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Abstract

Translation models based on hierarchical

phrase-based statistical machine transla-

tion (HSMT) have shown better perfor-

mances than the non-hierarchical phrase-

based counterparts for some language

pairs. The standard approach to HSMT

learns and apply a synchronous context-

free grammar with a single non-terminal.

The hypothesis behind the grammar re-

finement algorithm presented in this work

is that this single non-terminal is over-

loaded, and insufficiently discriminative,

and therefore, an adequate split of it into

more specialised symbols could lead to

improved models. This paper presents a

method to learn synchronous context-free

grammars with a huge number of initial

non-terminals, which are then grouped via

a clustering algorithm. Our experiments

show that the resulting smaller set of non-

terminals correctly capture the contextual

information that makes it possible to sta-

tistically significantly improve the BLEU

score of the standard HSMT approach.

1 Introduction

Phrase-based statistical machine translation (PB-

SMT) (Williams et al., 2016) has proven to be

an effective approach to the task of machine

translation. Even though in the last years neu-

ral systems have gained most of the attention

from industry and academia, a number of recent

works show that statistical approaches may still

provide relevant results in hybrid, unsupervised
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or low-resource scenarios (Artetxe et al., 2018;

Stahlberg et al., 2016). In PBSMT systems, the

source-language (SL) sentence is split into non

overlapping word sequences (known as phrases)

and a translation into target-language (TL) is cho-

sen for each phrase from a phrase table of bilin-

gual phrase pairs extracted from a parallel cor-

pus. A decoder efficiently chooses the splitting

points and the corresponding TL equivalents by

using the information provided by a set of fea-

tures, which usually include probabilities provided

by translation models as well as a language model.

In spite of their performance, PBSMT systems

are affected by some limitations due to the lo-

cal strategy they follow. More specifically, they

tend to overpass long range dependencies, which

may negatively affect translation quality. Addi-

tionally, phrase reordering is usually instrumented

by means of distortion heuristics and lexicalised

reordering models or an operation-sequence model

(Durrani et al., 2015) that cannot cope with the

multiple structural divergences that are often nec-

essary to translate between most language pairs.

Tree-based models address these issues by re-

lying on a recursive representation of sentences

that allows for gaps between words. Among

these models, hierarchical phrase-based statisti-

cal machine translation (HSMT) (Chiang, 2005;

Chiang, 2007) has gained lot of attention due to its

relative simplicity and the lack of need for linguis-

tic knowledge. HSMT infers synchronous context-

free grammars (SCFG); remarkably, HSMT in-

fers grammars with a single non-terminal X.1

Chiang (2007) also sets some additional restric-

tions on the extracted rules in order to contain the

1Strictly speaking, two non-terminals are used since an addi-
tional non-terminal (used in the glue rules) is set as the initial
symbol of the grammar (Chiang, 2005; Chiang, 2007).
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combinatorial explosion in the number of rules,

thus reducing decoding complexity.

This paper shows that the main limitation in-

troduced in standard HSMT, namely, the use of a

single non-terminal, can be overcome to improve

translation quality. Our strategy differs from stan-

dard HSMT in that a different non-terminal is used

for every possible gap when extracting the initial

set of rules; this may easily result in millions of

non-terminals which are then merged following

an equivalence criterion, thus reducing the initial

number of non-terminals in several orders of mag-

nitude. Our experiments show that the resulting

set of non-terminals correctly capture the contex-

tual information that makes it possible to statisti-

cally significantly improve the BLEU score of the

standard HSMT approach. However, additional re-

search has to be carried out so that our method

scales up with large training corpora.

Section 2 discusses related works. Section 3

then introduces the formalism of synchronous

context-free grammars and the standard procedure

to obtain them from parallel corpora and use them

in HSMT. Section 4 presents our proposal for

rule inference, including our criterion for variable

equivalence and refinement. The experimental set-

up and the results of our experiments are presented

in Section 5. Finally, the paper ends with some

discussion and conclusions.

2 Related work

Probabilistic context-free grammars (PCFGs) have

been traditionally used to model the generation

of monolingual languages (Charniak, 1994). The

refinement of probabilistic context-free grammars

has been addressed before in a number of pa-

pers. For example, Matsuzaki et al. (2005) use a

set of N latent symbols to annotate —and there-

fore specialize— non-terminals in a probabilistic

context-free grammar. Every non-terminal A in

the grammar is split into N non-terminals and the

probabilities of the new productions are estimated

to maximize the likelihood of the training set of

strings.

