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Abstract

Computer-aided translation (CAT) tools based
on translation memories (MT) play a promi-
nent role in the translation workflow of profes-
sional translators. However, the reduced avail-
ability of in-domain TMs, as compared to in-
domain monolingual corpora, limits its adop-
tion for a number of translation tasks. In this
paper, we introduce a novel neural approach
aimed at overcoming this limitation by exploit-
ing not only TMs, but also in-domain target-
language (TL) monolingual corpora, and still
enabling a similar functionality to that offered
by conventional TM-based CAT tools. Our ap-
proach relies on cross-lingual sentence embed-
dings to retrieve translation proposals from TL
monolingual corpora, and on a neural model
to estimate their post-editing effort. The paper
presents an automatic evaluation of these tech-
niques on four language pairs that shows that
our approach can successfully exploit mono-
lingual texts in a TM-based CAT environment,
increasing the amount of useful translation pro-
posals, and that our neural model for estimat-
ing the post-editing effort enables the combi-
nation of translation proposals obtained from
monolingual corpora and from TMs in the
usual way. A human evaluation performed
on a single language pair confirms the results
of the automatic evaluation and seems to in-
dicate that the translation proposals retrieved
with our approach are more useful than what
the automatic evaluation shows.

1 Introduction

Despite the recent advances in machine translation
(MT), translation memories (TM) play a prominent
role in the translation workflows of language ser-
vice providers, translation departments, and free-
lance translators; the 2020 edition of the annual
European Language Industry Survey (ELIA et al.,
2020) reported TMs to be the most popular re-
source among freelance translators and a relevant
target of investment for companies and translation

departments. Even when the perceived quality of
the translation proposals from TM and MT is quite
similar, professional translators need more time to
post-edit MT outputs than TM proposals (Sánchez-
Gijón et al., 2019). In addition, the use of TMs
foster terminology consistency and is especially
suited to repetitive translation tasks as they allow
for convenient recycling of previous translations.

Formally, a TM (Isabelle et al., 1993) may be
defined as a collection of translation units (TU),
that is, source-target sentence pairs (s, t) which
are mutual translations. They are conveniently ex-
ploited by computer-aided translation (CAT) tools
which, for each new sentence to be translated s′,
retrieve from the TM the subset of TUs {(s, t)}
whose source sentences s are most similar to s′.
Translators then choose the TU that better fits their
needs and make the appropriate changes to t, the
target sentence in the selected TU, to convert it into
t′, an adequate translation of s′.

The similarity between s′ and the source sen-
tence s in a TU is estimated by means of the
fuzzy match score (FMS) function, which is usu-
ally based on the word-based edit distance (Wagner
and Fischer, 1974), and can be interpreted as the
proportion of words common to s and s′. The com-
plement of the FMS is also used as an estimation
of the post-editing effort, i.e. the proportion of
word-level edit operations to perform on t to get t′.

Even though deep learning methods have been
recently applied to TMs, they have only been used
to bias neural MT systems to produce translations
similar to those in a TM (Tezcan et al., 2021), or
to devise alternative ways of computing the FMS
between two source sentences (Ranasinghe et al.,
2020). To the best of our knowledge, no approach
has tried to overcome the main limitation of TMs:
the reduced availability, as compared to target-
language (TL) monolingual corpora, of in-domain
TMs for a given translation task.

In this paper, we present an approach aimed
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at overcoming the aforementioned limitation by
enabling the exploitation of in-domain TL mono-
lingual corpora in CAT tools and increase the
chance of getting useful translation proposals. In
such scenario, FMS cannot be computed because
the TL sentences in the monolingual corpus have
no source-language counterpart. We circumvent
this issue by using cross-lingual sentence embed-
dings (Artetxe and Schwenk, 2019; Reimers and
Gurevych, 2020; Feng et al., 2022) to project t and
s′ to the same space and comparing them by means
of the cosine similarity. The resulting score, here-
inafter neuroMatch, allows us to obtain, for each
s′ to be translated, a set of translation proposals
from either the TM or the TL monolingual corpus.
We then compute a form of FMS, which we term
as neuroFMS, with a COMET-based (Rei et al.,
2020) model, so that it can be used to estimate the
post-editing effort required to transform each trans-
lation proposal into t′, the translation of s′. This
allows professional translators to set a threshold for
discarding proposals that would require too much
post-editing effort, as they would do with FMS.

