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Non-fluent synthetic target-language data
improve neural machine translation

Vı́ctor M. Sánchez-Cartagena, Miquel Esplà-Gomis, Juan Antonio Pérez-Ortiz, Felipe Sánchez-Martı́nez

Abstract—When the amount of parallel sentences available to train a neural machine translation is scarce, a common practice is to
generate new synthetic training samples from them. A number of approaches have been proposed to produce synthetic parallel
sentences that are similar to those in the parallel data available. These approaches work under the assumption that non-fluent
target-side synthetic training samples can be harmful and may deteriorate translation performance. Even so, in this paper we
demonstrate that synthetic training samples with non-fluent target sentences can improve translation performance if they are used in a
multilingual machine translation framework as if they were sentences in another language. We conducted experiments on ten
low-resource and four high-resource translation tasks and found out that this simple approach consistently improves translation
performance as compared to state-of-the-art methods for generating synthetic training samples similar to those found in corpora.
Furthermore, this improvement is independent of the size of the original training corpus, the resulting systems are much more robust
against domain shift and produce less hallucinations.

Index Terms—machine translation, low-resource languages, data augmentation, multi-task learning
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1 INTRODUCTION

MACHINE translation (MT) —the application of com-
puters to the task of translating a text in one natural

language into another without human intervention— is one
of the key technologies enabling communication in our
globalized world. Millions of users rely on MT on a daily
basis for either assimilation, the use of the raw MT output to
get an idea of the meaning of texts in languages they do not
understand, or for dissemination, the use of the MT output to
create a draft translation which is then manually corrected
and published.

The uptake of MT technology has gradually increased
over the last ten years [1], mainly motivated by the recent
advances in the state-of-the-art approach to MT, namely
neural machine translation (NMT). NMT models are data
intensive and require large amounts of parallel corpora in
the form of several hundreds of thousands or millions of
human-translated sentence pairs used for their training.
Besides that, monolingual data has also proven to be a
valuable resource to train NMT systems.

Although there exist language pairs, such as English–
German or English–Spanish, that have large, freely available
parallel corpora, most language pairs may be considered
low-resource because there is little or no translated text
available to train NMT models for them. This problem has
been addressed in NMT through different approaches, such
as transfer-learning from high-resource language pairs [2],
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using linguistic annotations [3], training multilingual sys-
tems [4] and applying data augmentation strategies [5], [6],
i.e., artificially generating additional parallel sentences.

Data augmentation (DA) is formalized by many authors
as a solution to a data distribution mismatch problem [7],
[8] in which the empirical data distribution of the sentence
pairs in the training corpus differs from the true data dis-
tribution. DA is therefore used to build unseen synthetic
training samples that are plausible under the true data
distribution. When these synthetic training samples are used
during training, the resulting augmented data distribution
is expected to be closer to the true data distribution. The
final objective is to obtain models that are able to properly
translate sentences plausible under the true data distribu-
tion, even though they may be unlikely under the empirical
data distribution in the training corpus.

For this reason, most DA approaches pay special atten-
tion to avoiding non-fluent target-language sentences in the
synthetic training samples [7], [9], as their use may lead to
worse NMT models with lower translation performance. In
this paper, however, and in contrast to previous works, we
describe a DA approach that consists of building synthetic
training samples that are deliberately implausible under the
true data distribution. The objective is to strengthen the
encoder of the NMT model through DA. Voita et al. [10]
claim that the influence of encoder representations in the
output predictions of an NMT system is higher when the
NMT system is trained on large corpora than when it is
trained on small corpora. By producing unlikely synthetic
training samples, especially as regards their target side, we
aim at exposing the network to new situations where the
target-language prefix does not provide sufficient context
to predict the next token, therefore forcing the decoder to
rely more on the encoder representations for its predictions;
this should be viewed as a desirable trait since MT systems
should build upon the source sentence to produce accurate
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translations. In this way, it is possible to build NMT models
for low-resource language pairs that, even though they have
been trained on small parallel corpora, are able to behave as
if they had been trained on larger training corpora.

Obviously, synthetic training samples with non-fluent
target-language sentences cannot be used as if they were
original training samples, since their use would harm the
target-language model learned by the NMT system. To
avoid this, we propose the use of a multi-task learning
framework during training. This is easily achieved, without
changing the model architecture, by prepending a task-
specific artificial token to the source sentence to constrain
the kind of output to be produced [4], [11], similarly to what
is done in one-to-many multilingual NMT [12] to specify
the target language. We term this DA approach as multi-task
learning data augmentation (MaTiLDA).

Our framework —which extends preliminary work1 re-
ported in a conference paper by the same authors [13]—
does not require elaborate preprocessing steps, training
additional systems, or data besides the available train-
ing parallel corpora. Experiments with ten low-resource
translation tasks show that it systematically outperforms
state-of-the art methods aimed at extending the support
of the empirical data distribution. Additional experiments
on four high-resource translation tasks show that this ap-
proach is also able to improve translation performance even
in high-resource conditions in which NMT systems are
trained on large parallel corpora. Furthermore, we show that
this new approach and the standard DA approach, back-
translation [9], complement each other and allow further
performance improvements when they are used together.

In addition to these experiments, we perform an analysis
of the relevance of the encoder and decoder representations
in the NMT system output, which shows that, thanks to
the added synthetic training samples, MaTiLDA increases
the contribution of the source representations generated by
the encoder to the decisions made by the NMT decoder
during inference. Moreover, systems trained with MaTiLDA
are much more robust against domain shift, and produce
less hallucinations [14].

The remainder of the paper is organized as follows. The
next section briefly describes the neural approach to MT.
After that, Sec. 3 describes the DA strategies we follow and
evaluate in our experiments and the modifications intro-
duced to the training process of the NMT system. Sec. 4 then
describes the experimental settings, whereas Sec. 5 reports
and discusses the results obtained on low-resource and
high-resource translation tasks. Sec. 6 presents an analysis
of the changes in the use of the encoder representations in-
duced by our DA strategies, and an analysis of the tendency
to hallucinate of the systems trained with MaTiLDA. The
paper ends with a review of the most relevant works in the
area of DA for NMT in Sec. 7, followed by some concluding
remarks in Sec. 8.

1. The additional contributions of this paper with respect to the
conference paper [13] are as follows: (i) more sophisticated approach
for generating the synthetic samples during training; (ii) additional
experiments on both low-resource and high-resource translation tasks;
(iii) more exhaustive comparison to other DA methods; (iv) improved
evaluation of the contribution of the source representations generated
by the encoder during inference; and (v) better grounded analysis of
the tendency to hallucinate of the models evaluated.

2 NEURAL MACHINE TRANSLATION

Given a source sentence, x = ⟨x1, ..., xn⟩, and its translation,
y = ⟨y1, ..., ym⟩, NMT systems factorize the translation
probability p(y|x) as:

p(y|x) =
m∏
j=1

p(yj |y<j,x), (1)

where y<j stands for the target prefix produced before
predicting the j-th token, yj , in the target language.

