
A Model-Driven Approach for the Improvement of Web
Applications’ Navigability

Abstract

Navigability in use, defined as the efficiency, effectiveness and satisfaction with which

a user navigates through the system in order to fulfil her goals under specific conditions,

has a definite impact on the overall success of Web applications. This quality attribute

can be measured based on the navigational model provided by Web Engineering

methodologies. Most of the measures currently defined for navigational models are

tightly coupled with particular Web Engineering methodologies, however. Furthermore,

modifications to the design of the navigational model, carried out with the aim of

improving navigability, are performed manually. Both practices have seriously

hampered the reusability and adoption of proposed navigability measures and

improvement techniques. In this paper we present a Model-Driven Engineering

approach to solving these problems. On the one hand, we propose a generic approach

for the definition of navigability measurement models that can be integrated into any

Web Engineering methodology. On the other hand, we present a model-driven

improvement process for the navigational model design which incurs no increase in

costs or in time-to-market of Web applications. This process is divided into two phases:

evaluation (i.e. assessment of the model through objective measures) and evolution (i.e.

transformation of the model when the measurement results do not fall inside the

boundaries set by certain quality decision criteria that have been defined previously).

Introduction

 1

The ever-increasing complexity of Web applications has caused the Web Engineering

(WE) field, defined as the application of systematic, disciplined and quantifiable

approaches to the cost-effective development and evolution of high-quality applications

in the World Wide Web (Heuser, 2004), to evolve at an extremely fast pace. This

discipline intertwines sound Software Engineering principles with a suitable set of

models, particular to the idiosyncrasy of the Web. However, despite this definition, the

inclusion in the different WE methodologies of mechanisms that will contribute to

guaranteeing that the resulting applications fulfil a set of quality requirements continues

to be a challenge for the discipline. In fact, there is no empirical evidence that there

exists a significant relationship between the Web application quality in use and whether

the designer follows a specific WE methodology for its development or not.

Even more perplexing for the WE field, a recent study shows that despite the fact that

84% of European enterprises use a hypermedia development process with clear tasks,

phases and deliverables defined, only around 5% use or even know about the WE

methodologies proposed in research (Lang and Fitzgerald, 2005).

If enterprises are to be encouraged to make the shift towards using a WE methodology,

at least two WE promises must be fulfilled clearly and definitely:

• The use of WE methodologies should clearly decrease not only the development

costs, along with time-to-market, but also the Web application maintenance and

evolution costs, the latter making up over 50% of the total application costs in

Software Engineering (Myers and Rosson, 1992).

• The use of WE methodologies should provide the designer with mechanisms

which would guarantee that the Web application fulfills a set of both internal

and external quality requirements (which refer to internal and external quality

 2

attributes, respectively), and therefore more likely to meet user needs than

‘creative’ approaches.

The Model-Driven Engineering paradigm (MDE) (Kent, 2002; Bézivin, 2004) is

already contributing to the achievement of these WE goals. MDE considers models as

primary engineering artefacts throughout the engineering lifecycle, and regards the

software life cycle as a chain of model transformations. All models in an MDE

approach are formally described by means of meta-models. MDE technologies combine

(1) Domain Specific Modelling Languages (DSML’s), whose type systems formalize

the application structure, behaviour and requirements within particular domains, and (2)

transformation engines and generators that analyze certain aspects of models and

synthesize various types of artefacts (Schmith, 2006). In this context, Model-Driven

Architecture (MDA) (Mellor et al., 2004) has become the industrial large-scale

application of the MDE principles around a set of OMG standards, such as MOF

(OMG-MOF, 2006) to define meta-models, UML (OMG-UML, 2005) and OCL (OMG-

OCL, 2006) to define models and XMI (OMG-XMI, 2005) to interchange models

among tools.

The WE community has largely shifted to MDE, providing WE methodologies with the

degree of formalization and process standardization that they lacked up to the advent of

this paradigm. Meta-models have been defined, facilitating the understanding of the

different model semantics (Koch and Kraus, 2003; Schauerhuber et al., 2006). Models

have been reclassified as being Computation Independent Models (CIM), Platform

Independent Models (PIM) or Platform Specific Models (PSM), depending on their

position in the standard meta-pyramid of OMG (Assmann et al., 2006). Transformations

between models, until now hardwired inside the different Computer Aided Web

 3

Engineering (CAWE) development environments, have also been externalized (Koch

2006; Meliá et al., 2005) by means of standard languages, typically QVT (OMG-QVT,

2005) or QVT-derived, such as the UML Profile Transformation (UPT) (Meliá and

Gómez, 2006).

Resulting from these changes, the new MDE-based WE development process (see

Figure 3) defines (1) a requirements workflow, whose outgoing artefact is a use case

model, (2) an analysis workflow, whose output is a domain model (Entity Relationship

or class diagram), (3) a conceptual design workflow, whose output is a navigational and

a presentation model (expressed by means of UML profiles or proprietary notations),

(4) a detailed design workflow that introduces platform and technology specific features

(typically J2EE and .NET) and (5) an implementation workflow, which results in a Web

application that is ready to be deployed. Variants of this process model exist, usually to

include additional PIM and/or PSM models (architectural models, business process

models, different languages and/or platforms, etc.) that further enrich the application

specification. Also, a set of automatic or semi-automatic transformations among

artefacts have been defined to streamline the process and to improve traceability among

and between concepts.