In the approach for the refinement of PCFGs

followed by Matsuzaki et al. (2005), the number

of latent non-terminals must be small (N rang-

ing from 1 to 16 in the experiments) since the

training time and memory grow very fast with

N . The input trees are also binarized before

the estimation of the parameters to avoid an ex-

ponential growth in the number of productions

contributing to every sum of probabilities. The

method outperforms non-lexicalized approaches in

terms of parsing accuracy measured over the Wall

Street Journal (WSJ) portion of the Penn tree-

bank (Marcus et al., 1993; Marcus et al., 1994).

In contrast, Petrov et al. (2006) apply a more so-

phisticated procedure for the specialization of the

non-terminals in a PCFG. Instead of generating

all possible annotations, their hierarchical splitting

starts with the nearly one hundred tags in the WSJ

corpus (binarization of the parse trees is also ap-

plied here) and leads to about one thousand sym-

bols with a significant reduction in parsing error

rate. The procedure splits iteratively every symbol

into two sub-symbols and performs expectation-

maximization optimization to estimate the prob-

ability of the productions. This method allows

for a deeper recursive partition of some symbols

(up to 6 times in the experiments with the WSJ

corpus, as reported by the authors). Their re-

sults showed that significant improvements in the

accuracy of parsing can be achieved with gram-

mars which are more compact than those ob-

tained by Matsuzaki et al. (2005). Parsing with

the enhanced grammar can be accelerated with

a coarse-to-fine scheme (Petrov and Klein, 2007)

which prunes the items analyzed in the chart ac-

cording to the estimations given by a simpler

grammar where non-terminals are clustered into a

smaller number of classes.

While strings are usually not enough to

identify a particular PCFG, there exist meth-

ods which guaranteee convergence to the true

grammar when structural information is avail-

able. For example, Pereira and Schabes (1992) ap-

ply expectation-maximization optimization to the

identification of PCFGs from partially bracketed

samples (sentences with parenthesis marking the

constituent boundaries which the analysis should

respect). The probabilistic tree grammars obtained

after the optimization are non-deterministic (in the

sense that multiple states are reachable as the result

of processing a subtree bottom-up) and their trees

must be binarized, a procedure that needs some lin-

guistic guidance in order to generate meaningful

probabilistic models.

The identification of probabilistic gram-

mars has been addressed also through state-

merging techniques. For example, such

techniques have been applied to the case



of regular grammars modelling string lan-

guages by Stolcke and Omohundro (1992) and

Carrasco and Oncina (1999). In these methods,

the initial grammar has one state or non-terminal

per string-prefix in the sample and, then, the

procedure looks for the optimal partition of the

set of non-terminals, an approach that is similar to

the one we also follow in this work. Convergence

is guaranteed by keeping a frontier of states

with all strings whose prefixes have been already

examined.

Experimental work on the identifica-

tion of regular string languages on sparse

data (Lang et al., 1998) has shown the impor-

tance of exploring earlier the nodes about which

there is more information available (a procedure

known as evidence-driven merging). This result

suggests that instead of using the straightforward

breadth-first search (the simplest which guar-

antees convergence) one should consider more

elaborate orders where those pairs of subtrees in

the frontier with a higher number of observations

are considered earlier.

Generalizing the merging techniques for string

languages, Carrasco et al. (2001) define a proce-

dure which identifies any regular tree language by

comparing pairs of non-terminals: each initial non-

terminal corresponds to a subtree in the sample

and they are compared in a breadth-first mode and

merged when they are found to be compatible.

As already commented in the introduction,

Chiang (2005) extended the phrase-based ap-

proach in statistical machine translation to

tree-based translation by adapting the rule

extraction algorithm to learn phrase pairs

with gaps (Koehn, 2010), and also presented

a decoding method based on chart parsing,

thus obtaining a working hierarchical phrase-

based statistical machine translation system.

Chiang (2007) then refined the method by

introducing cube pruning to improve the

efficiency of the chart decoder. Other au-

thors (Maillette de Buy Wenniger and Sima’an, 2015;

Vilar et al., 2010; Mylonakis and Sima’an, 2011)

have introduced additional improvements to the

rule learning procedure in the original proposal.