Different families of neural networks have been pro-
posed for producing this probability distribution: convolu-
tional [15], recurrent [16] and transformer [17], the latter
being the current state of the art. These neural networks
are optimized by seeking the model parameters θ∗ that
maximize the likelihood of the training data D:

θ∗ = argmax
θ

∑
⟨x,y⟩∈D

p(y|x; θ). (2)

Stochastic gradient-based optimization methods are
commonly applied to find a local maximum of that likeli-
hood. These optimization methods involve iteratively up-
dating the model parameters using only a mini-batch of
sentences B from the training corpus. The parameters θ are
updated in terms of the gradient of a loss L(B, θ) computed
over the mini-batch. For instance, parameters in the batched
stochastic gradient descent algorithm [18] are updated as
follows, where i is the iteration index, n is the number of
target words in the mini-batch B and η is the learning rate:

θi+1 = θi − η
1

n
∇L(B, θ). (3)

NMT systems are usually optimized using a loss based
on cross-entropy. The basic formulation of the cross-entropy
loss function is shown below, although some enhancements
such as label smoothing have become increasingly popu-
lar [19]:

L(B, θ) =
∑

⟨x,y⟩∈B

log p(y|x; θ). (4)

3 DATA AUGMENTATION STRATEGIES

The DA strategies we follow can be formalised as transfor-
mations that are applied to the original training samples to
produce synthetic training samples. These synthetic samples
are expected to force the NMT system to rely more on the
source-language representations generated by the encoder
during translation. Most of the transformations described
next produce synthetic samples with non-fluent target-
language sentences. Some transformations are controlled by
a hyperparameter α that determines the fraction of target
words affected by the transformation. In what follows, m
denotes the amount of words in the original target sentence.
Table 1 provides an example of the effect of the different
transformations on a single sentence pair.
swap: Pairs of random target words are swapped until only
(1 − α) · m words remain in their original position. This
transformation [20] tries to force the system to trust less
the target prefix when generating a new token.
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Task Lang. Synthetic training sample
source Es gibt andere Möglichkeiten , die Pyramide zu durchbrechen .original

training
sample target There ’s other ways of breaking the pyramid .

swap target There . other ways of breaking pyramid ’s the
unk target There ’s other UNK of UNK UNK UNK .
source target Es gibt andere Möglichkeiten , die Pyramide zu durchbrechen .
reverse target . pyramid the breaking of ways other ’s There
mono target ’s There other ways the pyramid of breaking .

replace source Es gibt aufzurüsten kalt , Schach Spezialwissen zu durchbrechen .
target There ’s arming cold of breaking chess specialties .

TABLE 1: A German–English, word-aligned training sample (first row) and the result of applying the transformations
described in Sec. 3 using α = 0.5 for those transformations controlled by this hyperparameter. Words modified by each
transformation are coloured; for swap and replace, a different colour identifies the pair of words that are either swapped or
replaced together, respectively.

unk: α · m random target words are replaced by a special
UNK token [21] when they are fed to the neural network
as previous context (y<j; see Eq. 1) for the prediction of the
next target token yj . Note that, when computing the train-
ing loss, the original token, rather than the UNK token, is
used as the expected output. This strategy is similar to the
word dropout used when preventing posterior collapse in
variational autoencoders [22] and makes the target prefix
less informative for the prediction of the next target token.

source: The target sentence becomes a copy of the source
sentence. Thus, the most efficient way of predicting the
right output is checking the encoder representation to
copy from the source. Although such training instances
have been identified as harmful [23], [24], we empirically
found the opposite (see Sec. 5) thanks to the multi-task
learning framework defined later in this section.

reverse: The order of the words in the target sentence is
reversed. Voita et al. [10] suggest that the influence of
the encoder decreases along the target sentence; therefore,
by reversing the order we expect the system to learn to
use more information from the encoder when generating
tokens that usually appear near the end of the sentence.

mono: Target words are reordered to make the alignment
between source and target words monotonous by using
one-to-many word alignments as in the compression of
parallel corpora [25]. By making the alignment between
source and target words monotonous, the target sentences
become less fluent, so we expect the system to pay more
attention to the encoder.

replace: α · m source–target aligned pairs of words are
selected at random and replaced by random entries in a
bilingual lexicon obtained from the training corpus; to this
end, one-to-one word alignments are used.2 This trans-
formation is likely to introduce words that are difficult to
produce by relying only on the target language prefix, thus
forcing the system to pay attention to the source words.
Fadaee et al. [26] followed a similar approach; however,
they constrained the replacements to produce only fluent

2. If the number of aligned words is below α · m, all available
alignments are used.

target sentences.

Using the original training samples together with the
synthetic ones, without distinction between them, would
degrade the overall translation performance. On the one
hand, the system would not be able to learn the kind of
output to be produced (e.g. well-formed, fluent target sen-
tences); on the other hand, the system could learn spurious
correlations from the synthetic training samples. In order to
minimize the negative impact of having non-fluent target
sentences in the synthetic training samples while keeping
their ability to force reliance on the encoder, we applied the
multi-task learning strategy described next.

We organize the original training data in mini-batches
as if a vanilla NMT system were trained. Then, for each
original sentence pair ⟨x,y⟩ in a mini-batch, we apply one
or more of the transformations aforementioned, depending
on the experimental setting. For each transformation i, a
new synthetic sentence pair ⟨x̂i, ŷi⟩ is generated, and a new
term is added to the loss function to account for its cross-
entropy.3 As mini-batches are created at the beginning of
each epoch, the result of applying the transformations that
involve random decisions is different for each epoch, thus
preventing the system from learning spurious correlations
from synthetic data.4 In addition, we add a token to each
source sentence to indicate whether it is part of an original
training sample or of synthetic one, and, in the latter case,
which transformation was used for its generation. The latter
resembles what is done in multilingual NMT [4], [11] to
indicate the language of the output to be produced.

Hence, within our MaTiLDA framework, and with r
transformations, the cross-entropy loss function described
in Eq. (4) turns into the following expression:

L(B, θ) =
∑

⟨x,y⟩∈B

1

r + 1

r∑
i=0

log p(ŷi|⟨ti, x̂i
1, ..., x̂

i
n̂i
⟩; θ) (5)

3. Note that in all transformations but replace, x̂i = x.
4. This differs from previous work [13] in which transformations

were applied to the original training samples during the pre-processing
of the corpus, and therefore before training.
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where ⟨x̂0, ŷ0⟩ corresponds to the original training sample
⟨x,y⟩, n̂i stands for the length of x̂i, and ti denotes the
artificial token introduced to indicate whether the training
sample is the original one (i = 0) or the synthetic one
corresponding to the i-th transformation (i ≥ 1).

4 EXPERIMENTAL SETTINGS

We have conducted experiments with five language pairs
in a low-resource scenario: English (en) into German (de),
Hebrew (he) and Vietnamese (vi), and German into Up-
per Sorbian (hsb) and Romansh (rm). For this purpose, a
collection of corpora commonly considered for evaluating
DA techniques in low-resource conditions were used (see
Sec. 4.1). In addition, we have conducted experiments with
two high-resource language pairs: English into Romanian
(ro) and English into German. Both translation directions
were evaluated for each language pair, which makes a total
of ten low-resource translation tasks and four high-resource
translation tasks.

We evaluated the effect of using each of the MaTiLDA
transformations, as well as the combination of the best
performing ones. We explored the combination of MaTiLDA
and back-translation, and we also evaluated four strong DA
methods that aim at extending the support of the empirical
data distribution: SwitchOut [7], RAML [27], the combina-
tion of both (SwOut+RAML) and SeqMix [28]. SwitchOut
and RAML replace some words by random samples from
the vocabulary: SwitchOut works on the source language,
and RAML on the target language. SeqMix creates synthetic
training samples by randomly combining parts of two sen-
tences.