This move to MDE has positioned the WE community closer than ever to the fulfilment

of the first of the promises set out at the beginning of this section, that is, the

achievement of a significant decrease in total costs and time-to-market of applications

developed with WE methodologies. Unfortunately, the path towards the assurance of

higher navigability of Web applications is not that well paved. Under the next heading

 4

we analyse the state of the art in navigability measurement and introduce the topic of

this paper, i.e. how an MDE approach can contribute to making advances in this field.

Early Navigability Measurement in WE

The navigability of a Web application in use, understood as the efficiency, effectiveness

and satisfaction with which users can move around in the application to satisfy specific

goals under specific conditions, is widely recognised as a milestone for the success of

Web applications. This fact is reflected in the myriad of design guidelines (Nielsen,

2000) and automated measures (Ivory, 2004) that have been published.

While guidelines are, for most part, ambiguous and hard to follow (Ivory and Megraw,

2005), measures provide a systematic and accurate way of evaluating products. This fact

is supported by empirical evidence: usability prediction of Web interfaces with the help

of measures matches in some cases up to 80% of the results based on expert evaluation

of the same Web pages (Ivory and Hearst, 2001).

Navigability assessment as usually carried out today suffers from two problems. The

first one is that, more often than not, the navigability measurement process is based on

heuristics that lack empirical validation (more than 60% of the heuristics are not

validated (Calero et al., 2004)). The second problem, which is where the focus of this

paper lies, is that the measurement process is usually performed once the application has

already been deployed, when errors and navigability problems are difficult and costly to

remedy. Similar remarks also apply to Software Engineering, where research has

concentrated mainly on the implementation (Auer, 1998) despite the fact that, as Fisher

(1999) found, from a user's perspective an improved system results when technical

communicators are involved particularly in the early stages of the development process.

 5

Regarding web applications, the delay in measuring navigability is due to the fact that

the degree of navigability perceived by the final user can only be directly assessed

through the use of measures over external attributes under real conditions of use

(ISO/IEC 9126, 2001).

Taking these considerations into account, our research framework is based on the

conjecture that it is possible to establish a set of relationships between the navigability

of a Web application in use and external/internal navigability properties of the Web

application, as we can observe in Figure 1, which is based in the ISO 9126 standard for

software quality (ISO/IEC 9126, 2001). External navigability (measured through

external measures over external attributes) refers to the behaviour of the system during

the testing and/or operational stages of the life cycle process. Internal navigability

(measured through internal measures over internal attributes) is in turn assessed on the

non-executable product during its development stage. Given that internal navigability

influences external navigability, which for its part influences navigability in use, we can

conclude that the latter can be at least partially assessed by taking measures from early

navigability artefacts.

Internal
Navigability

External
Navigability

Navigability
in Use

influences influences

depends ondepends on

Internal
Measures

(on models)

External
Measures

(in testing environment)

Measures
In Use

(under real conditions of use)

Contexts
of use

Internal
Navigability

External
Navigability

Navigability
in Use

influencesinfluences influencesinfluences

depends ondepends ondepends ondepends on

Internal
Measures

(on models)

Internal
Measures

(on models)

External
Measures

(in testing environment)

External
Measures

(in testing environment)

Measures
In Use

(under real conditions of use)

Measures
In Use

(under real conditions of use)

Contexts
of use

This research

Engineering,

external quali

Figure 1: Relationship between navigability measures
(adapted from ISO/IEC 9126)
 framework is actually based on similar research in Empirical Software

where the relationship between measures of internal quality attributes and

ty attributes has been investigated (Briand and Wüst, 2002). Although

6

this stream of research is highly explorative in nature, consensus is emerging regarding

the role that structural software properties (which can be assessed through internal

measures taken from models that emerge at the software design stage) play in

determining external software quality and the external software quality characteristics in

the software quality in use (Bevan and Azuma, 1997). Reasons why structural

properties have an impact on quality have been suggested by Briand et al. (1999b,

2001) (see ¡Error! No se encuentra el origen de la referencia.). According to them,

software that is big (i.e. having many composing elements) and has a complex structure

(i.e. showing many relationships between the software’s composing elements) results in

a high cognitive complexity, which is defined as the mental burden of the people that

perform tasks on the software. It is the high cognitive complexity that causes the

software to display undesirable properties such as high effort to maintain, simply

because it is more difficult to understand, develop, modify or test such software.

Briand et al.’s model (Briand et al, 1999b), which they refer to as a ‘causal chain’, has

been the basis for much of the recent research on empirically-derived metrics-based

software quality prediction (El-Emam et al., 2001; Genero et al., 2003, 2007; Poels and

Dedene, 2001). The (indirect) relationship between software’s structural properties and

external quality properties has been repeatedly demonstrated. According to Briand et

al. (2001), it is difficult to imagine what could be alternative explanations for these

results besides cognitive complexity mediating the effect of structural properties on

software quality.

