
Quality-driven Automatic Transformation of
Object-Oriented Navigational Models?

Cristina Cachero1, Marcela Genero2, Coral Calero2, and Santiago Meliá1

1 Web Engineering and Databases Research Group
University of Alicante. Spain

{ccachero,smelia}@dlsi.ua.es
2 ALARCOS Research Group

University of Castilla La Mancha. Spain
{Marcela.Genero,Coral.Calero}@uclm.es

Abstract. Navigability is a main concern in the design of Web applica-
tions. In order to assess such navigability a number of measures has been
proposed. From them, measures defined on conceptual models are spe-
cially relevant, as it is well known that high quality conceptual models
are critical to the success of the deployed system. However, measurement
methods associated to such measures, as well as the design modifications
that need to be performed on the models in order to improve their values,
are usually tightly coupled with particular Web Engineering approaches.
This fact compromises their effectiveness and their propagation capacity
to different environments and/or methodologies.
Our aim in this paper is to illustrate how navigability measures can be
captured in a general manner, by instantiation of a measuring meta-
model that is based on the Software Measurement Ontology proposed
by Garćıa et al. In this way, not only is it possible to define a reusable
set of relevant measures for a given family of applications, but also such
measures can be queried in the context of MDA transformation rules.
These rules capture both the measure decision criteria and the design
modifications that should take place if the measure value for a given
navigational model does not match such criteria.

1 Introduction

The ever increasing complexity of Web applications has caused the Web En-
gineering field, defined as the discipline that is concerned with the application
of systematic and quantifiable approaches to the cost-effective development and
evolution of high-quality applications in the World Wide Web [18], to evolve at

? This paper has been supported by the Spain Ministry of Science and Technol-
ogy, project numbers TIN2004-00779, TIN2005-25866-E and TIC2003-07804-C05-
03. Also, this research is part of the DADASMECA project (GV05/220), financed
by the Valencia Government and the DADS (PBC-05-012-2) and the DIMENSIONS
(PBC-05-012-1) projects, financed by the Regional Science and Technology Ministry
of Castilla-La Mancha (Spain).

an extremely fast pace. This discipline intertwines sound Software Engineering
principles with a suitable set of abstractions, particular to the idiosyncrasy of
the Web. However, and despite its definition, the inclusion in the different Web
Engineering proposals of guiding principles that contribute to guarantee that
the resulting applications comply with a set of desirable quality characteristics
is still a challenge for the field. In fact, up to now no significant relationship has
been empirically demonstrated between the quality of the Web application and
the fact that the designer has followed or not a given Web methodology.

This situation undoubtedly contributes to the fact that, still nowadays, the
use of ’creative’ approaches for the development of Web applications is the com-
monality. Such creative approaches assume that the designer is a navigability
expert, and therefore skillful in the use of a set of common-sense practices that,
usually aimed at improving the interface usability, have proven successful in a
bunch of well known applications [23], and therefore assumed to be universally
right, even if most of them (over 60%) lack empirical validation [13]. With this
kind of approaches, quality assessment must be performed over the deployed
products, often with the aid of Web-devoted inspection techniques such as the
Systematic Usability Evaluation (SUE) method [5] or any of the myriad of au-
tomated html-content validation tools (e.g. [1, 21], to name a few).

Although assessing quality at such a late stage of development can be useful,
it is commonly avowed that early detection of problems in the artifacts produced
in the initial phases of the life-cycle can save time, cut production costs, and raise
the final desired product quality [11]. Aware of such potential benefits, the Web
Engineering community has recently started to invest efforts in the inclusion
of early measures to guide the construction of the different Web models, with
special emphasis on domain and navigational models.

From them, domain models for Web applications hoard the highest number
of early measure proposals [8]. One reason for this fact may be that most of the
measures proposed for UML class diagrams can be seamlessly tailored to Web
domain models [16]. Regarding navigational models, which are a distinctive fea-
ture of Web Engineering proposals, most efforts have been directed towards the
promotion of a good use of the conceptual navigation constructs provided by
each approach. For example, WebML defines a WebML Quality Analyzer [14]
that is able to automatically check the XML specification of WebML conceptual
schemas, and verify and measure some internal attributes, such as the consis-
tency or completeness of the models. Similarly, UWE [7] pays special attention
to usability, and recommends the integration of guidelines into both the design
process and the CAWE tools that usually accompany Web proposals. Going one
step further, the work of Abrahao et al. [2] proposes a set of measures that
capture some available heuristics [19].

