNJ			
$ au(g_2,s)\equiv$	i (and)	la (the)	para (stop)	si (if)	0.4999		
$g_3 \equiv$	CNJ	PRN	PR	CNJ			
$ au(g_3,s)\equiv$	i (and)	la (it/her)	$per \; a \; ({\sf for/to})$	si (if)	0.0001		
$g_4 \equiv$	CNJ	PRN	VB	CNJ			
$ au(g_4,s)\equiv$	i (and)	la (it/her)	para (stop)	si (if)	0.4999		

Target-language based training of HMM-based taggers (III)							
$s\equiv$	y	la	para	si			
	$\{ CNJ \}$	$\left\{\begin{array}{c} ART \\ PRN \end{array}\right\}$	$\left\{ \begin{array}{c} VB \\ PR \end{array} \right\}$	$\{ CNJ \}$			
					$p(g_i s)$		
$g_1 \equiv$	CNJ	ART	PR	CNJ			
$ au(g_1,s)\equiv$	i (and)	la (the)	$per \; a \; ({\sf for/to})$	si (if)	0.0001		
$g_2 \equiv$	CNJ	ART	VB	CNJ			
$ au(g_2,s)\equiv$	i (and)	la (the)	para (stop)	si (if)	0.4999		
$g_3 \equiv$	CNJ	PRN	PR	CNJ			
$ au(g_3,s)\equiv$	i (and)	la (it/her)	$per \; a \; ({\sf for/to})$	si (if)	0.0001		
$g_4 \equiv$	CNJ	PRN	VB	CNJ			
$\tau(g_4,s)\equiv$	i (and)	la (it/her)	para (stop)	si (if)	0.4999		

Free ride: word translated the same way independently of the tag selected

$p(g_i|s) \propto p(g_i|\tau(g_i,s)) \, p_{\text{tl}}(\tau(g_i,s))$

- $p(g_i|s)$: Probability of path g_i to be the correct disambiguation of segment s
- $p_{\mathsf{TL}}(\tau(g_i,s))$: Likelihood of the translation into TL of segment s according to the disambiguation given by path g_i
 - Language model based on trigrams of words
 - Hidden Markov model
 - ...
- $p(g_i|\tau(g_i,s))$: Contribution of the disambiguation path g_i to the translation given by $\tau(g_i,s)$


• Use of the prevoius idea ...

- Use of the prevoius idea ...
- $\bullet\,$ Bidirectional MT system translating between languages A and B

- Use of the prevoius idea ...
- $\bullet\,$ Bidirectional MT system translating between languages A and B
- Morphological generation is not done when performing translations

- Use of the prevoius idea ...
- Bidirectional MT system translating between languages A and B
- Morphological generation is not done when performing translations
- Before morphological generation we have a sequence of lexical categories (tags) in the TL

- Use of the prevoius idea ...
- Bidirectional MT system translating between languages A and B
- Morphological generation is not done when performing translations
- Before morphological generation we have a sequence of lexical categories (tags) in the TL
- Use of such a TL model based on tags: HMM as a TL model

Experiments

 We used the Spanish ↔ Catalan MT system interNOSTRUM (www.internostrum.com)

Language A: Catalan Language B: Spanish

Experiments

 We used the Spanish ↔ Catalan MT system interNOSTRUM (www.internostrum.com)

Language A: Catalan Language B: Spanish

• Use of various corpus sizes and three different corpora for each size

Experiments

 We used the Spanish ↔ Catalan MT system interNOSTRUM (www.internostrum.com)

Language A: Catalan Language B: Spanish

- Use of various corpus sizes and three different corpora for each size
- Evaluation with an independent corpus for each language:
 - PoS error rate with hand-tagged corpus
 - Translation error rate with human-corrected translations

Results

Proof of two different initial models $M_B[0]$:

- "Good" HMM: Trained from $1\,000\,000$ -word untagged SL corpus with the Baum-Welch algorithm (PoS error rate: 34.2%)
- "Bad" HMM: Equiprobable transition and emission probabilities (PoS error rate: 76.5%)

Results

Proof of two different initial models $M_B[0]$:

- "Good" HMM: Trained from $1\,000\,000$ -word untagged SL corpus with the Baum-Welch algorithm (PoS error rate: 34.2%)
- "Bad" HMM: Equiprobable transition and emission probabilities (PoS error rate: 76.5%)

	Avg. PoS error		Avg. translation error		Avg. It.
	Spanish	Catalan	Spanish	Catalan	
"good start" \rightarrow	24.9%	27.5%	6.2%	6.7%	2
"bad start" \rightarrow	25.9%	26.4%	6.1%	6.8%	5
$Baum\text{-}Welch \to$	31.7%	37.8%	8.4%	13.6%	14
supervised \rightarrow	10.4%	16.5%	2.6%	3.0%	

• PoS error and translation error rates lie between those produced by supervised and unsupervised methods

- PoS error and translation error rates lie between those produced by supervised and unsupervised methods
- There is no need for good initial information to achieve good results

- PoS error and translation error rates lie between those produced by supervised and unsupervised methods
- There is no need for good initial information to achieve good results
- The method described needs a relatively small amount of words compare with common corpus sizes used with the Baum-Welch algorithm

- PoS error and translation error rates lie between those produced by supervised and unsupervised methods
- There is no need for good initial information to achieve good results
- The method described needs a relatively small amount of words compare with common corpus sizes used with the Baum-Welch algorithm
- The training method produces PoS taggers tuned not only with SL texts, but also with TL texts and the underlying MT system

Future work

- Research on better estimates for $p(g_i | \tau(g_i, s))$
 - Estimate the HMM parameters iteratively Use the parameters of the previous iteration to estimate $p(g_i | \tau(g_i, s))$

Future work

- Research on better estimates for $p(g_i | \tau(g_i, s))$
 - Estimate the HMM parameters iteratively Use the parameters of the previous iteration to estimate $p(g_i | \tau(g_i, s))$
- Time complexity reduction
 - Use of a k-best Viterbi algorithm with the current parameters to calculate approximate likelihood and translate only the k most promising paths

Future work

- Research on better estimates for $p(g_i | \tau(g_i, s))$
 - Estimate the HMM parameters iteratively Use the parameters of the previous iteration to estimate $p(g_i | \tau(g_i, s))$
- Time complexity reduction
 - Use of a k-best Viterbi algorithm with the current parameters to calculate approximate likelihood and translate only the k most promising paths
- Better formalization
 - Different disambiguation paths from different segments can produce the same translation

Thank you very much for your attention !!