4.1 Datasets

For the experiments in low-resource conditions on five
different language pairs we used the following corpora. For
English–German and English–Hebrew, we followed Guo et
al. [29] and Gao et al. [28], and used the training data
(speeches of TED and TEDx talks) of the IWSLT 2014 text
translation track [30];5 for development and testing we used
the tst2013 and tst2014 datasets, respectively. For English–
Vietnamese we used, like Wang et al. [7], the training
data (also TED talks) of the IWSLT 2015 text translation
track [31];6 datasets tst2012 and tst2013 were used, respec-
tively, for development and testing. For German–Upper Sor-
bian we used the corpora released as part of the WMT 2021
task on very low resource supervised machine translation;7

for training we used all the corpora allowed for the task; for
development and testing we used the devel and devel test
sets, respectively, provided by the organizers of the task.
For German–Romansh we used the law corpus released by
Müller et al. [32] as well as the same split into training,
development and testing they used.

For the combination of MaTiLDA and back-translation
[9], we used additional English and German monolingual
corpora. In particular, for English we used all the available

5. https://sites.google.com/site/iwsltevaluation2014/
data-provided

6. https://wit3.fbk.eu/2015-01
7. https://www.statmt.org/wmt21/unsup and very low res.html

Pair # sent. # left tok. # right tok.
Low-resource conditions

Parallel data
en–de 174,443 3,575,407 3,353,855
en–he 187,817 3,862,985 2,958,136
en–vi 133,317 2,965,962 3,361,789
de–hsb 147,521 2,240,126 1,998,047
de–rm 102,192 1,773,683 2,414,749

Parallel data + back-translated data
de–en 269,213 5,537,986 5,843,264
he–en 282,587 4,728,840 6,130,842
vi–en 228,087 6,232,006 5,413,428
hsb–de 247,521 4,597,777 4.644.705
rm–de 202,192 5,412,126 4,178,262

High-resource conditions
Parallel data

en–ro 612,422 15,919,293 16,149,695
en–de 4,468,840 126,720,053 119,907,183

TABLE 2: Number of sentences and tokens in the training
corpora used in our experiments. The first ten rows corre-
spond to the experiments in low-resource conditions, only
with parallel data and with parallel and back-translated
data; the last two rows correspond to the experiment in
high-resource conditions (using only parallel data).

monolingual English sentences in the IWSLT 2018 shared
task on low-resource MT of TED talks after removing those
sentences present in the parallel training data described
above. For German, we used a corpus with 100,000 sen-
tences randomly sampled from the News Commentary v16
German monolingual corpus.8

Finally, we used the following corpora for the experi-
ments in high-resource conditions. For English–German we
used the training corpora available for the WMT 2014 shared
task on machine translation;9 for development we used
the concatenation of newstest2012 and newstest2013, and for
testing newstest2014. For English–Romanian, we used the
corpora available for the WMT 2016 shared task on machine
translation of news; for training we used the concatenation
of Europarl v8 and SETIMES2; for development and testing
we used newsdev2016 and newstest2016, respectively. Table 2
provides the amount of sentences and tokens in the training
corpora used in our experiments.

In order to study the domain robustness of MaTiLDA,
we evaluated the systems trained for German–English and
German–Romansh on out-of-domain test sets commonly
used for this task [32].10 In line with Wang & Sennrich [14],
for German–English we chose IT, law and medical test sets,
and for German–Romansh we chose a blog test set.

All corpora were tokenized and truecased with the
Moses scripts;11 then, sentences longer than 100 tokens or
with less than 5 tokens were removed from the training cor-
pora. Afterwards, byte-pair encoding [33] (BPE) with 10,000
merge operations was applied on the concatenation of the
source and target sides of the training corpora to obtain
the vocabulary. Finally, those sentence pairs in the training
corpora with more than 100 BPE tokens were removed.

8. https://data.statmt.org/news-commentary/v16/
training-monolingual/

9. https://nlp.stanford.edu/projects/nmt/
10. https://github.com/ZurichNLP/domain-robustness
11. https://github.com/moses-smt/mosesdecoder/tree/master/

scripts
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One-to-many word alignments in both translation direc-
tions were obtained using mgiza++ [34].12 Source-to-target
word alignments were used for the mono transformations
(see Sec. 3); the one-to-one word alignments required by
the replace transformation were obtained by computing the
intersection between the one-to-many word alignments in
both translation directions. The bilingual lexicon for the
replace transformation was built by annotating each source
word with the target word it is most frequently aligned with
in the one-to-one word alignments.

4.2 Training
Our neural model is a transformer base model as defined
by Vaswani et al. [17], with the exception of the amount of
warm-up steps, which was set to 8,000. All the experiments
were carried out on a single GPU with mini-batches made
of 4,000 tokens. Validation was done every 1,000 updates in
the low-resource scenario and every 5,000 updates in the
high-resource one, and the patience, based on the BLEU
score on the development set, was set to 6 validation
cycles; we then kept the intermediate model performing
best on the development set. We trained the systems with
the fairseq toolkit [35]. For RAML and SwitchOut, we
integrated into fairseq the sampling function released
by their authors [7]. For SeqMix, we also integrated the
modifications in data processing and training loss published
by their authors as a fairseq task.13

Systems trained with MaTiLDA were fine-tuned on the
original training samples after being trained on the combi-
nation of original and synthetic training samples. The results
reported are those obtained with the model that maximizes
BLEU on the development set.

As regards the DA hyperparameters, the proportion of
words affected by the swap, unk and replace transformations
is controlled by a hyperparameter α for which we explored,
for each translation task, values in [0.1, 0.9] at intervals of
0.1. RAML and SwitchOut are governed by a temperature
τ . To set its value we tried, for each translation task, a set
of values around the best ones reported by Wang et al. [7].14

For the combination of SwitchOut and RAML, firstly the
best τx for SwitchOut was determined and, afterwards, the
best τy for RAML was sought by fixing τx, as done by Wang
et al. SeqMix is influenced by a hyperparameter that controls
the sampling of the sub-parts of the training samples that
are mixed up. We experimented with values in the interval
[0.1, 1.5], similarly to Guo et al. [28],15 and selected the
systems performing best on the development set.

5 RESULTS AND DISCUSSION

In this section we report the results achieved by MaTiLDA
when it is used to train NMT systems for low-resource
translation tasks (Sec. 5.1), when it is applied in combination
with back-translation (Sec. 5.2), and when it is used in high-
resource conditions (Sec. 5.3). We also report the results
when the NMT systems are evaluated on out-of-domain test
sets (Sec. 5.4).

12. https://github.com/moses-smt/mgiza
13. Code available at https://github.com/transducens/MaTiLDA.
14. τ−1 ∈ {0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95, 1.0, 1.1, 1.2, 1.3}
15. {0.1, 0.5, 1.0, 1.5}.

5.1 Low-resource conditions

Table 3 reports the mean and standard deviation of the
translation performance, measured in terms of BLEU [36],16

of three different executions (with different random seeds)
for each of the systems built in low-resource conditions.
We employ the almost stochastic order (ASO) method [38],
following Ulmer et al.’s implementation [39], to assess
statistical significance at a p-value threshold of 0.05. For
every language pair, we highlight the scores achieved by
the top-performing model in bold, as well as those whose
difference with the top-performing model is not statistically
significant.17 These notation is used for the rest of results re-
ported from this point onward. COMET and chrF++ scores,
which were also computed, show a similar trend in all the
experiments in this paper and will not be reported.