In fact, navigability is at the core of quality aspects such as usability or
maintainability [2, 23, 3, 4], as it is widely recognized that a good navigation
design let users acquire the information they are seeking quickly and efficiently.

However, much work remains to be done. To our knowledge, all the proposed
measures for Web models are tightly coupled with the Web Engineering approach

for which they were defined. Unfortunately Web approaches usually greatly dif-
fer not only in notation but also in the semantics associated to the constructs,
hampering the measure propagation to different environments and/or method-
ologies. Also, measures are usually defined and calculated in an ad-hoc manner,
and the effects of the measure values on the models (that is, the actions the
designer could perform in order to improve the model) are usually not specified.

Therefore, our aim in this paper is threefold. On one hand, we aim at demon-
strating how the definition of a navigational meta-model not only facilitates the
understanding of the different Web approaches but also serves as a basis on
which early measures for navigational models can be defined and calculated. For
this purpose, in Section 2 we present a partial view of the OO-H navigational
meta-model, as well as how navigability measures can be formally expressed over
this meta-model by means of OCL expressions [28]. On the other hand, we claim
that the Web Engineering field can benefit from defining loosely coupled Web
measuring models, that is, models that are applicable to a whole family of Web
applications regardless of the chosen Web approach. Fortunately, we have at our
disposal a Software Measurement Ontology (SMO) [15]. and its corresponding
meta-model that allows to derive concrete measurement models. Our proposal in
this sense is to instantiate a subset of this meta-model to express in an indepen-
dent way a set of navigability measures. In Section 3 we illustrate this approach,
and provide as an example a meta-model instantiation that reflects the navi-
gability measure presented in Section 2. Last, we need a way to automate the
evaluation/evolution of the navigational model depending on the chosen mea-
sures. For this purpose in Section 4 we use a QVT transformation rule [24] that,
departing from the OO-H navigational meta-model and the SMO meta-model,
generates a new OO-H navigational model that is checked against the quality
decision criteria, which are also expressed in the meta-model instantiation. Sec-
tion 5 concludes this paper with a summary of the main contributions and some
future lines of research.

2 The OO-H Navigation Model

As we have stated above, it is well known that the improvement of the early
artifacts produced in a development process has a great impact on the final
product cost and quality [11]. Also, it is commonly avowed that, when develop-
ing Web applications, one of the most important early artifacts that must be
produced is the navigational model. The Navigational model reflects the paths
the user must follow through the information domain in order to achieve her
goals. It is usually organized around navigational packages (also named contexts
or targets in different approaches), each one encapsulating views defined over
domain objects and paths to connect them. The names of the constructs, as
well as their corresponding decorators, usually diverge from proposal to pro-
posal, reflecting their different roots and degree of evolution. Due to this lack of
a common Web conceptual ontology, it is highly recommendable for proposals
to provide a navigational meta-model that systematically and unambiguously

defines the concepts involved and their relationships, and facilitates in this way
the communication among researchers and/or practitioners.

Such has been the approach taken by OO-H [17], a well known Web Engi-
neering method whose navigational meta-model is partially presented in Fig. 1.
Due to space reasons, we have intentionally left out details concerning service
invocation, as well as the existing relationships with UML meta-classes.

NavigationalAssociation

-activationMode
-originFilter
-originObjectActivationNumber
-targetFilter
-targetNavigationPattern