3 Synchronous context-free grammars in

machine translation

Transduction gram-

mars (Lewis II and Stearns, 1968) have been

used in SMT to model the hierarchical nature

of translation which is implicit in the align-

ments between words in a bitext (Wu, 1997;

Chiang, 2007). A bitext or bilingual text

B = (s1, t1)(s2, t2) · · · (s|B|, t|B|) consist of a

finite sequence of sentence pairs, where every

second component ti, the target sentence, is the

translation of the first component si in the pair, the

source sentence.

A word-level alignment A(s, t) annotates every

sentence pair (s, t) with a subset of {1, . . . , |s|} ×
{1, . . . , |t|} —where |s| and |t| are the sentence

lengths— and provides those pairs of word po-

sitions in the source and target sentence which

can be linked together according to a translation

model.

A transduction grammar G =
(V,S,T , I, R,H) consists of a finite set of

non-terminals V = {X1, . . . ,XN}, two sets of

terminals —here, S and T consist of segments

of words contained in source and target sentences

respectively—, an initial symbol I ∈ V , a finite set

of production rules (rules or productions, for short)

R = {r1, . . . , rM} ⊂ V × (S ∪ V )+ × (T ∪ V )+

and a set of M one-to-one mappings

H = {h1, . . . hM} with hm : N → N. For

every rule rm = (Xn, α, β) ∈ R, hm couples

every instance of a non-terminal in α and an in-

stance of the same non-terminal in β —therefore,

α and β must have an identical number and type

of non-terminals. A production rm = (Xn, α, β)
in a transduction grammar G will be written in

the following as Xn → (α, β) and their left

and right components as Xn = left(rm) and

(α, β) = right(rm), respectively.

The synchronous context-free grammars intro-

duced by Chiang (2007) are transduction gram-

mars whose productions have some restrictions:

1. there is a single productive non-terminal X,

in addition to the initial non-terminal I , that

is, V = {I,X};

2. there is an upper limit on the length of the

bilingual phrases of 10 words in either side;

3. there is an upper limit of 2 in the number of

non-terminals that can appear in a production;

4. the size of the source side of production

rules can have at most 5 terminals and non-

terminals;



5. the productions cannot contain contiguous

non-terminals on the source side and they

must include some lexical content (termi-

nals); and

6. two glue rules are defined to start derivations:

I → (X,X) and I → (IX, IX).

The transduction grammars employed

by Chiang (2007) restrict terminals to be in

the set Φ(A,B) of bilingual phrase pairs obtained

with the same extraction algorithm used in phrase-

based SMT (Koehn, 2010, sect. 5.2.2): a bilingual

phrase pair or biphrase is a pair in S × T which

is consistent with the word alignments A provided

by a statistical aligner for the bitext B.2 The

procedure also applies the following extraction

rules:

• For every phrase pair (u, v) ∈ Φ(A,B), add

a production X → (u, v) to R.

• For every production rm ∈ R such that rm =
X → (α1uα2, β1vβ2) with αi ∈ (S + V )∗,

βi ∈ (T +V )∗, and (u, v) ∈ Φ(A,B), add the

production rM+1 = X → (α1Xα2, β1Xβ2)
to R —with hM+1 extending hm with a new

link between the inserted X pair.

The previous procedure ends up generating

production rules such as the following English–

Chinese rule:

X → (hyuX [1] youX [2] | haveX [2]withX [1])

where the numbers in the superindexes are not

used to represent different non-terminals but the

coupling between non-terminals resulting from the

corresponding one-to-one mapping hi.
Each rule is given a probabilistic score. In order

to find the most probable translation of an input

sentence according to the grammar model, chart

parsing is used at decoding time (Chiang, 2007).

4 A new method for grammar induction

Our strategy differs from the one by Chiang (2007)

already introduced in the previous section in that

a different non-terminal is used for every possi-

ble gap when extracting the initial set of rules;

this may easily result in millions of non-terminals

2Essentially, a pair (u, v) is a bilingual phrase pair if: u and v

are segments in the source and target sentence, respectively;
no word in u is aligned to a word not in v and vice versa; and
at least one word in u is aligned to a word in v.

which are then merged following an equivalence

criterion, thus reducing the initial number of non-

terminals in several order of magnitudes. Con-

sequently, the following sections present the al-

gorithm for extraction of production rules (Sec-

tion 4.1), the criterion for considering two non-

terminals as equivalent (Section 4.2) and the merg-

ing methods which join non-terminals based on the

equivalence criterion (Section 4.3).