The results show that MaTiLDA consistently outper-
forms the baseline system in all language pairs and trans-
lation directions, regardless of the transformations applied,
except for source (copying the source sentence; see results
for vi–en and hsb–de) and mono (reordering target words
for monotonous alignment; see results for en–de and vi–en).
In general, the transformations replace (random replacement
of target words and the source words they are aligned
with) and reverse (translation into the target language but
in the reverse order) are the best-performing ones; although
for some language pairs swap (random swapping of target
words) behaves better than reverse.

Interestingly, training on synthetic training sam-
ples generated with the three best transformations (re-
verse+replace+swap) further improves the performance,
achieving the best results in all translation tasks, except
for en–he and he–en, for which the best results are ob-
tained by combining only the two best transformations
(reverse+replace), and for hsb–de for which the best results
are obtained with a single transformation (swap). This sug-
gests that different transformations affect the NMT system
in different ways and are somehow complementary. The
improvement over the baseline in terms of BLEU varies
from 1.1 (hsb–de) to 4.1 (de–rm) BLEU points, being 2.1
BLEU points the average improvement.

A comparison of MaTiLDA with RAML, SwitchOut,
their combination (SwOut+RAML) and SeqMix, shows that
our approach outperforms all of them. In general, of these
four reference systems, the best performing one is SeqMix,
which outperforms the others in six of the ten translation
tasks. In any case, for all language pairs, MaTiLDA outper-
forms the best of these four reference systems in all cases,
with improvements that range from 0.4 to 2.5 BLEU points;
1.1 BLEU points on average.

5.2 Combination with back-translation

Next we explore the combination of the standard DA
method, back-translation [9], and MaTiLDA when the
best performing transformations are used together (re-
verse+replace+swap) under the aforementioned low-resource

16. sacrebleu [37] version string:
BLEU+case.mixed+lang.vi-en+numrefs.1+
smooth.exp+tok.13a+version.1.5.0

17. Following Ulmer et al. [39], we set an ASO decision threshold
of τ = 0.2.
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Task en–de de–en en–he he–en en–vi vi–en de–hsb hsb–de de–rm rm–de
baseline 25.4± .2 29.4± .1 21.4± .3 31.7± .6 28.3± .4 27.8± .5 49.7± .5 49.1± .4 49.3± .5 50.6± .3
SwOut 25.0± .4 30.4± .3 22.0± .0 32.4± .6 28.9± .4 27.8± .6 50.1± .8 49.6± 1.1 50.9± .2 51.7± .3
RAML 25.4± .3 30.4± .2 21.8± .6 33.0± .4 29.0± .3 28.0± .1 50.6± .3 49.1± 1.0 49.7± 1.9 51.0± 1.7
SwOut+RAML 25.6± .4 30.2± .4 22.2± .2 32.5± .6 28.9± .5 28.0± .8 50.6± .9 49.0± 1.3 50.9± 1.1 50.8± 1.5
SeqMix 25.9± .3 30.6± .1 22.5± .4 32.9± .6 29.7± .3 28.6± .3 50.1± .1 48.7± 1.1 50.8± 1.0 49.6± .3
swap 25.4± .5 30.5± .3 22.2± .5 32.7± .5 29.3± .2 27.9± .8 50.6± .3 50.2± .2 52.0± .7 52.4± .5
unk 25.5± .3 30.4± .3 21.6± .7 32.7± .5 29.4± .3 28.3± .6 50.5± .3 49.9± .2 52.4± .6 52.2± .4
source 25.3± .0 30.0± .3 21.8± .3 31.8± .5 28.8± .4 27.6± .5 50.1± .2 48.4± .8 51.9± .4 51.3± .9
reverse 25.9± .5 30.3± .1 21.8± .3 33.5± .3 28.8± .4 28.4± .4 50.9± .5 49.5± .2 51.8± .3 51.7± .9
mono 25.2± .2 30.0± .3 21.7± .5 32.5± .6 29.0± .2 27.7± .1 50.5± .7 49.5± .3 51.9± .6 51.4± .7
replace 26.1± .6 31.5± .2 22.6± .5 33.5± .3 30.1± .2 28.9± .6 51.1± .4 49.7± .5 53.3± .8 52.7± 1.4
rev+repl 26.3± .2 31.7± .6 22.9± .6 34.1± .5 30.1± .5 28.8± .4 51.1± .2 49.9± .4 53.0± .7 52.8± 1.0
rev+sw+repl 26.5± .3 31.8± .4 22.8± .1 33.9± .6 30.4± .5 29.1± .6 51.6± .4 49.7± .8 53.4± .6 54.1± .2

TABLE 3: For low-resource conditions, mean and standard deviation of the BLEU scores obtained when translating in-
domain test sets with the baseline system, four other DA reference systems, and MaTiLDA, using different transformations
and combinations of them.

Task de-en he-en vi-en hsb-de rm-de
baseline 31.4± .2 34.0± .5 29.4± .4 49.4± .5 49.1± .9
MaTiLDA 32.8± .1 34.8± .3 30.6± .4 50.3± .3 51.3± .5

TABLE 4: For low-resource conditions and back-translated
data, mean and standard deviation of the BLEU scores
obtained when translating in-domain test sets with the
baseline system, and MaTiLDA using the combination of the
best transformations according to the experiments without
back-translated data (reverse+swap+replace).

conditions. We do this only for the translation into the high
resource languages, for which large monolingual corpora
are available. The back-translated data was obtained by
translating, with the baseline system used in the experi-
ments reported in Table 3, the corpora described in Sec. 4.1
from English into German, Hebrew and Vietnamese, and
from German into Upper Sorbian and Romansh. The sys-
tems were then trained as usual on a corpus made of the
original training corpus plus the synthetic corpus made
of back-translated data (see Table 2) on the source and
the original English or German sentence (depending on
the language pair) on the target. Note that MaTiLDA was
applied to the back-translated data as well, just as if it were
the original training corpus.18

Table 4 shows the results of the aforementioned ex-
periment using back-translated data. A comparison of the
performance, reported in tables 3 and 4 for the baseline
systems, shows that when the target language is English, the
use of back-translated data improves performance in around
2.0 BLEU points; when the target language is German the
use of back-translation makes the resulting MT system to
perform comparably (see results for hsb–de) or even worse
(see results for rm–de). This difference between the systems
translating into English and into German may be explained
by the fact that, for hsb–de and rm–de, the original training
corpus and the test set come from the same source (hsb–de;
Witaj Language Center) or belong to the same domain (rm–
de; law) —note the high BLEU scores for these language

18. We tried different combinations of using the back-translated data:
with and without applying MaTiLDA on back-translated sentence
pairs, using a tag (as with the transformations) to flag back-translated
sentence pairs, and using a tag to flag back-translated sentence pairs on
which MaTiLDA was applied. All of them performed similarly.