<< metamodel >>
OOHNavigationalMetamodel

NavigationalNode

NavigationalClass NavigationalCollection

NavigationalModel

Comment NavigationalConstruct

NavigationalTarget

*

Error Warning 0..1

*

1..*

*target+

*origin+
0..1

*

Fig. 1. Partial View of the OO-H navigational meta-model

In Fig. 1 we can observe how, as in most Web Engineering approaches, the
main constructs of the OO-H Navigational Model are Navigational Targets (NT),
Navigational Classes (NC), Navigational Associations (NA) and Navigational
Collections (C). A Navigational Target is a packaging mechanism that serves
to structure the navigation through the application subsystems. Navigational
Classes are views over conceptual classes, and reflect the information that makes
up the current view together with the operations that can be invoked from each
view. Navigational Associations reflect navigation steps through the informa-
tion. This is the richest construct in OO-H, which in this sense greatly differs
from other approaches where the main construct is the Navigational Class. The
attributes of the association meta-class allow for the specification of not only the
population of the target view (targetFilter) and the navigation structure through
this population (targetNavigationPattern) but also the objects from which such
navigation is possible (originFilter), the cardinality of the origin set of objects
(originObjectNavigationNumber) and whether the user interacts or not with the
application in order to activate such navigation (activationMode). Last, Naviga-
tional Collections are access mechanisms (menus) that group together navigation
paths.

To illustrate their use, let’s imagine that we want to model a Ticket Sales
system. A Navigation Model example corresponding to this system is presented
in Fig. 2.

View Shows User Registration ShoppingCart

Show Details

Home

[Fs]
[Fs]

[Ft:self.sessions->
select(date>Date::today()]

[Fs] [Fs]

[Fs][Fs]

[Fs] [Fs]

AddShow

Add ArtistsAdd Sessions View Artists View Sessions

Companies

[Fs]

[Fs]

Fig. 2. OO-H Navigational Model corresponding to a Ticket Sales system

The partial navigation model of Fig. 2 reflects a system whose navigation is
organized around many NT (e.g. User Registration, Shopping Cart, Show De-
tails, and so on), each one encapsulating the navigation paths needed to fulfill a
subset of system requirements. The different NT are accessed via a Home Collec-
tion that, depicted as an inverted triangle, represents the application main menu.
The NT and the Home collection are connected by means of NA which, as stated
above, may have one or more Filters associated. Filters are OCL expressions [26]
that constrain navigation. In OO-H, filters can be either user-defined or automat-
ically generated, based on the domain conceptual associations. In our example,
the NA between View Shows and View Artists is an example of NA adorned
with a predefined (structural) filter (Fs): the filter extracted from the relation-
ship between shows and their corresponding artists. On the other hand, the filter
self.sessions->select(date>= Date::today()) that adorns the NA between View
Shows and View Sessions is an example of target filter (Ft) that restricts the
set of target objects to those sessions that have not yet taken place. In fact Fig.
2 represents one of the most evident mistakes novice web designers make when
first designing Web applications using OO-H: they tend to define a new NT for
each requirement, instead of performing a previous grouping task. This causes
a poorly structured navigational tree and augments the model complexity. In
fact, the impact of the number of NT on the model complexity has already been

assessed in [2], through the Number of Navigational Contexts measure. For the
sake of coherence with OO-H, in the remaining of the paper we have renamed
this measure Number of Navigational Targets (NNT).

Up to now, this measure could be defined in the context of the VisualWADE
tool [27], the Computer Aided Web Engineering (CAWE) tool that supports
OO-H, as follows:

context NavigationalModel

def NNT:Integer=self.navigationalConstruct->select(oclIsTypeOf(NavigationalTarget))->size()

We would like to emphasize how the use of OCL, as stated in [9, 10, 25],
allows for a formal and unambiguous measure definition, and improves its un-
derstandability.

In VisualWADE it is also possible to define, using OCL, restrictions over
these measures. At this point we face a problem: if little work has been done
on validating the impact of measures on navigability, much less has been done
on assessing threshold values for such measures. However, for the sake of the
example, let’s assume that, for this kind of application, the famous Miller’s 7+-2
rule [22] is applicable, that is, we do want a navigational model that neither is
too scattered (more than nine NT) nor too compressed (less than four NT). This
restriction may be expressed as follows:

context NavigationalModel

inv notTooManyNT: NNT<10

inv notTooFewNT: NNT>4

If we look back to Fig. 2 we can observe that the notTooManyNT invariant is
not fulfilled, what in VisualWADE would cause a warning to be raised. Although
this approach works well for prototypical development, it has many drawbacks.
On the one hand, OCL rules associated with the OO-H meta-model may need
to be changed whenever we change the kind of application we are modelling
(as measures that are relevant for a certain family of applications may not be
applicable to others). On the other hand, this way of defining quality measures
is highly coupled with the particular OO-H constructs and their corresponding
semantics, what causes that practitioners familiarized with other methodologies
may find it difficult to understand and apply the measures to their own models.
Therefore we propose to go one step further, and provide a way to define mea-
sures that is independent from the chosen methodology and its corresponding
meta-model, facilitating reusability.