4.1 Extraction of production rules

The extraction phase assigns a different non-

terminal to every production as follows (compare

with the strategy proposed by Chiang (2007) and

described in Section 3):

1. Start with the set of initial non-terminals V =
{I} —I being the initial symbol— and empty

set of production rules R = ∅.

2. For every phrase pair (u, v) ∈ Φ(A,B), add

a new non-terminal Xn to V —n being the

current size of V —, and the new production

Xn → (u, v), to R. If (u, v) is a sentence

pair, then add also I → Xn to R. In contrast

to Chiang (2007), the length of the phrase-

pairs used is not constrained. This results in a

large number of production rules as well as in

a large number of non-terminals but it is nec-

essary to be able to reproduce each sentence

pair in the training corpus.

3. For every production rk ∈ R such that rk =
Xi → (α0α1α2, β0β1β2) and there is a pro-

duction Xj → (α1, β1) ∈ R, add the produc-

tion rm+1 = Xi → (α0Xjα2, β0Xjβ2) to R
—m being the size of R. Note that the sub-

script in the left-hand side is not changed, that

is, left(rm+1) = left(rk). Note also that for

every phrase pair (u, v) ∈ Φ(A,B) there is

only one non-terminal Xn that can be derived

to obtain (u, v), either by means of the imme-

diate rule Xn → (u, v) or through a number

of derivations starting with some other rule

rk ∈ R having left(rk) = Xn.

4. Finally, the count of every non-terminal Xi

is computed as done by Chiang (2007), that

is, C(Xi) is the number of occurrences in the

training corpus of the phrase pair (u, v) ∈
Φ(A,B) generated by Xi. In order to gen-

erate the count for the production rule c(rk),
the count C(Xi) is equally distributed among



Production Count

I → (X1, X1) 1

I → (X7, X7) 1

X1 → (das neue Haus, the new house) 1

6

X2 → (das neue, the new) 1

3

X3 → (neue Haus, new house) 1

3

X4 → (das, the) 2

X5 → (neue, new) 1

X6 → (Haus, house) 2

X7 → (das Haus, the house) 1

3

X1 → (X2 Haus, X2 house) 1

6

X1 → (das X3, the X3) 1

6

X1 → (X4 neue Haus, X4 new house) 1

6

X1 → (das X5 Haus, the X5 house) 1

6

X1 → (das neue X6, the new X6) 1

6

X2 → (X4 neue, X4 new) 1

3

X2 → (das X5, the X5) 1

3

X3 → (X5 Haus, X5 house) 1

3

X3 → (neue X6, new X6) 1

3

X7 → (X4 Haus, X4 house) 1

3

X7 → (das X6, the X6) 1

3

Table 1: Productions and fractional counts for the monotonic
alignment of the sentence pairs (“das neue Haus”, “the new
house”) and (“das Haus”, “the house”). The first group of
rules includes the glue rules; the second group includes those
rules added in step 2 of the algorithm in Section 4.1; the third
group is made up of the rules added in step 3. The fractional
production counts, computed as described in step 4, are shown
in the second column.

all the productions rk generating that phrase

pair, that is, between Xi → (u, v) and the

other productions with Xi in the left-hand

side added in step 3.

Figure 1 shows the resulting production rules and

their fractional counts after applying our extrac-

tion procedure to the German–English sentence

pairs (“das neue Haus”, “the new house”) and

(“das House”, “the house”), assuming a mono-

tonic alignment in which the i-th word of one sen-

tence is aligned with the i-th word of the other sen-

tence. Following Chiang (2007), rules with no lex-

ical content, such as X1 → (X2X3, X3X2), have

not been considered.

4.2 Determining equivalent non-terminals

As will be presented in Section 4.3, our method

will merge pairs of equivalent non-terminals. We

will denote with Xi ∼ Xj the fact that Xi and

Xj are equivalent and, thus, they must be merged.