We have conducted a thorough experimentation
with four language pairs, in which we study the util-
ity of translation proposals retrieved with the con-
ventional FMS function and with our neuroMatch
alternative. The results show that neuroMatch suc-
cessfully exploits TL monolingual corpora, sim-
ilarly to the way FMS exploits TMs, and that it
increases the amount of useful translation propos-
als in around 10 percentage points. Our evaluation
also confirms that our neuroFMS alternative has a
performance comparable to the conventional FMS,
paving the way for an improved user experience,
and enabling the combination and ranking of trans-
lation proposals obtained with both conventional
FMS and neuroMatch. Finally, a human evaluation
on one of the language pairs, in which professional
translators were asked to assess the usefulness of
the translation proposals obtained with FMS and
neuroMatch, confirms the results of the automatic
evaluation. This human evaluation also seems to in-
dicate that the translation proposals retrieved with
our approach are more useful than what the auto-
matic evaluation shows.

The rest of the paper is organized as follows.
Next section introduces the neuroMatch method
for retrieving translation proposals from TL mono-
lingual corpora, and the neuroFMS method for es-
timating a form of FMS. Section 3 then describes

the experimental settings, whereas sections 4 and
5 present and discuss, respectively, the results of
the automatic evaluation and of the human evalua-
tion. Section 6 briefly describes the most relevant
works in the literature, and Section 7 summarizes
the main conclusions. Finally, two additional sec-
tions discuss the limitations and ethical aspects of
this work.

2 Methodology

Our approach relies on two components: a method
to efficiently retrieve translation proposals from a
TL monolingual corpus (neuroMatch; Sect. 2.1),
and a method, more expensive from the computa-
tional point of view, to estimate a form of FMS that
can be used to estimate the post-editing effort of
translation proposals (neuroFMS; Sect. 2.2).

2.1 Retrieving translation proposals from
target-language monolingual corpora

NeuroMatch builds on the use of cross-lingual sen-
tence embeddings. There are a number of models
to produce such embeddings in recent scientific lit-
erature (Artetxe and Schwenk, 2019; Reimers and
Gurevych, 2020; Feng et al., 2022). In all cases,
these models are trained to produce representations
of sentences in a common n-dimensional space in
which two similar sentences are placed close to
each other, independently of the language in which
they are written. Such feature enables the efficient
search of candidate translations of a source sen-
tence s′ in TL monolingual corpora.

In this work, we opted for LaBSE (Feng et al.,
2022), given that its embeddings are superior to
other approaches (Reimers and Gurevych, 2020)
in the task of identifying sentence pairs which are
mutual translations. LaBSE is a neural architecture
that consists of two paired BERT (Devlin et al.,
2019) encoders with shared weights that are pre-
trained to perform both monolingual (masked lan-
guage model) and bilingual (translation language
model) self-supervised mask filling (Lample and
Conneau, 2019). After training, in order to com-
pute the similarity of two sentences (each one in a
different language), each sentence is fed to one of
the BERT encoders and the last-layer representa-
tions of the [CLS] token are selected as the corre-
sponding sentence embeddings. Cosine similarity
can then be used to compare them. In this way, the
similarity measure integrates semantic knowledge,
unlike the conventional, edit-distance-based FMS.
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2.2 Estimating fuzzy-matching scores
One of the key aspects behind the success of TM-
based CAT tools is the twofold use of the conven-
tional, edit-distance-based FMS: on the one hand,
it is used to rank different translation proposals
when more than one is available; on the other hand,
its complement provides an estimation of the post-
editing effort needed to convert the translation pro-
posal t into t′, an adequate translation of s′. This
FMS is computed by comparing the sentence to
be translated s′ and the source side sentence s in
the TU (s, t); therefore, it cannot be computed for
the translation proposals retrieved by neuroMatch
from a TL monolingual corpus.

The cosine similarity used by neuroMatch can
be effectively used to rank translation proposals,
but cannot be used by translators to estimate the
post-editing effort as they do with FMS: the cosine
is bounded between -1 and 1 and has a Pearson’s
correlation coefficient with FMS around 0.8 (see
Table 3). To circumvent this problem and to allow
for the seamless integration of translation propos-
als obtained from TMs and from monolingual cor-
pora in the same CAT tool, we use neuroFMS, a
COMET-based (Rei et al., 2020) model —a neural
model that builds on XLM-RoBERTa (Conneau
et al., 2020)— for the estimation of the fuzzy-
matching score between s′ and the non-existent
source-language sentence s hypothetically paired
with the TL sentence t retrieved from the monolin-
gual corpus. COMET has been successfully used
both to evaluate and to estimate the quality of MT
systems (Rei et al., 2020); however, to the best
of our knowledge, it has never been used in the
context of TM-based CAT.