Next we explain how we can achieve this goal.

3 Adaptation of the SMO to navigational models

The homogenization and systematization of the concepts that are relevant for
a given domain is a problem that has gained popularity since the advent of the
Semantic Web. This homogenization has been achieved through a number of on-
tologies, defined as formal explicit specifications of a shared conceptualization.

The definition of measures using a standard ontology improves the understand-
ability and communication of software measures, as it establishes a common
vocabulary for developers [6]. For all these reasons, we have decided to adhere
to the SMO presented in [15] (see Fig. 3) for the description of the navigational
measures that are applicable to a given family of Web applications. The SMO

Software Metrics

Measurement Action

Characterization and Objectives

Measurement Approaches

Measurement Method
(from Measurement Approaches)

Base Measure
(from Software Metrics)

1..*

1

1..*

1

uses

Measurement Function
(from Measurement Approaches)

0..*

0..*

0..*

0..*

uses

Derived Measure
(from Software Metrics)

0..*

0..*

0..*

0..*

calculated with

0..*

0..*

0..*

0..*

uses

Quality Model

kind
(from Characterization and Objectives)

Entity
(from Characterization and Objectives)

0..*0..*

sub-enti ty

Measurement Result

value
(from Measurement Action)

Measurement Approach
(fro m Measurement Actio n)

Type of Scale
(from Software Metrics)

Entity Class
(from Characterization and Objectives)

0..*

0..*

0..*

sub-enti tyType

0..*

1..*

0..*

1..*

0..*

belongs to

1

*

1

*

defined for

Measurable Concept
(from Characterization and Objectives)

1..* 1..*1..* 1..*

evaluates

0..*

0..*

0..*

sub-MeasurableConcept
0..*

Measurement

LocationInTime
(from Measurement Action)

*1 *1

1

1

1

1

produces

1

*

1

*

executes

Unit of Measurement
(from Software Metrics)

Scale
(from Software Metrics)

1..*

1

1..*

1
belongs to

Attribute
(from Characterization and Objectives)

1 1..*1 1..*

has

*

1

*

1

1..*

1..*

1..*

1..*

relates

Information Need
(from Characterization and Objectives)

1

1..*

1

1..*is associated with

Measure
(from Software Metrics)

*

1

*

1

uses

0..* 0..*0..*

transformation

0..* 1.. *

0..1

1.. *

0..1

expressed in

1..*

1

1..*

1

has

0..*1.. * 0..*1.. *
defined for

Indicator
(from Software Metrics)

1 .. *

0..*

1 .. *

0..*

satisfies

Decision Criteria
(fro m Measurement Approaches)

Analysis Model
(from Measurement Approaches)

1..*

0..*

1..*

0..*

uses

1..*

1

1..*

1

calculated with

1..*

1..*

1..*

1..*

uses

Is performed on

Is performed on

Fig. 3. UML Class Diagram of the Software Measurement Ontology (SMO)

ontology is divided into four sub-ontologies, as we can observe in Fig. 3. Such
sub-ontologies are: (1) the way of measuring (MeasurementApproaches), (2) the
action of measuring (Measurement), (3) the result obtained (Software Measures)
and (4) the concept and context of measure (Characterization and Objectives).
Each sub-ontology provides a set of concepts, some of them optional, that may
contribute to the definition of the measure.

This ontology contributes to the definition of the measure. Due to the rele-
vance of deriving concrete measurement models, a meta-model has been defined
based on SMO. This meta-model is divided in four packages, one related to each

sub-ontology. The fact that our measuring model is based on an ontology-aware
meta-model makes it shareable among Web proposals [6]. Next we present the
way in which we can instantiate the SMO meta-model to reflect our NNT mea-
sure example.