Then, Xi ∼ Xj implies that for all pairs of pro-

ductions rm and rn which, for some α and β in

(V ∪ T )+ and Xk and Xl in V , have the form

rm = Xk → αXiβ

and

rn = Xl → αXjβ

the following equality is (approximately) satisfied

c(rm)

C(Xi)
≈

c(rn)

C(Xj)
(1)

and, recursively, Xk ∼ Xl. The approximate

matching between the above quotients is prob-

abilistic in nature and must be defined there-

fore in terms of a stochastic test, such as the

Hoeffding (1963) bound. When using this test

for proportion comparison, two proportions c1/C1

and c2/C2 are not statistically different if:

∣

∣

∣

∣

c1
C1

−
c2
C2

∣

∣

∣

∣

<

√

√

√

√

√

√

− log
α

2

2
C1C2

C1 + C2

where α is the confidence level.3 Note that the

possible use of α in the proportion test is twofold:

on the one hand, we may set α to a fixed value

in order to test whether two proportions are statis-

tically different; on the other hand, we may com-

pute the value of α for which the test changes from

true to false and use this value as a continuous

measure of non-terminal dissimilarity: after iso-

lating α in the Hoeffding test equation and remov-

ing terms which are constant across different eval-

uations, we can easily arrive to a function D that

provides the dissimilarity of two non-terminals in

a particular comparison context based on their re-

spective counts:

D(C1, C2, c1, c2) =
C1C2

C1 + C2

(

c1
C1

−
c2
C2

)2

(2)

The dissimilarity of two variables is therefore

obtained as the maximum value of D for all the

contexts representing the different tests performed

upon the variables as described in the previous al-

gorithm.

3Following Habrard et al. (2003), we use a Fisher exact test
as a back-off test in the experiments when the number of ob-
servations is small.



4.2.1 Example of equivalence computation

In order to gain some insight on the meaning

of equivalence between non-terminals, let us now

consider, for instance, the comparison between X3

and X6 in the example in Table 1, which can

be considered plausible candidates for equivalence

since they both generate a noun phrase pair. The

fractional number of occurrences for X3 and X6

are given by C(X3) = 1
3 + 1

3 + 1
3 = 1 and

C(X6) = 2. Note that C(X6) receives contribu-

tions from both sentence pairs.

Non-terminal X3 is only in X1 →
(das X3, the X3) —with weight 1

6— and

therefore, equivalence implies that a production

with right-hand side (das X6, the X6) must be

in R with a weight which is consistent with

Equation (1). Indeed, X7 → (das X6, the X6) is

in R with weight 1
3 : if X3 ∼ X6 both production

will appear with a relative frequency which must

be similar to the relative frequency for X3 and X6.

In this case,

c(X7 → (das X6, the X6))

C(X6)
=

1/3

2
=

1

6

while

c(X1 → (das X3, the X3))

C(X3)
=

1/6

1
=

1

6

Furthermore, the left-hand sides, X1 and X7 must

be also equivalent.4

The quotients above reflect that the word pair

(Haus, house) has been observed in two different

contexts: after the biword (das, the) and also fol-

lowing (neue, new); in contrast, the phrase pair

(neue Haus, new house) has been only observed af-

ter (das, the). This asymmetry will lead to different

values in the relative frequencies. Of course, one

cannot expect to draw definitive conclusions from

such a tiny bitext —clearly, a much larger sam-

ple will be needed to extract reliable estimates—

but the example illustrates how the frequency esti-

mates provide hints to differentiate between equiv-

alent non-terminal pairs and those which, in con-

trast, should remain distinct.

Once productions with X3 on the right-hand

side have been checked, those with X6 should be

checked although, by the symmetry of the test,

only those that have no correspondent X3-produc-

tion. In our example, the tests will be

c(X1 → (das neue X6, the new X6)

C(X6)
≈ 0

4Since they only appear in I-productions, this is trivially true.

and

c(X3 → (neue X6, new X6)

C(X6)
≈ 0

and, thus, X1 ∼ X3.

Note that, if done carefully, recursion is al-

ways finite because the comparison between non-

terminals is consistent with the depth of the subtree

associated to each non-terminal.

An efficient algorithm has to be carefully de-

signed in order to avoid duplicate calls when the

equivalence between Xi and Xj is tested (since

equivalence is a symmetric and transitive relation).

4.3 Merging variables

Given the equivalence criterion presented in the

previous section, an algorithm for non-terminal

merging can be run in order to group equiva-

lent non-terminals and reduce the initial number.

We have evaluated two different algorithms: an

adaptation of the Blue-Fringe algorithm and a k-

medoids clustering algorithm.