Task en–ro ro–en en–de de–en
baseline 23.3± .1 30.5± .2 24.3± .5 30.0± .4
SwitchOut 23.3± .3 30.9± .2 24.8± .2 30.1± .8
RAML 23.6± .2 30.7± .1 24.9± .1 30.6± .6
SwOut+RAML 23.5± .2 31.2± .1 24.7± .2 30.0± .3
SeqMix 23.5± .2 31.3± .3 24.6± .2 30.0± .8
swap 23.5± .2 30.9± .4 24.9± .4 30.7± .7
unk 23.6± .1 30.7± .0 25.3± .2 31.1± .2
source 23.6± .2 31.1± .3 23.9± .6 29.7± .5
reverse 23.8± .1 31.2± .2 24.3± .3 30.2± .7
mono 23.3± .4 30.4± .2 24.6± .2 30.5± .2
replace 23.9± .2 31.6± .3 25.6± .2 30.9± .1
sw+unk+repl 24.3± .2 32.1± .1 25.8± .2 31.5± .8

TABLE 5: For high-resource conditions, mean and standard
deviation of the BLEU scores obtained when translating in-
domain test sets with the baseline system, four other DA
reference systems, and MaTiLDA, using different transfor-
mations and combinations of them.

pairs as compared to the others— whereas the German
monolingual corpus used to generate the back-translated
data comes from a different source (News Commentary) and
belongs to a different domain (news).

A comparison of the results obtained when back-
translation and MaTiLDA are used together shows an im-
provement over the system using only back-translation of
around 1.3 BLEU points, which accounts for the comple-
mentarity of both DA approaches. Compared to the ap-
plication of MaTiLDA alone (last row of Table 3) the im-
provement of the systems translating into English is around
1.1 BLEU points. When translating into German, translation
performance is improved by 0.6 BLEU points in the case of
hsb–de, and worsened by 2.8 BLEU points in the case of rm–
de. Note that the rm–de baseline system trained on back-
translated data performs worse than the baseline system
trained solely on parallel corpora (1.5 BLEU points worse).

5.3 High-resource conditions
Even thought MaTiLDA is aimed at improving the trans-
lation quality of NMT systems trained on scarce parallel
corpora, we have also studied the performance of MaTiLDA
when it is used to train systems in high-resource conditions.
Table 5 reports the results of these experiments for English–
Romanian and English–German in both translation direc-
tions. For English–Romanian the training corpus is around
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4 times larger than for the low-resource languages with
which we have experimented so far; for English–German
the training corpus is around 30 times larger (see Table 2).

As the results in Table 5 show, MaTiLDA outperforms
the baseline in the four translation tasks —the improvement
ranges from 1.0 to 1.6 BLEU points; 1.4 BLEU points on
average— as well as the other DA approaches. It is worth
noting that the improvement it brings seems not to be
conditioned by the amount of parallel data used, as it
is around 1.3 BLEU point for English–Romanian (about
600,000 training parallel sentences) and 1.5 BLEU points for
English–German (more than 4.4 million parallel sentences).
As happened with the low-resource translation tasks, al-
most all transformations improve over the baseline, and the
combination of the best performing ones (swap+unk+replace)
further improve the baseline results.

5.4 Domain robustness
Finally, we evaluate the performance of the English–German
and German–Romansh NMT systems when translating out-
of-domain test sets. For English–German we used test sets
in the IT, law, and medical domains; for German–Romansh
we used a test set whose sentence pairs were extracted from
blogs (see Sec. 4.1 for more details).

Tables 6 and 7 report the translation performance at-
tained by the NMT systems trained in low-resource and
high-resource conditions, respectively, when they are eval-
uated on out-of-domain test sets. The systems being eval-
uated are: the baseline system, MaTiLDA using the best
three transformations, the combination of SwitchOut and
RAML (SwOut+RAML) and SeqMix. These tables show that
MaTiLDA outperforms the baseline, SwOut+RAML and Se-
qMix systems both in low-resource and high-resource condi-
tions. The best performing reference system in low-resource
conditions is SeqMix and MaTiLDA outperforms SeqMix by
2.7 BLEU points on average. In high-resource conditions
the best performing reference system is the combination
of SwitchOut and RAML (SwOut+RAML) and MaTiLDA
outperforms SwOut+RAML by 3.8 BLEU points on average.
Note that there are cases, such as the IT domain for German-
English, in which the improvement is above 8 BLEU points.

6 EXPLAINABILITY

In the previous section we have exhaustively evaluated
the performance of MaTiLDA and have shown that it sys-
tematically outperforms state-of-the-art DA methods both
when translating in-domain and out-of-domain test sets. In
this section we study if the use of MaTiLDA increases the
contribution of the source representations produced by the
encoder to the generation decisions made by the decoder
(Sec. 6.1). In addition, we also study if MaTiLDA leads NMT
systems to produce less hallucinations [40], i.e., completely
inadequate output translations which are strongly unrelated
to the input text (Sec. 6.2).

6.1 Relative source and target contributions
To compute the relative contribution of source and target
tokens to each prediction made by the system we used
an embedding perturbation method [41]. Given a source

sentence x and its translation y, the absolute source con-
tribution CS(yj) when producing the probability of the j-th
token yj is defined as the variance of yj ’s output probability
across N random perturbations of the word embeddings
of x. Specifically, CS(yj) is computed according to the
following equation:

CS(yj) =
1

N

N∑
n=1

(
p(yj |y<j, x̃

n)− 1

N

N∑
m=1

p(yj |y<j, x̃
m)

)2

,

where x̃k stands for the k-th perturbation of the word
embeddings of x.

In order to perturb the word embedding of a source
token x, Gaussian noise with a standard deviation propor-
tional to the Euclidean norm of the embedding is added to
it:19

x̃ = x+N (0, σ2
x);σx = λ · ||x||

The absolute target contribution CT (yj) is computed
analogously by perturbing y<j instead of x. The relative
source contribution CSR(yj), which we use in our analysis,
is then obtained after normalizing CS(yj) as follows:

CSR(yj) =
CS(yj)

CS(yj) + CT (yj)
.

We analysed the values of CSR(yj) in two different ways
to shed light on the way MaTiLDA affects reliance on the
source language information. On the one hand, we averaged
CSR(yj) for all the tokens of the translation of the test set
produced by a system to obtain an estimation of its general
degree of reliance on the source language. On the other
hand, we studied how CSR(yj) changes throughout the
different tokens of the target sentence for each of the DA
approaches. In both cases, and following Voita et al. [10],
we teacher force the reference translations so as to perform
comparisons between systems when producing the same
output.

Tables 8 and 9 show the general source influence for
systems trained, respectively, in low-resource and high-
resource conditions, when translating the in-domain test
sets. As before, we used the almost stochastic order (ASO)
method [38], [39] to determine if the variations in source
influence among the assessed systems are statistically sig-
nificant, using a p-value threshold of 0.5. We highlight in
bold the system with the highest source influence, along
with those that do not exhibit statistically significant differ-
ences from it; we do this in all the tables reporting source
influences.

As tables 8 and 9 show, in low-resource conditions,
MaTiLDA systematically increases reliance on the source
language, thus, behaving similarly to NMT systems trained
on larger original parallel corpora [10]. Reverse and unk
are the transformations that bring the largest increase, and
replace the one that brings the smallest one. The combination
of the best transformations also brings a large increase
in source-language reliance. Concerning the other DA ap-
proaches, only RAML increases source reliance. Note that
this approach involves replacing some words in target-
language sentences with other words randomly chosen from

19. We set N = 50 and λ = 0.01 [41].
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Domain IT Law Medical Blogs
Direction en–de de–en en–de de–en en–de de–en de–rm rm–de
baseline 6.9± .4 4.5± 1.8 7.7± .5 7.6± 1.8 11.0± .9 10.0± 2.0 15.8± .2 15.2± .3
SwOut+RAML 5.9± 1.4 8.1± 1.4 7.0± 1.1 7.8± .8 12.0± .4 11.3± 1.2 16.1± .7 15.4± .4
SeqMix 8.3± 1.8 9.4± 1.3 8.7± .4 9.3± .2 12.7± .9 12.0± .4 17.5± .3 16.3± .4
MaTiLDA 15.3± .3 13.3± .7 10.2± .5 10.7± .1 16.9± .6 15.1± 1.0 20.8± .1 19.8± .5

TABLE 6: For low-resource conditions, mean and standard deviation of the BLEU scores obtained when translating out-of-
domain test sets. The MaTiLDA results were computed using the combination of the best transformations on low-resource
conditions (reverse+swap+replace).