3.1 Ontology-aware measuring meta-model Instantiation

As the reader may have already inferred, the definition of the NNT measure (see
Fig. 4) corresponds to the need to assess the navigability of the Navigational
Model. In order to fulfill this Information Need, our measure is part of a OO-
H Quality Model that gathers all the measures, decision criteria etc. that are
applicable to any OO-H entity. This model is aimed at evaluating the navigability
Measurable Concept. The OO-H Quality Model is made up of a set of
Attributes, among which the Navigational Complexity is the one related with
the NNT measure. All these concepts correspond to the Characterization and
Objectives package that reflects the namesake sub-ontology that we presented
in Fig. 3.

navigationalComplexity:Attribute

assessNavigability:InformationNeed

navigability:MeasurableConceptOO-H:QualityModel

navigationalModel:EntityClass

navigationStructuralComplexityAM:AnalysisModel

isAssociatedWith

evaluates

relates

has

definedFor

uses

NNT:BaseMeasure
has

definedFor

ratio:TypeOfScale

naturalNumberSet:Scale

belongsTo

dc:DecisionCriteria
uses

text=“Miller’s rule” text=“f(NNT) ”

mm:MeasurementMethod uses

text=“Count the number of NT”

Fig. 4. Ontology-aware measuring model that reflects the NNT measure

If we now move on to the Software Metrics package (see Fig. 3), we find other
relevant concepts for our purpose; namely, we need to express that the afore
mentioned Navigational Complexity attribute is going to be measured, among
others, with the aid of the NNT Base measure. The fact that the measure is of
subtype Base implies that it does not depend on any other measure to calculate
its value. Also, we want to express that the value of the NNT measure belongs
to a natural number Scale, of ratio Type of scale. The Measurement Unit
would be the Navigational Target.

The only thing left for the completion of the NNT measure definition is
the specification of how we intend to measure such concept. We can do so by

instantiating the Measurement Approaches package related with the namesake
sub-ontology (see Fig. 3). This package provides the necessary meta-classes to
express that the Measurement Method used to calculate the NNT measure
consists on counting the number of NT that a given navigational view includes.

Also, we need to specify the Analysis Model, that includes a set of Deci-
sion Criteria. In our example, as we have just defined one measure, our Analysis
Model assesses navigability just depending on the value of the NNT measure.
The Decision Criteria on its turn establishes that a good navigability value has
to comply with the Miller’s rule, what implies that, in order for the model to be
not too trivial nor too complex, the NNT must be between five and nine.
Once the NNT measure has been defined, it is time to see how we can apply it
to a given navigational model, such as the one presented in Fig. 2.

4 Automation of Measures

One of the main advantages of the measuring model presented in Fig. 4 is its
capacity of reuse, as it does not assume any particular Web Engineering naviga-
tional meta-model. However, in order to be able to apply a given measure to a
concrete navigational model, such connection needs to be established. This can
be easily done if we regard a navigational model as a subtype of the concept En-
tity Class. This connection opens the path to the application of a Model-Driven
Engineering approach [20] to automate the navigability assessment.

Back to our example, in Fig. 2 we can intuitionally observe how the OO-H
navigational model does not fulfill the rule of 7+-2 navigational targets. There-
fore an expert designer would manually restructure the application to fulfill
such rule. The automation of this process can be achieved by means of a set of
transformation rules that, expressed in QVT [24], allows to encapsulate all the
knowledge particular to a given Web Engineering approach (in our case OO-H).

Let’s illustrate this approach by depicting a possible transformation rule that
counts the number of NT for the navigational model of Fig. 2 and annotates the
model if the decision criteria is not fulfilled (see Fig. 5).

In Fig. 5 the QVT graphical notation for the NumberOfNavigationalTar-
gets relation is presented. This transformation rule involves two checkonly (c)
domains: the NavigationalModel domain (root for the OO-H meta-model) and
the BaseMeasure domain (defined in the context of the measuring meta-model).
First, the transformation rule checks whether the NNT measure is relevant for
our navigational model, and whether Miller’s decision criteria is applicable. This
will be evaluated to true if the corresponding objects are present in the mea-
surement model (meta-model instantiation) that we have previously defined (see
Fig. 4).