4.3.1 The Blue-Fringe algorithm

The following description, based on that

by Lang et al. (1998) of the procedure proposed

by Juillé and Pollack (1998), adapts the Blue-

Fringe algorithm for the identification of regular

string languages to the case of transduction gram-

mars.

The procedure splits the set of non-terminals V
into three subsets: red (the kernel K of mutually

non-equivalent non-terminals), blue (the frontier

F being explored) and white (the subset W =
V − K − F of non-terminals with pending clas-

sification). At every iteration a non-terminal is re-

moved from the frontier F and either it becomes a

new member of K or it is merged with an equiv-

alent one in K (and, thus, removed from V ). As

will be seen immediately, after every addition or

merge, some non-terminals in W can be moved to

F .

In order to avoid a possible infinite recursion

in equivalence tests, non-terminals in F must not

produce any non-terminal in K through deriva-

tion. This condition can be guaranteed if a non-

terminal Xn can only enter F if all the content on

the right-hand side of productions with the form

Xn → (α, β) is either lexical or already in K: this

implies that any production rm such that Xn ∈ F
is in right(rm) satisfies left(rm) ∈ W .



Initially, leaves (non-terminals producing only

irreducible phrase pairs) are red; non-terminals

with a production with only lexical content and red

non-terminals are blue; all other non-terminals are

white. Our method will merge pairs of equivalent

non-terminals by comparing those with a higher

number of observations first (Lang et al., 1998).

The policy described by Juillé and Pollack (1998)

performs the following actions while there are still

blue non-terminals:

1. Evaluate all red–blue merges.

2. If there exists a blue non-terminal that cannot

be merged with any red non-terminal (mean-

ing that no equivalent non-terminal is found),

promote one of the shallowest such blue non-

terminals to red (ties are broken at random).

3. Otherwise (if no blue non-terminal can be

promoted), perform the red–blue merge with

highest score. This score here is be based on

the fractional number of occurrences of the

corresponding non-terminals.

Then, some white non-terminals are moved to

the frontier F as stated before.

4.3.2 k-medoids clustering

The k-medoids algorithm is a clustering algo-

rithm similar to the well-known k-means, but with

the particularity that the center of each cluster

(the medoid) is a point in the data, which is spe-

cially relevant in our case since the representative

of each cluster must be an existing non-terminal

in the grammar. Unlike the Blue-Fringe algo-

rithm, which attains a different number of final

non-terminals depending on the confidence level

α, the parameter set a priori in this case is the num-

ber of final clusters (i.e. non-terminals) k. Note

that when following this merge approach, the dis-

similarity between non-terminals in Equation (2)

is used to compute the required distances.

5 Experimental setup

We trained and evaluated our grammar induction

procedure on the English–Spanish language pair

using a small fraction of the EMEA corpus.5 Table

2 provide additional information about the corpora

used in the experiments.

5
http://opus.nlpl.eu/EMEA.php

Corpus # Sentences # Words (en/es)

train 73,372 519,763 / 556,453

dev 2,000 22,410 / 25,219

test 3,000 33,281 / 37,492

Table 2: Number of sentences and words in each language
for the corpora used in the experiments.

In order to have a manageable initial set of

non-terminals and productions and make the prob-

lem computationally affordable we limited the sen-

tences to be included in the training corpus to a

maximum of 20 words. In addition, instead of us-

ing the words themselves when defining the ini-

tial set of non-terminals we used word classes. In

particular, we used 10 word classes obtained by

running mkcls6 (Och, 1999) for 5 iterations. As

a result, the initial set of non-terminals contains

852,423 non-terminals and the amount of produc-

tions, not including those involving the initial non-

terminal I , is 2,055,902.

All the experiments were carried out

with the free/open-source SMT system

Moses (Koehn et al., 2007), release 2.1.1.

GIZA++ (Och and Ney, 2003) was used for

computing words alignments. KenLM was used to

train a 5-gram language model on a monolingual

corpus made of Europarl v7,7 News Commentary

v88 and the EMEA sentences in the training

corpus; in total the corpus used for training the

language model consists of 3,423,702 Spanish

sentences. The weights of the different feature

functions were optimised by means of minimum

error rate training (Och, 2003). The parallel

corpora were tokenised and truecased before

training, as were the development and test sets

used.