NeuroFMS is trained on a data set in which each
instance consists of a source sentence s′, a transla-
tion proposal t, and the FMS between s′ and the
source sentence s paired with t; see next section for
the details of how this data set is built. This model
obtains the embeddings for s′ and t, and then uses
them as the input to a feed-forward neural network
that produces a prediction of the FMS.1

It is worth noting that neuroFMS cannot be used
to efficiently retrieve translation proposals from
a monolingual corpus, as it would require scor-
ing with COMET, for each source sentence to be
translated s′, all pairs {(s′, ti)}Ni=1, where N is the

1Pre-trained COMET models are available, but they are
conceived for a very different task —prediction of direct qual-
ity assessment for MT—, hence the need for training an ad-hoc
model.

number of sentences in the TL monolingual cor-
pus. However, it may be a good option to estimate
the post-editing effort of translation proposals re-
trieved with neuroMatch. NeuroMatch does not
suffer from this problem because the embedding
for each TL sentence can be pre-computed and
cosine similarities can be efficiently computed by
means of the search implementation over dense
vectors provided by Faiss (Johnson et al., 2019).

3 Experimental setting

We evaluated our approach on four different lan-
guage pairs, namely, English–Spanish (EN–ES),
English–German (EN–DE), English–Czech (EN–
CS) and English–Finnish (EN–FI), by simulating
the translation of the source sentences in a test
set when using a TM and, when applicable, a TL
monolingual corpus.

Data sets. We used two sources of data for our
experiments: the DGT TM,2 a multilingual TM
containing summaries of EU legislation, and the
EurLex corpus,3 a corpus containing all the legal
documentation published in EurLex, the official
journal of the European Commission and one of the
sources from which the DGT-TM was built (Pilos,
2014). DGT-TM was used for building the test set
and the TM to be used, whereas EurLex was used
as TL monolingual corpus. Both the DGT-TM and
the EurLex corpus are provided at the document
level. In both cases, the CELEX number of each
document is provided; in this way, it is possible to
warranty that no overlap exists between the test set
and the TM or the monolingual corpus used.

Two different editions of the DGT-TM were
used: DGT-TM 2020 was used as test set, using the
source sentences as the sentences to be translated,
and the target sentences as the reference transla-
tions for evaluation; DGT-TM 2019 was used as
the TM to query when translating the source sen-
tences in the test set.

Test sets were deduplicated, and those sentence
pairs containing exactly the same text in the source
and in the target languages were discarded, as in
a real scenario they would remain untranslated.
Source sentences containing only one word were
also discarded, as they are likely to correspond to
segmentation errors. Finally, sentence pairs in the

2https://ec.europa.eu/jrc/en/language
-technologies/dgt-translation-memory

3https://www.sketchengine.eu/eurlex-c
orpus

7534

https://ec.europa.eu/jrc/en/language-technologies/dgt-translation-memory
https://ec.europa.eu/jrc/en/language-technologies/dgt-translation-memory
https://www.sketchengine.eu/eurlex-corpus
https://www.sketchengine.eu/eurlex-corpus


Lang. Resource # sents. # source # target
pair tokens tokens

EN–ES
test set 174k 3,831k 4,437k
TM 430k 7,490k 8,619k
mono 56,476k — 708,158k

EN–DE
test set 167k 3,666k 3,341k
TM 425k 7,478k 6,741k
mono 60,102k — 604,865k

EN–CS
test set 184k 3,869k 3,253k
TM 428k 7,467k 6,170k
mono 46,811k — 408,608k

EN–FI
test set 180k 3,752k 2,716k
TM 433k 7,489k 5,346k
mono 53,619k — 444,706k

Table 1: For each language pair, amount of sentence
pairs, source tokens and target tokens in the test set, in
the TM and in the TL monolingual corpus used (mono).

test set with a source-target or target-source token
ratio lower than 1/5 were discarded, assuming that
they are likely to correspond to alignment errors.
Table 1 reports some statistics of the corpora used
in our experiments.

Cross-lingual sentence embeddings. We used
the implementation of LaBSE by Feng et al.
(2022),4 which provides language-agnostic cross-
lingual sentence embeddings for 109 languages,
and Faiss (Johnson et al., 2019), which allows to
efficiently compute cosine similarities in large sets
of embeddings. These sentence embeddings were
used for computing similarity scores between the
sentence to be translated s′ and the target sentences
in the TM and in the TL monolingual corpus.