Then we must calculate the actual number of NT included in the naviga-
tional model under consideration. In OO-H this value can be established by
simply counting the number of NT associated to our Navigational Model. The
transformation rule stores this value in the nts variable.

NumberOfNavigationalTargets

Dc: DecisionCriteria

nts<5 or nts>9
when

NNT:BaseMeasure

c c

<<domain>>

:am:AnalysisModel

uses

uses
Mm: MeasurementMethod

text=“Count the number of NT”
nm:NavigationalModel

<<domain>>

ntset:NavigationalTarget

size = nts

target

text=“Miller’s rule”

nm:NavigationalModel
<<domain>>

c:Comment

text=”invalid number of NT”

e

Fig. 5. QVT Transformation rule that checks OO-H navigational models for Miller’s
rule violations

The adaptation of Miller’s rule to the OO-H meta-model is established in
the when clause of the transformation. This clause indicates, also in OCL-like
syntax, that the transformation rule must be activated only if the number of NT
is erroneous. In this case, the desired action is to enrich the OO-H model with a
comment, associated with the whole model, that warns the designer about the
violation of the rule. We specify such action on a third enforceable (e) domain
(again the OO-H NavigationalModel). More transformation rules can be defined
in this general way, making up a repository of measuring transformation rules.

We would like to stress the fact that the decision whether or not a particular
rule is relevant for a given application will be taken once the measuring meta-
model has been instantiated for such application. If the measuring structure
reflected in the transformation rule is present in the meta-model instantiation,
the rule will check whether the decision criteria is met, and will take any desired
action if this is not the case. Although in our example the action has consisted
on simply annotating the model, more sophisticated transformation rules could
be defined to automatically generate a new model that does comply with the
measuring criteria.

5 Conclusions and further work

This paper has presented a way to define a reusable measuring model that, based
on the SMO meta-model, can be integrated into any particular Web Engineering
approach. Also, it has demonstrated how the instantiation of this meta-model
can participate in the quality assessment of particular navigational models, be-
coming a discriminator to decide whether or not a given QVT transformation

rule, defined as part of a transformation rule repository, is applicable. Such
transformation rules are the only elements that are aware of the specific Web
Engineering meta-model that is being used, encapsulating in this way the specific
knowledge. Besides, these transformation rules automate the measurement pro-
cess, as well as the annotation/modification of the corresponding navigational
models (if necessary) depending on the established measuring decision criteria.
We would also like to stress the fact that the explicit consideration of ontologies
(SMO) and standards (UML, OCL, QVT) whenever possible improves under-
standability and reusability of the approach.

At this moment efforts are being made towards the definition of transforma-
tion rules that not only annotate but also modify in a sound way the OO-H nav-
igational models. Also, intensive work is being performed on the OO-H CAWE
tool to provide full support to this proposal.

We are aware that a lot of work is left to define and empirically validate rela-
tionships between measures, measurement models and specific design modifica-
tions. For example, the assumption that the ideal number of NT for a medium-
size e-commerce application such as our Ticket Sales system follows Miller’s rule
has not, to our knowledge, been either refuted nor confirmed yet.

Last, we would like to stress how, as soon as the Web Engineering commu-
nity reaches an agreement regarding a common meta-model for Web application
development, not only the meta-model instantiation but also the set of defined
transformation rules will be able to be seamlessly reused among approaches.

References

[1] Web accessibility verifier. http://aprompt.snow.utoronto.ca.
[2] S. Abrahao, N. Condory-Fernandez, L. Olsina, and O. Pastor. A Defining and

Validating Metrics for Navigation Models. In Proceedings of the 9th International
Software Metrics Symposium, pages 200–210, 2003.

[3] J. Almer. Designing for Web Site Usability. IEEE Computer, 35(7):102–103, 2002.
[4] J. Almer. Web Site Usability, Design and Performance Metrics. Information

Systems Research, 13(2):151–167, 06 2002.
[5] A. De Angeli, M. Matera, M.F. Costabile, F. Garzotto, and P. Paolini. Validat-

ing the SUE inspection technique. In Proceedings of the working conference on
Advanced Visual Interfaces. ACM Press, 2000.