6 Results

Table 3 reports the BLEU scores obtained on the

test set when running the Blue-Fringe algorithm

for different values of α. The amount of output

non-terminals in the inferred context-free grammar

is also reported. The best results are obtained with

α = 10−2. The performance of the baseline hi-

erarchical phrase-based system (Chiang, 2005) is

0.5818. The difference in performance is statisti-

6
http://www.statmt.org/moses/giza/mkcls.html

7
http://www.statmt.org/wmt13/

training-monolingual-europarl-v7.tgz
8
http://www.statmt.org/wmt13/

training-monolingual-nc-v8.tgz

http://opus.nlpl.eu/EMEA.php
http://www.statmt.org/moses/giza/mkcls.html
http://www.statmt.org/wmt13/
training-monolingual-europarl-v7.tgz
http://www.statmt.org/wmt13/
training-monolingual-nc-v8.tgz


α # final non-terminals BLEU

10−1 4,434 0.5838

10−2 2,346 0.5868

10−3 1,606 0.5859

10−4 1,261 0.5855

10−5 1,074 0.5866

Table 3: BLEU scores obtained by the Blue-Fringe clustering
algorithm for different values of α. The performance of the
baseline HSMT system is 0.5818.

# clustered # final non-terminals k
non-terminals 2 3 4

125 0.5975 0.5991 0.5952

250 0.5986 0.6000 0.5942

500 0.5946 0.5972 0.5936

1000 0.5950 0.5998 0.5939

2500 0.5985 0.5984 0.5964

5000 0.5947 0.5991 0.5947

Table 4: BLEU scores obtained by the k-medoids clustering
method for different sizes of the subset of non-terminals over
which the clustering is performed and for different numbers
of clusters (i.e. final non-terminals). The performance of the
baseline HSMT system is 0.5818.

cally significant for the figures in bold according

to paired bootstrap resampling (Koehn, 2004) with

p = 0.05.

Table 4 shows the BLEU scores obtained on the

test set when the k-medoids clustering algorithm is

run over the n most frequent non-terminals (# clus-

tered non-terminals) to obtained a pre-fixed num-

ber of clusters, that is, of non-terminals in the in-

ferred grammar; the remaining non-terminals are

then added to the nearest cluster after the algo-

rithm finishes. The table reports results for 2, 3

and 4 clusters; although we tried with more clus-

ters these are the numbers of clusters for which

we got the best results. The difference in perfor-

mance with the baseline is statistically significant

for all the figures reported in the table according

to paired bootstrap resampling (Koehn, 2004) with

p = 0.05.

The results obtained when the number of non-

terminals over which the k-medoids is run is set

to 250 and the number of cluster to obtained is

set to 3 are better than those obtained with the

Blue-Fringe algorithm and better that the results

achieved by the baseline. The k-medoids allow us

to get an 3% improvement in BLEU with just three

non-terminals, in contrast with the thousand non-

terminals obtained by the Blue-Fringe algorithm.

7 Conclusions

This work extends the well-known algorithm for

rule extraction in hierarchical statistical machine

translation originally proposed by Chiang (2007).

Our proposal allows for more than one non-

terminal in the resulting synchronous context-free

grammar, thus incorporating a specialisation in the

resulting non-terminals. Our method works by ini-

tially creating a different non-terminal for every

possible gap when extracting the initial set of rules;

this may easily result in millions of non-terminals

which are then merged following a novel equiv-

alence criterion for non-terminals. Two merg-

ing strategies are proposed: one inspired on the

Blue-Fringe algorithm that joins non-terminals on

a one-by-one basis, and another one that performs

a k-medoids clustering over a reduce set of non-

terminals. A statistically significant improvement

in BLEU as with respect to the original method is

obtained with both merging criteria.

For the experiments we used a small parallel

corpus and restricted the length of the parallel sen-

tences in the training corpus to 20 words. This was

necessary in order to be able to run the merging

algorithm in reasonable time. Recall that, in con-

trast to (2007), we do not restrict the length of the

phrase pairs in order to be able to reproduce the

parallel sentences in the training corpus; otherwise

long-range reorderings happening near the root of

the parse tree of the sentences would not be pos-

sible. We tried different methods for filtering the

rule table before applying the approach described

in this paper so as to be able to use larger corpora

and longer sentences, although with no success.

A deeper exploration of potential optimizations is

necessary.
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