Fuzzy-match score estimation. We explored
two options: training an in-domain COMET model
for our TM, and training an out-of-domain COMET
model that could be used with any TM. While the
first option is expected to perform better, it has
the disadvantage of requiring the training of a new
model for every new TM to be used.

For the in-domain model, we built a training
set through leaving-one-out on the TMs used for
the experiments, in such a way that, for every TU
in the TM, we gathered an alternative translation
proposal using the conventional FMS. The result-
ing training sets for each language pair were then
concatenated to build a single multilingual training
set. For training the out-of-domain model, we used

4https://tfhub.dev/google/LaBSE/1

the AutoDesk post-editing dataset.5 This dataset
contains a collection of sentences from the IT do-
main —clearly distant from the legal domain of
our datasets— and the best translation proposals
retrieved from the TMs of the company, together
with the corresponding FMS. Data is available for
three out of the four language pairs in our exper-
iments: EN–ES, EN–DE, and EN–CS. We con-
catenated them to train our COMET model. Al-
though no EN–FI data is available, we expect a
reasonable performance also for this language pair
because XLM-RoBERTa, the underlying system
in the COMET architecture, was trained, among
others, on Finnish data.

For training the COMET models, we used the
standard configuration as provided in the example
files included in the COMET repository.6

Evaluation. According to Bowker (2002);
Raisa Timonera and Mitkov (2015), the users of
TM-based CAT tools usually set a threshold for
the FMS above 60% so that the CAT tool does not
bother them with TUs with low FMS: in general,
translators consider translation proposals useful if
they have to post-edit less than 40% of the sentence.
Following this idea, we computed the translation
edit rate (TER; Snover et al. (2006)) between
every translation proposal t and its corresponding
reference translation, t′, and considered useful
those proposals with a TER below 0.4. TER
measures the proportion of edits operations needed
to convert t into t′.

It is worth noting that computing TER for the
whole test set and for all the translation proposals
retrieved, regardless of their quality, would have
reported inconclusive results because of the noise
introduced by the low-quality translation proposals.

4 Results and discussion

First, we discuss the results obtained when com-
paring the conventional, edit-distance based FMS
and the LaBSE-based neuroMatch (Section 4.1).
After that, we evaluate the FMS estimation based
on COMET (neuroFMS; Section 4.2).

4.1 Neural fuzzy matching
Table 2 reports the percentage of sentences in the
test set for which a useful proposal (see above) is
found when using FMS and neuroMatch to obtain

5http://www.islrn.org/resources/290-85
9-676-529-5/

6https://github.com/Unbabel/COMET
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Approach Resources EN–ES EN–DE EN–CS EN–FI
FMS TM 21.3% 20.3% 18.7% 20.6%
neuroMatch TM 20.2% 18.8% 17.7% 18.8%
neuroMatch mono 28.8% 24.2% 21.8% 24.6%
neuroMatch TM+mono 34.7% 30.9% 27.4% 30.1%

Table 2: Percentage of sentences in the test set for which a useful translation proposal is obtained, i.e., a proposal
with a TER below 0.4. The second column indicates the resources being exploited: TM, TL monolingual corpora
(mono) or both (TM+mono).

translation proposals. We have used neuroMatch
for retrieving translation proposals from the very
same TM used with FMS, as well as for retriev-
ing translation proposals from the TL monolingual
corpus (mono) and from both (TM+mono). In all
cases, neuroMatch computes the similarity between
s′ and a target sentence (either from the TM or from
the TL monolingual corpus).

When compared with FMS, neuroMatch is able
to retrieve a similar amount of useful translation
proposals from the TM (1.4 percentage points less
on average), and a larger amount (4.6 percentage
points more on average) when exploiting just the
TL monolingual corpus. Exploiting both the TM
and the TL monolingual corpora, neuroMatch is
able to retrieve a useful translation proposal for
around one third of the sentences in the test set (on
average, 10.6 percentage points more than FMS).
Averaging over all language pairs, 19% of these
translation proposals come from the TM, and 81%
from the TL monolingual corpus.

A comparison of FMS and neuroMatch when
both exploit just the TM shows that FMS provides
a slightly higher number of useful translation pro-
posals than neuroMatch. However, there is a rel-
evant detail that is worth noting: for around 20%
of the instances of the test set for which both FMS
and neuroMatch provide a useful translation pro-
posal, the one obtained with neuroMatch is better
(has a lower TER) than that obtained with FMS.7

This means that both FMS and neuroMatch could
be used together in a CAT environment to improve
the way in which TMs are used for translation.