[6] U. Assmann, S. Zschaler, and G. Wagner. Ontologies in Software Engineering
and Software Technology, chapter Ontologies, Meta-Models and the Model-Driven
Paradigm. Springer, 2006 (to appear).

[7] R. Atterer, A. Schmidt, and H. Hussmann. Extending Web Engineering Models
and Tools for Automatic Usability Validation. Journal of Web Engineering, 2005.

[8] L. Baresi, S. Morasca, and P. Paolini. Estimating the Design Effort of Web Ap-
plications. In Proceedings of the 9th International Software Metrics Symposium
(METRICS’03). Springer, 2003.

[9] A. L. Baroni, S. Braz, and F. Brito e Abreu. Using OCL to Formalize Object-
Oriented Design Metrics Definitions. In Proceedings of the 6th International
ECOOP Workshop on Quantitative Approaches in Object-Oriented Software En-
gineering (QUAOOSE’02), 2002.

[10] A. L. Baroni and F. Brito e Abreu. Formalizing Object-Oriented Design Metrics
upon the UML Meta-Model. In Brazilian Symposium on Software Engineering,
2002.

[11] L. Briand, S. Morasca, and V. R. Basili. Defining and Validating Measures for
Object-Based High-Level Design. IEEE Transactionson Software Engineering,
25(5):722–743, 10 1999.

[12] C. Cachero and S. Meliá. The OO-H Navigation Metamodel and Profile.
http://www.dlsi.ua.es/ ccachero/OOHProfile.pdf, 04 2006.

[13] C. Calero, J. Ruiz, and M. Piattini. A Web Metrics Survey Using WQM. In
Proceedings of the 4th International Conference on Web Engineering (ICWE’04).
Springer, 2004.

[14] S. Comai, M. Matera, and A. Maurino. A Model and an XSL Framework for
Analyzing the Quality of WebML Conceptual Schemas. In Proceedings of the
ER’02 International Workshop on Conceptual Modeling Quality, pages 339 – 350.
Springer, 10 2002.

[15] F. Garćıa, M.F. Bertoa, C. Calero, A. Vallecillo, F. Ruiz, M. Piattini, and M. Gen-
ero. Towards a consistent terminology for software measurement. Information and
Software Technology, pages 1–14, 07 2005.

[16] M. Genero. Defining and Validating Metrics for Conceptual Models. PhD thesis,
University of Castilla-La Mancha, 2002.

[17] J. Gómez, C. Cachero, and O. Pastor. Conceptual Modelling of Device-
Independent Web Applications. IEEE Multimedia Special Issue on Web Engi-
neering, 8(2):20–32, 04 2001.

[18] L. Heuser. The real world or Web Wngineering? In Proceedings of the 4th Inter-
national Conference on Web Engineering, volume 3140, pages 1–5. Springer, 06
2004.

[19] M. Ivory. Automated Web Site Evaluation. Kluwer Academic Publishers, 2004.
[20] S. Kent. The Expressive Power of UML-based Engineering. In Proceedings of the

3nd International Conference on Integrated Formal Methods, volume 2335, page
286. Springer, 06 2002.

[21] Knowledge-based web automatic reconfigurable evaluation with guidelines opti-
mization. http://www.isys.ucl.ac.be/bchi/research/Kwaresmi.htm.

[22] G. Miller. The magical number seven, plus or minus two: Some limits on our
capacity for processing information. In The Psychological Review, volume 63,
pages 81–97, 1956.

[23] J. Nielsen. Designing Web Usability: The Practice of Simplicity. New Riders,
2000.

[24] Mof query/views/transformations final adopted specification. omg doc. ptc/05-
11-01. www.omg.org/docs/ptc/05-11-01.pdf.

[25] L. Reynoso, M. Genero, and M. Piattini. OCL2: Using OCL in the Formal Defini-
tion of OCL Expression Measures. In Proceedings of the 1st International Work-
shop on Algebraic Foundations for OCL and Applications (WAFOCA’06), 2006.

[26] OMG Unified Modelling Language Specification. http://www.rational.com/uml/,
06 1999.

[27] Visual web applications development environment. http://www.visualwade.com/.
[28] J. Warmer and A. Kleppe. The Object Constraint Language. 2nd Edition. Getting

your models ready for MDA. Addison Wesley, 2003.