Domain IT Law Medical
Direction en–de de–en en–de de–en en–de de–en
baseline 10.6± 2.1 20.8± 1.0 28.3± 2.4 32.0± .1 17.4± 1.0 23.3± .9
SwOut+RAML 11.5± 3.2 20.8± 1.8 28.9± 1.4 33.7± .2 18.3± 1.4 25.0± .4
SeqMix 11.2± 2.0 18.5± 2.6 28.1± 1.1 30.1± 1.4 17.7± 1.0 23.3± .7
MaTiLDA 13.7± 2.7 29.0± 1.1 31.0± 1.9 35.7± .8 22.2± 1.4 29.1± .8

TABLE 7: For high-resource conditions, mean and standard deviation of the BLEU scores obtained when translating out-of-
domain test sets. The MaTiLDA results were computed using the combination of the best transformations on high-resource
conditions (swap+unk+replace).

Task en–de de–en en–he he–en en–vi vi–en de–hsb hsb–de de–rm rm–de
baseline 63.2± .8 67.1± 2.0 71.8± 1.7 67.2± 2.6 68.1± 1.1 58.7± 1.2 77.6± 1.1 76.2± 1.4 72.9± .9 63.8± 1.7
SwOut 60.4± .2 63.1± 1.1 68.5± .7 64.2± 3.5 64.2± 1.1 56.7± .2 72.2± .8 67.1± 1.1 69.0± .7 58.8± 1.9
RAML 68.7± 1.8 70.3± 1.7 74.3± 2.2 72.2± 2.2 73.2± 3.0 60.9± 1.4 79.6± 1.5 79.9± 1.2 75.8± 1.4 69.3± 1.9
SwOut+RAML 65.4± 2.5 68.5± 1.9 71.0± .8 67.0± 1.5 67.5± 2.3 59.1± .6 76.0± 1.8 72.5± 3.1 73.6± 2.2 64.8± 1.8
SeqMix 63.5± .6 64.2± 2.1 67.8± 1.5 62.8± 1.2 58.0± 1.6 54.7± .9 75.0± 2.8 75.2± 1.5 57.6± 1.6 63.5± 1.4
swap 68.3± .7 74.9± 2.3 76.9± .8 74.0± 1.6 74.0± 1.3 63.4± 1.9 79.7± 1.4 78.9± 1.2 79.6± .3 68.4± 1.8
unk 71.2± .8 74.3± .7 75.8± 1.2 71.2± 1.6 71.5± 2.0 70.3± 1.2 84.1± 1.1 84.6± 1.4 80.2± 1.2 66.1± .7
source 68.6± 1.5 71.8± 1.8 74.6± 1.6 67.8± 2.9 71.1± 1.3 64.3± .4 82.0± .6 81.6± 2.2 76.8± .0 68.3± 1.8
reverse 71.3± 2.2 75.1± .5 80.1± 1.0 76.3± 1.5 77.2± .9 70.6± 2.1 84.0± 1.6 83.0± .9 80.0± 1.5 75.1± 1.2
mono 64.7± 1.7 70.0± .3 72.4± .1 66.9± 1.1 69.6± 1.5 61.7± 2.0 76.4± .7 76.6± .6 75.5± .9 66.7± 1.7
replace 62.1± 1.9 67.1± .2 71.6± 1.6 72.5± 1.4 68.3± 1.0 60.5± 1.6 76.0± 1.8 75.9± 2.3 72.0± 1.0 65.2± 1.0
rev+repl 67.9± 3.0 73.5± 1.2 78.9± 1.2 77.7± .9 71.9± 2.2 65.7± 1.4 81.0± 1.9 83.6± 1.5 76.1± .5 71.7± .4
rev+sw+repl 69.3± 2.5 74.7± 1.2 81.1± .1 77.0± .7 75.8± 2.3 65.6± 1.3 81.5± 1.7 82.1± 1.7 79.4± 1.1 71.9± 2.8

TABLE 8: For low-resource conditions, mean and standard deviation of the source influence obtained when translating in-
domain test sets with the baseline system, four other DA reference systems, and MaTiLDA using different transformations
and combinations of them.

Task en–ro ro–en en–de de–en
baseline 72.0± .9 84.3± .6 62.5± 5.3 68.4± 1.0
SwitchOut 68.6± 1.1 80.8± .9 56.9± 4.1 67.7± .9
RAML 78.5± .6 87.7± 1.6 61.9± .6 76.9± 2.8
SwOut+RAML 76.2± 1.0 86.1± .5 65.1± 5.0 77.7± .7
SeqMix 71.6± 1.2 80.6± 1.6 56.5± 2.1 69.7± 4.5
swap 76.1± .4 86.9± .7 61.8± 4.3 72.4± .2
unk 76.8± 2.4 85.9± .3 59.3± 3.9 72.7± 1.2
source 70.4± 2.5 82.0± .5 65.9± 3.5 71.4± .8
reverse 71.0± 1.2 86.5± 1.5 60.4± 7.0 69.1± 1.6
mono 74.3± 2.1 87.3± 1.1 66.5± 1.9 72.7± 1.7
replace 70.7± .8 80.3± .8 66.0± 4.6 75.7± 2.2
sw+unk+repl 75.9± .9 79.7± 1.1 62.4± 3.2 74.6± 1.4

TABLE 9: For high-resource conditions, mean and standard
deviation of the source influence obtained when translating
in-domain test sets with the baseline system, four other DA
reference systems, and MaTiLDA using different transfor-
mations and combinations of them.

the vocabulary. Thus, it makes the target prefix less predic-
tive, similarly to the MaTiLDA transformations. Neverthe-
less, both BLEU scores and source reliance are lower than
those obtained with MaTiLDA.

In high-resource conditions, the increase in source re-
liance brought by MaTiLDA is smaller than in low-resource
conditions, and it is focused mainly on the systems translat-

ing into English. When English is the source language, the
target language (German and Romanian) is highly inflected
and may require more reliance on the target context to
produce a grammatical output.

The general source influence when translating the dif-
ferent out-of-domain test sets, depicted in tables 10 and
11, follows similar trends to those identified for the in-
domain scenario. The largest source influence is achieved
by MaTiLDA for low-resource translation tasks, while the
gap between it and SwitchOut+RAML vanishes when larger
training data is available.