Figure 1 provides a more detailed analysis of
the translation proposals retrieved with FSM and
neuroMatch when the latter searches for translation
proposals both in the TM and in the TL monolin-
gual corpus (TM+mono). The figure shows the per-

7The exact percentage per language pair are as follows:
26% for EN–ES, 24% for EN–DE, 17% for EN–CS and 20%
for EN–FI.

EN–ES EN–DE EN–CS EN–FI
τ ρ τ ρ τ ρ τ ρ

neuroMatch .55 .83 .54 .81 .58 .81 .55 .83
neuroFMS out .72 .89 .70 .88 .68 .88 .70 .89
neuroFMS in .78 .93 .77 .92 .73 .91 .77 .92

Table 3: For each language pair, Kendall’s (τ ) and Pear-
son’s correlation (ρ) coefficients between the FMS and
neuroMatch (first row), and the neuroFMS COMET-
based models trained on in-domain (neuroFMS in) and
on out-of-domain (neuroFMS out) data.

centage of translation proposals provided by each
method for each language pair and for different
thresholds of TER, in particular 0.4, 0.3, 0.2 and
0.1. Recall that TER is computed by comparing
the translation proposal and the reference transla-
tion in the test set. As can be seen, neuroMatch
outperforms FMS in all cases.

4.2 Fuzzy-match score estimation
Table 3 shows the Kendall rank correlation coeffi-
cient (τ ) and the Pearson’s correlation coefficient
(ρ) between FMS and neuroMatch (the cosine simi-
larity between LaBSE embeddings; first row of the
table), and between FMS and neuroFMS, both in-
domain and out-of-domain COMET models (sec-
ond and third rows). These results were computed
on the translation proposals obtained from the TM,
as the FMS cannot be computed for translation pro-
posals retrieved from the TL monolingual corpus.

As can be seen, neuroFMS highly correlates with
FMS and, as expected, the in-domain model per-
forms better than the out of domain model, but
the results are close enough to consider using the
out-of-domain model because it avoids training a
new model for every new domain; recall that the
same model is used for all language pairs. The
table also shows that neuroMatch correlates worse
with FMS than neuroFMS; although it also shows
a high correlation. It is worth noting that, even if
neuroMatch highly correlates with FMS, it cannot
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Figure 1: Percentage of sentences in the test set for which a translation proposal is obtained with FMS on TM and
with neuroMatch on TM+mono when TER is below 0.4, 0.3, 0.2 and 0.1.

be directly used by translators to estimate post-
editing effort because its values are in the interval
[−1, 1] rather than in [0, 1] as it is the case of FMS
and neuroFMS.

To further prove the usefulness of neuroFMS,
we decided to run an extrinsic evaluation in which
the neuroFMS score was used to combine transla-
tion proposals obtained with FMS and neuroMatch
(TM+mono). As already mentioned, in some cases,
both FMS and neuroMatch can provide useful trans-
lation proposals, but one may be better than the
other. We took the subset of instances from the test
set for which either FMS or neuroMatch (or both)
provided a useful translation proposal and com-
puted the total TER when using FMS, neuroMatch,
and the combination of both using neuroFMS to
decide which translation proposal is better. Results
are shown in Table 4. It also includes an oracle row
as an upper-bound reference. The results obtained
clearly show that the neuroFMS models are able
to improve the result of FMS and neuroMatch in
isolation, as using them to combine the translation
proposals provided by the two methods lead to bet-
ter results, especially for the in-domain model. In
any case, there is room for improvement, as the
best results are still far from the oracle.

5 Human evaluation

To complement the results obtained with the au-
tomatic evaluation, an experiment was conducted
with professional translators and a random sample
of the EN–ES data used for the automatic evalu-
ation. Six professional translators were provided

EN–ES EN–DE EN–CS EN–FI
FMS .44 .44 .41 .42
neuroMatch .18 .19 .17 .19
neuroFMS out .16 .17 .15 .17
neuroFMS in .16 .16 .15 .15
Oracle .13 .13 .11 .11

Table 4: TER for the instances in the test set for
which a useful translation proposal is found with FMS,
neuroMatch or both. NeuroMatch was used to obtained
translation proposal from the TM and the TL monolin-
gual corpus (TM+mono). When more than one pro-
posal is found, neuroFMS is used to choose the best
one. Last row shows the results provided by an oracle
using the reference translation (upper bound).

with a form containing a small collection of English
sentences and two translation proposals in Spanish:
one retrieved from the TM using FMS, and another
retrieved from the TM plus the TL monolingual cor-
pus using neuroMatch. Translators did not know
the method used to obtain each translation proposal.
They were asked to indicate which translation pro-
posals they would use as a draft translation to be
post-edited, or if they would rather translate the
source sentence from scratch. In those cases in
which they considered both translation proposals
acceptable for post-editing, they could indicate if
one of them would require less post-editing effort
(they could also indicate that both were of similar
quality).