Figure 1 depicts the value of CSR(yj) for each target-
language token of the low-resource in-domain English–
German test and for the different DA methods evaluated;
the rest of language pairs show the same behaviour. As
sentences have different lengths, the position of a token
in the sentence (x-axis) is represented as the proportion
of the words already predicted, hence the values in the
x-axis are in the interval [0, 1], being 0 the first token of
the sentence and 1 the last one. The polynomial that best
fits the data (obtained via least squares) is also depicted
in the plot.20 It can be observed that the source influence

20. The degree of the polynomial was empirically obtained by incre-
mentally exploring different values. We found that the lowest polyno-
mial degree that best fits the data was 6.
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Domain IT Law Medical Blogs
Direction en–de de–en en–de de–en en–de de–en de–rm rm–de
baseline 62.4± 1.4 66.2± 1.9 58.8± .7 58.7± 1.6 62.0± 1.0 62.6± 2.2 64.8± .9 61.4± 1.3
SwOut+RAML 66.1± 2.1 68.1± 2.4 62.4± 2.6 61.0± 1.9 65.3± 2.1 64.6± 2.2 67.2± 3.2 62.4± 1.9
SeqMix 61.6± 1.7 66.1± 2.1 60.2± 1.4 61.8± 2.1 62.4± 1.1 63.4± 2.2 55.9± 1.2 54.8± 1.2
MaTiLDA 66.8± 2.4 76.4± 1.1 66.3± 3.2 70.7± .6 66.2± 3.2 72.6± .7 74.1± 1.7 68.8± 2.8

TABLE 10: For low-resource conditions, mean and standard deviation of the source influence obtained when translating
out-of-domain texts in the IT, law, medical and blogs domains. The MaTiLDA results were computed using the combination
of the best transformations on low-resource conditions (reverse+swap+replace)

Domain IT Law Medical
Direction en–de de–en en–de de–en en–de de–en
baseline 61.3± 4.8 75.4± 1.3 58.1± 6.1 71.2± 1.3 59.9± 4.4 65.8± 1.4
SwOut+RAML 61.7± 4.8 81.2± 1.0 63.1± 6.4 78.8± 1.3 60.0± 5.2 70.8± 1.3
SeqMix 54.8± 3.7 74.3± 4.7 52.2± 1.2 71.8± 5.3 53.6± 3.5 65.2± 4.4
MaTiLDA 60.7± 1.1 81.6± 2.8 57.9± 3.3 79.4± 2.3 59.2± 1.2 72.4± 1.9

TABLE 11: For high-resource conditions, mean and standard deviation of the source influence obtained when translating
out-of-domain test sets. The MaTiLDA results were computed using the combination of the best transformations on high-
resource conditions (swap+unk+replace).

Fig. 1: Source influence throughout relative target sentence
positions for the English–German low-resource in-domain
test set.

decreases as decoding progresses, in line with the findings
of Voita et al. [10]. The difference between MaTiLDA and the
baseline remains relatively constant through the sentence
except for the first tokens, where the target prefix is too short
to make a difference between the DA methods. The relative
position between the DA methods evaluated matches those
shown in Table 8.

6.2 Hallucinations
In spite of the significant improvements in translation per-
formance brought by the recent advancements in NMT,
the phenomenon of hallucinations in NMT still remains a
concern. Hallucinations usually appear in out-of-domain
translations [42], and may undermine user trust.

Hallucinations have been associated with systems failing
to use source information properly [10], [43], thus showing
abnormal patterns in the cross-attention to the encoder. As
we have already proved that MaTiLDA consistently im-

proves source relevance, in this section we analyse whether
this additionally results in the mitigation of hallucinations
in both in-domain and out-of-domain translation tasks.

In order to estimate the number of hallucinations pro-
duced by systems trained with different DA techniques
we used LaBSE [44] cross-lingual sentence embeddings.
A number of studies [43], [45], [46] have shown that the
use of cross-lingual sentence embeddings to compute the
similarity of MT outputs and their reference translations
outperforms previous methods for detecting hallucinations,
such as COMET [47], [48] or lexical-based metrics [40], [42].
Noticeably, LaBSE, as a discriminator of hallucinations, un-
like COMET, has been shown to differentiate hallucinations
from poor translations [43].

We evaluate the tendency to hallucinate of four sys-
tems: the baseline, MaTiLDA including the best performing
transformations, the combination of SwitchOut and RAML,
and SeqMix. We compute the sentence-level LaBSE embed-
dings for the system outputs and the references, and then
represent the cosine similarities between them. Computing
the cosine similarity between the systems’ output and the
source sentences in the test sets results in similar plots.

Figures 2 and 3 show the kernel density estimations
of the distributions of cosine similarities for the systems
trained in low-resource and high-resource conditions, re-
spectively, for the English–German and German–English
translation tasks. To obtain these plots we used the same test
sets and domains (in-domain, IT, legal and medical) used
in Sec. 5.4. A larger view of the area close to zero where
the strongest hallucinations are supposed to live [43] is also
included with each plot.

As the plots show, MaTiLDA cosine distribution curves
are shifted to the right when compared to the baseline
and the other DA methods; even when the systems are
trained in high-resource conditions (see Fig. 3). This can
be interpreted as a clear sign of reduction of hallucinations
in the systems trained with MaTiLDA, especially under
domain shift. In this regard, it is worth noting how the
in-domain plots are prominently shifted to the right when
compared to the out-of-domain ones because the systems
hallucinate less and produce more semantically accurate
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(a) en–de, in-domain (b) en–de, IT (c) en–de, medical (d) en–de, law

(e) de–en, in-domain (f) de–en, IT (g) de–en, medical (h) de–en, law

Fig. 2: Kernel density estimations (bandwidth=0.06) for LaBSE-based cosine similarities between the output produced by
NMT models trained in low-resource conditions and the reference translations in test sets belonging to different domains.
DA methods: baseline, SwitchOut+RAML, SeqMix, MaTiLDA.

Type Cosine Sentence

Source hinweise fÜr die richtige anwendung
Reference advice on correct administration
Baseline 0.167 you know, evidence for die’s applica-

tion.
SwOut+RAML 0.098 it’s called ”die.”
SeqMix 0.280 clues to die’s real application.
MaTiLDA 0.515 clues to the right use.
Source artikel 16
Reference article 16
Baseline -0.049 they said, ”wwhwhwhwhwhwhwhwh-

whwhwhwhw [...] were were were were
were were were were were [...] were.”

SwOut+RAML 0.529 I was 16 years old.
SeqMix 0.634 it’s 16 articles of 16.
MaTiLDA 0.893 articles 16.

TABLE 12: Examples of output translations in which
MaTiLDA attains the highest cosine similarity with the
reference translation.

outputs when translating in-domain texts. Table 12 shows
the output translations of each system under study in a
couple of representative cases in which MaTiLDA attains
the highest cosine similarity with the reference translation.
Note, however, that a relatively high cosine value may still
correspond to a hallucination (see cosine similarity values
for the second example in Table 12), which supports the idea
that the consistent shift to the right of the cosine distribution
curves for MaTiLDA in figures 2 and 3 clearly indicate
a reduction in the tendency to hallucinate of the systems
trained with MaTiLDA.

7 RELATED WORK

The back-translation [9] approach for leveraging additional
target monolingual data, is, probably, the most popular DA
approach for NMT. The set of related approaches covered
in this section, however, mainly focus on methods that, as
MaTiLDA, do not require additional resources besides the
training parallel corpus.

Li et al. [5] evaluate back- and forward-translation in
such a setting. They train forward and backward NMT
systems on the available parallel data and use them to pro-
duce new synthetic samples by translating either the target
side [49] or the source side [50] of the original training cor-
pus. Other approaches simply select two training samples at
random and concatenate, on one side, the source sentences
and, on the other side, the target sentences to generate
larger training samples [51], [52] in order to improve the
translation quality of long source sentences.