The data sets given to each translator contained
about 350 instances, and were distributed in such
a way that half of the instances provided to each
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An. 1 An. 2 An. 3 An. 4 An. 5
An. 0 .53 .71 .77 .73 .58
An. 1 — .47 .44 .69 .60
An. 2 — — .68 .74 .60
An. 3 — — — .65 .57
An. 4 — — — — .68

Table 5: Inter-annotator agreement (Cohen’s Kappa)
between the six translators that participated in the hu-
man evaluation (see running text).

translator were also annotated by other translators,
the other half were not. In this way, we were able
to compute the inter-annotator agreement between
every pair of translators (see Table 5). In addition,
15 control instances were provided to each trans-
lator to make sure that they understood the task
and that their annotations are valid. Adding up all
the data instances provided to the six translators,
the data set contained 2,130 instances (from which
1,035 were unique).

Regarding the interanotator agreement, Table 5
shows a high agreement between annotators #0, #2,
#3 and #4; annotators #1 and #5 present a slightly
lower value of the Cohen’s kappa. In any case,
all the values range from moderate to substantial
agreement according to Landis and Koch (1977).

After analysing the assessments provided by the
translators, neuroMatch was considered the best
choice for 856 instances ( 40% of the instances in
the data set), while FMS was the best choice for
388 instances ( 18% of the instances). Both were
considered equally useful for 132 instances ( 6%
of the instances). These figures confirm the results
of the automatic evaluation and seem to indicate
that neuroMatch could be more useful than what
the automatic evaluation showed.

These human annotations also allowed us to eval-
uate the scores obtained with neuroFMS when com-
bining FMS and neuroMatch. We took the subset
of instances for which one of the systems was con-
sidered better than the other (1,244 instances in
total) and checked if neuroFMS and the profes-
sional translators agreed. In about 80% of the cases,
neuroFMS and the human annotators agreed; this
result is also in line with the automatic evaluation
reported in previous section.

6 Related work

In this section, we review the related work as re-
gards the computation of sentence embeddings

(Section 6.1), and the exploitation of these embed-
dings in the context of TMs (Section 6.2).

6.1 Sentence embeddings

The use of word embeddings, that is, vector repre-
sentations of words showing mathematical proper-
ties that correlate with semantic similarities, can be
traced back to many decades ago (Deerwester et al.,
1990). The 2010s saw the emergence of a number
of self-supervised techniques that allowed for more
powerful word representations, first in the form
of non-contextual vectors (Mikolov et al., 2013;
Pennington et al., 2014; Bojanowski et al., 2017),
and afterwards as context-sensitive representations
obtained by processing sentences through recur-
rent (Peters et al., 2018) or transformer-based (Lam-
ple and Conneau, 2019; Liu et al., 2019) neural ar-
chitectures, being BERT (Devlin et al., 2019) pos-
sibly the most well-known and exploited example
of the attention-based approaches.

Sentence embeddings may be seen as an exten-
sion of the main ideas behind word embeddings
to the case of variable-length inputs. They were
first computed (Le and Mikolov, 2014) by extend-
ing the method used to obtain non-contextual word
embeddings, but soon they evolved to more elabo-
rated architectures such as the encoder-decoder sys-
tem exploited by skip-thought vectors (Kiros et al.,
2015) to encode a representation of input sentences
that allowed the decoder to generate the preceding
and following sentences. Current methods mostly
use attention-based encoders to attain more elabo-
rated representations. Some models add a classi-
fier performing a natural language inference task
(for example, detecting contradiction, entailment,
or neutrality in sentence pairs) that gets fed with
pooled representations of the encoder embeddings,
the whole system trained in an end-to-end fashion.
Other models directly train the encoder on some
self-supervised task. As regards models explicitly
addressing semantic tasks on sentence pairs, Con-
neau et al. (2017) considered two separate encoders,
but Ranasinghe et al. (2019) suggested using a dual-
encoder framework. Reimers and Gurevych (2019)
followed a similar semantic-task-mediated setting
to introduce Sentence-BERT, where the dual en-
coder consisted of two paired BERT models with
shared weights. State-of-the-art systems include
SimCSE (Gao et al., 2021) which exploits con-
trastive learning to move the embeddings of similar
sentences closer, and Sentence-T5 (Ni et al., 2022)
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that obtains best results with a full encoder-decoder
architecture.

By integrating data in different languages, some
of the previous models can be extended to generate
cross-lingual sentence embeddings, either as sim-
ple word-level embeddings (Lample et al., 2018)
or as general-purpose sentence-level embeddings
such as those provided by mBERT (Pires et al.,
2019), LASER (Artetxe and Schwenk, 2019), m-
USE (Yang et al., 2020) or XML-R (Conneau et al.,
2020), among others. Our approach uses LaBSE
(which stands for language-agnostic BERT sen-
tence embeddings) whose embeddings are opti-
mised (Feng et al., 2022) to be similar for bilin-
gual sentence pairs that are mutual translation, a
result of the fact that the encoder has been pre-
trained with the translation language model self-
supervised objective which performs mask filling
in the output given as input the concatenation of
two parallel sentences in two languages.

6.2 Integration of embeddings in translation
memories

Most of the works involving neural-based sentence
similarities and translation aim at improving neu-
ral MT, not TMs. Given a new sentence s′ to be
automatically translated first and post-edited next,
Farajian et al. (2017) propose finding its closest
sentence s in a TM via a non-neural similarity mea-
sure, and then using the TU (s, t) to fine-tune an
existing neural MT model before using it to pro-
vide the translator with a draft translation. Simi-
larly, Gu et al. (2018) use FMS on the source side
to retrieve sentence pairs from the TM; neural em-
beddings are then obtained for each of these pairs
and stored in an external memory which is coupled
to a neural MT system that translates s′ into the
target language. Zhang et al. (2018) promote in
the decoder of an neural MT system outputs that
contain n-grams appearing in translations retrieved
from the TM. Bulte and Tezcan (2019) introduced
neural fuzzy-match repair in which an neural MT
system that can have the best translation proposals
in the TM optionally appended to its input. Cao
and Xiong (2018) also add TL sentences to inspire
the neural MT system, but source-language inputs
and TL inputs are processed by different encoders
and the resulting representations combined by a
gating mechanism. Finally, the approach by Cai
et al. (2021) shares some elements with ours, but
again their objective is to improve neural MT: they

also use a dual-encoder to learn cross-lingual em-
beddings; the resulting representations for relevant
translation proposals in the TM are then stored in a
memory which is connected to the transformer via
attention mechanisms in order to guide the transla-
tion process.

To our knowledge, the most similar approach to
ours in the literature is the one proposed by Ranas-
inghe et al. (2020): they use neural-based sentence
similarities to retrieve from the TM the TUs (s, t)
whose source sentences s are close to the sentence
to be translated s′. However, they perform the
search in the source-language space which prevents
the integration of additional monolingual text. In
spite of this critical difference they also find neural
translation proposals to be better than FMS transla-
tion proposals for values of the FMS below 80%.

7 Conclusions

We have presented a novel neural approach to
overcome the main limitation of TM-based CAT
tools: the reduced availability, as compared to
TL monolingual corpora, of in-domain TMs. Our
approach consists of two different neural compo-
nents: neuroMatch and neuroFMS. NeuroMatch
uses cross-lingual sentence embeddings to search
for translation proposals in TL monolingual cor-
pora. NeuroFSM uses an ad-hoc COMET model
to estimate a form of FMS between the source sen-
tence to be translated and the translation proposals
retrieved with neuroMatch.

We have extensively evaluated our approach on
four different language pairs using an automatic
evaluation metric, and found out that our approach
is able to retrieve 10 percentage points more useful
translation proposals than the conventional FMS.
In line with common practice by professional trans-
lators, we considered useful those translation pro-
posals with a translation edit rate (TER) below 0.4.
We also studied the performance of our approach
with more restrictive definitions of usefulness, i.e.
with TERs of 0.3, 0.2 and 0.1, and in all cases
neuroMatch retrieves more useful translation pro-
posals than FMS. A human evaluation on one lan-
guage pair confirms these results.

As regards neuroFMS, it has shown a high cor-
relation with FMS and that when it is used to com-
bine translation proposal obtained with FMS and
neuroMatch, the TER of the set of sentences for
which a translation proposal is found with either
method is reduced. This last result opens the door

7539



to further improvements in professional transla-
tion productivity. Both conventional FMS and
neuroMatch can be seamlessly integrated: both
types of translation proposals can be ranked to-
gether with neuroFMS, and professional translators
can then use neuroFMS to estimate the postediting
effort of the different translation proposals they are
offered, as they do with FMS.