The approaches we have evaluated in our experiments,
RAML [27], SwitchOut [7] and SeqMix [28], aim at extend-
ing the support of the empirical data distribution, which
is expected to prevent the model to memorize long seg-
ments and improve the model generalization capabilities.
To that end, RAML and SwitchOut replace words with other
words sampled from a uniform distribution over the vocab-
ulary, which, in practice, results in infrequent words being
overrepresented; RAML works on the target side, whereas
SwitchOut works on the source side. SeqMix approaches the
problem in a different way and generates synthetic training
samples by randomly combining parts of two sentences in
order to encourage compositional behaviour.
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(a) en–de, in-domain (b) en–de, IT (c) en–de, medical (d) en–de, law

(e) de–en large, in-domain (f) de–en, IT (g) de–en, medical (h) de–en, law

Fig. 3: Kernel density estimations (bandwidth=0.06) for LaBSE-based cosine similarities between the output produced by
NMT models trained in high-resource conditions and the reference translations in test sets belonging to different domains.
DA methods: baseline, SwitchOut+RAML, SeqMix, MaTiLDA.

Applying simple transformations, such as swapping
words, to existing sentences is an idea that has been widely
applied in the context of NMT with multiple purposes.
For instance, several simple transformations (word dele-
tion, replacement, swapping) have been applied to back-
translated data [53] with the aim of allowing the system
to better distinguish between original and back-translated
sentences. In the context of unsupervised NMT, the noisy
input sentences to denoising autoencoders are generated by
random token swaps [20].

Focusing on approaches that modify word order in the
context of DA, it is worth highlighting a self-translation
approach using a right-to-left decoder [54], which is similar
to inverting the order of the target words. However, unlike
MaTiLDA, this last approach needs to generate translations
from the model during training.

Replacing tokens with placeholders (as we do in unk)
has already been applied to the source language [55] in
combination with two self-supervised learning objectives
for detecting replaced and dropped tokens. Xie et al. [21]
also evaluate the impact of random replacements of words
in the source and target sides of the training samples by
either a random word from the vocabulary, or by a blank.

Gao et al. [29] replace source-side words selected at
random with soft words whose representations are obtained
from the probability distribution provided by a language
model. Fadaee et al. [26] replace some words in their train-
ing samples by infrequent words in order to improve the
performance of the NMT model when dealing with them at
translation time. Words to be replaced are identified using
a large source language model. Once the source words to

be replaced are identified, a word-alignment model and a
probabilistic dictionary are used to also replace the corre-
sponding counterpart by the most probable translation of
the new source word. In MaTiLDA, the replace transforma-
tion, which is similar, does not require any language model.

As regards the special token we use to prevent negative
transfer between tasks, a similar strategy [56] has been ap-
plied to identify synthetic samples when combining actual
parallel data and back-translated data for training. Yang
et al. [57] extends this last work by including forward-
translated data for training using two different special to-
kens to distinguish the two types of synthetic data. An-
other strategy that has been reported to be effective to
combine synthetic and original training instances is the
AugMix method [58], initially defined in the context of
image processing. This method involves creating training
samples through linear interpolation of the embeddings of
both the original and the synthetic samples and adding
an auxiliary loss that enforces model probabilities of both
types of samples to be similar. It has been subsequentially
applied to NMT [59] using the simple transformations men-
tioned above (word deletion, replacements as those defined
in SwitchOut/RAML, swapping), which are not the best
performing ones according to our analyses.

The problem of the NMT system relying too much on
the target-language context has been addressed in ways
other than DA. Miao et al. [60] define a metric to mea-
sure the prevalence of the decoder’s language model over
the encoder representations and use it to define specific
auxiliary loss functions to reduce this prevalence; Weng
et al. [61] use a similar auxiliary loss that is only optimized
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on mistranslated fragments selected from the training data.
Finally, a number of approaches that mitigate the

amount of hallucinations produced by NMT systems have
been proposed [14], [32], [40], [42], [48]. However most of
them either do not evaluate the impact of the techniques
proposed in the general performance of the NMT models
built [40], [48], or report mixed results with a drop in
performance for some language pairs or in some translation
scenarios [14], [32], [42]. In contrast, the approach described
in this paper not only reduces the degree of hallucinations as
measured by LaBSE, but it also improves the general quality
of the translations produced by the NMT models.

8 CONCLUDING REMARKS

We have presented a novel method for data augmentation
(DA) for neural machine translation (NMT) that we have
termed as multi-task learning DA (MaTiLDA). In contrast to
state-of-the-art DA approaches, MaTiLDA aims at generat-
ing new synthetic training samples with non-fluent target-
language sentences by means of aggressive transforma-
tions, such as reversing the order of the target sentence or
swapping random target words. The new synthetic training
samples, which are considered as data for additional learn-
ing tasks, provide new contexts during training where the
target prefix is not sufficiently informative to predict the
next token, thus strengthening the relevance of the encoder
and increasing at inference time the reliance on the source-
language representations it generates. MaTiLDA is agnostic
to the NMT model architecture and does not require elab-
orate preprocessing steps, additional training systems, or
data besides the available training parallel corpora.

We have extensively evaluated this new approach on
ten low-resource and four high-resource translation tasks.
The results show consistent improvements over a baseline
without DA, and over three strong state-of-the-art DA meth-
ods that aim at extending the support of the empirical data
distribution by generating synthetic training samples with
fluent target sentences. This improvement shows up both
when training NMT systems in low- and high-resource con-
ditions. Furthermore, NMT systems trained with MaTiLDA
are much more robust under domain shift and generate
fewer hallucinations than the baseline or any of the state-
of-the-art DA methods we have compared with when trans-
lating out-of-domain texts. In addition, our evaluation also
demonstrates that MaTiLDA can be easily combined with
the standard DA method, namely back-translation, and that
both methods complement each other as their combination
results in further translation performance improvements.

An analysis of the influence of the encoder and decoder
representations in the NMT system output shows that,
thanks to the transformations used for building synthetic
training samples, MaTiLDA increases the contribution of
the source representations from the encoder to the deci-
sions made by the NMT decoder during inference. Hence,
MaTiLDA makes it possible to build NMT models for low-
resource language pairs that, even though they have been
trained on small parallel corpora, are able to behave as if
they had been trained on larger training corpora.

All in all, the method we have presented offers promis-
ing implications for the field of NMT. By utilizing a ro-
bust and contrasted approach, we have demonstrated the

potential to enhance the accuracy of virtually any existing
NMT system by seamlessly integrating MaTiLDA in their
training pipelines to make the most of the existing corpora.
We leave for future work the study of the potential effects of
integrating MaTilDA in scenarios with even more resources
than those used in our study, as it is the case of the
utilization of large pre-trained multilingual NMT models.
This pre-trained models make use of extensive amounts of
monolingual and parallel data from various language pairs
and significantly outperform systems trained exclusively on
parallel data [62].21
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Miquel Esplà-Gomis is Assistant Professor at
Universitat d’Alacant, Spain. He obtained his
PhD in Computer Science in 2016. His main
research fields are parallel data acquisition
and application of translation technologies to
computer-aided translation. He has published
more than 30 articles in international confer-
ences and journals. He has coordinated the EU-
funded project MaCoCu, aimed at harvesting
monolingual/parallel corpora for low-resourced
European languages from the Internet.
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