Limitations

Our experimentation has some limitations that are
worth to be taken into account for future work:

Computing TER regarding an independent ref-
erence translation. In this paper, the TER be-
tween a translation proposal and an independent
reference is used as a metric of the usefulness of the
translation proposal (in most experiments, propos-
als with a TER lower than 0.4 are considered use-
ful). However, a valid translation proposal could be
discarded if the reference to which it is compared
to is formulated in a very different way (order of
words, use of synonyms, etc.). This fact could lead
us to underestimate the quality of the translation
proposals evaluated. A much better option would
be to use post-edited versions of the translation
proposals (human TER, or HTER); unfortunately,
producing such data set would be prohibitively ex-
pensive for the size of the test sets used. In any case,
using independent references still give us a reason-
able estimation of the performance and, somehow,
the results obtained are a lower bound of the actual
performance of the methods evaluated.

Human evaluation only on a language pair.
While automatic evaluation was conducted on four
language pairs, human evaluation, which was sub-
stantially more expensive, was only carried out for
one of them. While we could not afford the cost
of a larger human evaluation, we consider that it is
reasonable to assume that the conclusions obtained
for this language pair can be extrapolated to the rest
of language pairs used in the automatic evaluation.

Application of the methods described to other
languages. It is worth noting that the models
used in this paper are pre-trained for a high number
of languages: 109 in the case of LaBSE, and 100
languages for XLM-RoBERTa (the encoder used
for COMET models). However, the truth is that
there are languages that are not covered by these
models. On the other hand, the general ideas in-
cluded in this work could be applied to languages

not covered by these models by replacing them
with other similar models.

Further combination of neuroMatch and
neuroFMS. We tried to keep the evaluation of
neuroMatch and neuroFMS as separate as possi-
ble in this work, as we consider that this allows
to better understand the performance and contribu-
tion of each model to the proposed CAT scenario.
However, it would be possible to combine them
in smarter ways. For example, it would be pos-
sible to get the n-best translation proposals using
neuroMatch and then use neuroFMS to keep only
the best one. Such evaluation will be covered in
future works.
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lFMS. The only exception to this is the EurLex
monolingual corpus, which was downloaded from
https://www.sketchengine.eu/eurl
ex-corpus/. This corpus is provided by Sketch
Engine under request with Creative Commons BY-
NC-SA 2.0 license.8

We also provide the configuration file used to
train the COMET models evaluated in Section 4.2.
A general description of this model is provided in
Appendix B.

The results of the human evaluation are included
in the repository mentioned above. They are pro-
vided in a tab-sepparated-value format, including
the source sentences, translation proposals evalu-
ated, and assessment provided by the translators.

B COMET model used for neuroFMS

The ad-hoc COMET model used for estimating
fuzzy-matching scores (see Section 3) was trained
using the referenceless-model configuration
file from the COMET repository,9 commit
c9e1818583c1677328e3d1b649bb6c9c6.
The most relevant parameters are:

• XLM-RoBERTa large with frozen embed-
dings as base model;

• AdamW optimizer with learning rate of 3.1e-
05;

• dropout of 0.15;

• batch size of 4 sentence pairs;

• a feedforward with two hidden layers (sizes
2048 and 1024) at the end; and

• sentence embeddings built by obtaining the
average of all layers (pooling).

Only one parameter was modified in the standard
configuration: a sigmoid activation function was
used in the output layer so that the prediction is in
(0,1).

C Computational resources

To run the experiments reported in this paper, we
used a computer with 8 GPUs Geforce RTX 2080
TI. All the experiments involving neuroFMS (that
uses LaBSE to build embeddings and Faiss to

8https://creativecommons.org/licenses
/by-nc-sa/2.0/

9https://github.com/Unbabel/COMET

search for translation proposals) substantially ben-
efit from using this computational infrastructure.
With this infrastructure, building the embeddings
for the segments in the test set, the TM and the
monolingual corpus took about 12 hours; searching
for the best translation proposals with this tech-
nique took about 2 hours. Both LaBSE and Faiss
can be run on CPU instead of GPU, but the time
required is substantially higher.

Collecting translation proposals from the TM us-
ing FMS took about a week on a machine equipped
with 96 Intel(R) Xeon(R) Gold 6252 CPUs at
2.10GHz.

Training our ad-hoc COMET models was not
possible on the Geforce RTX 2080 TI GPUs men-
tioned above, as they do not have enough memory
to load the models used by COMET. For this task,
we used an Nvidia A100 GPU; training each model
took about 20 hours.
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