F
e

affect affects

External
quality

attributes

Cognitive
complexity

Internal quality

attributes
(structural
properties)

Figure 2. igure 2. Relationship between internal quality attributes, cognitive complexity and

xternal quality attributes (Briand et al. (1999b, 2001))
7

In the early assessment of structural navigation properties WE methodologies are called

to play an important role. WE methodologies provide a software artefact that is

specifically devoted to reflecting navigation design decisions: the Navigational Model

(NM).

Therefore, we will use Briand et al.’s model combined with ISO 9126´s model as a

working hypothesis and framework for our research: if it is assumed that the structural

properties (internal navigability) of a NM affect its external navigability, then

measuring these structural properties can be used as early indicators of external

navigability and navigability in use. Moreover, the inclusion of measures that guide the

construction of the NM may contribute to the assessment and improvement of internal

navigability, with all the advantages that an early detection and correction of

navigability problems implies (Briand et al., 1999).

At this point we face a problem: measures taken on NMs are scarce in the literature

(Abrahao et al., 2003; Cachero, 2005; Comai et al., 2002). Additionally, all the

proposed measures are tightly coupled to the WE methodologies for which they were

proposed. Unfortunately, these methodologies usually differ not only in notation but

also in the semantics associated to some (although fortunately not all) of their

constructs. This poses difficulties in the reuse of certain measures. Furthermore, only

part of these measures have been defined in a formal way, and the effects that an out of

bounds value may have on the models (that is, the modifications that should be

performed on the design in order to improve the measure) are usually not specified.

 8

Contribution of the paper

The main goal of this paper is to show how MDE principles and technologies can

contribute to systematizing and automating an early navigability assessment and

improvement process carried out on navigational models. In pursuit of this objective,

section 2 gives an overview of related work in early navigability measurement. We first

present the set of internal navigability measures that have been proposed in the literature

for specific WE methodologies, even though their theoretical and empirical validation

remains an open issue that is beyond the scope of this paper. We then present a table of

navigational model construct equivalences that ensures the reusability of the (informal)

measure definitions across four of the best known WE methodologies, namely OO-H

(Gomez et al., 2001), OOWS (Pastor et al., 2001), UWE (Hennicker and Koch, 2000)

and WebML (Ceri et al., 2000). In section 3 we argue that the internal navigability

measures that are relevant for a given application can be more rigorously defined by

means of a new artefact: the navigability measurement model, which is obtained by

instantiation of the Software Measurement Meta-model (SMM) that is obtained from

the Software Measurement Ontology proposed by García et al. (2005). The use of this

meta-model makes the model ripe for reuse within methodologies. This navigability

measurement model can be integrated into the MDE-based WE process (see Figure 3).

In this Figure, activities and artefacts related to navigability assessment and

improvement are marked in green.

For this process to be complete, an endogenous mapping (Caplat and Sourrouille, 2003),

involving the navigational meta-model provided by a given WE methodology, needs to

be defined. For the sake of illustrating the approach, we have chosen OO-H. A brief

introduction to this methodology, as well as to its navigational meta-model, is presented

 9

in section 4. Section 5 takes an in-depth look at the details of the transformation that,

expressed in UPT (Meliá and Gómez, 2006) allows the specification of a possible

conversion of an OO-H navigational model into an OO-H navigability-improved

navigational model by means of a UML profile. Our approach has been implemented as

an extension of an existing MDE tool, the WebSA Tool (Meliá and Gómez, 2006) that

is presented in section 6. Finally, in section 7 we present our conclusions and some

further lines of research.

Analysis

RequirementsCIM

PIM

T2’
Merge

Model2Model
Transformation

Model2Model
Transformation

Model2Text
Transformation

Conceptual DesignPIM

Detailed Design
T4'T4T4 T4 ’’

:Model for
J2EE Platform

PSM

:Presentation
Model

:Model for
.NET Platform

:Model for
Other Platforms

Model2Model
Transformation

T5T5 T5’T5’ T5’’T5’’

Code

ImplementationCODE

Merge T2

:Domain
Model

:Navigational
Model

:Use Case
Model

T1 Model2Model
Transformation

:Navigavility
Measurement

Model

:Navigability-improved
Navigational Model

s

Related W

As we have s

literature. On

Abrahao et a

Figure 3: Navigability-aware MDE based WE Proces
ork: Navigability Measures in WE

tated above, internal navigability measures are few and far-between in the

ly WebML (Comai et al., 2002), OOWS (Abrahao and Insfran, 2006;

l., 2003) and OOH (Cachero, 2005) tackle this issue explicitly. The

10

WebML Quality Analyzer (Comai et al., 2002) allows the analysis of the XML

specification of WebML conceptual schemas. WebML defines two quality attributes

that may contribute to assessing navigability based on the navigational model:

correctness and usability. Syntactic correctness (assured by the methodology meta-

model) is distinguished from semantic correctness. To get an indicator of semantic

correctness, WebML proposes the measurement of the absence of conflicts, the absence

of race conditions and the reachability of units and pages, but they do not provide

concrete formulae to compute these indicators. Regarding usability, WebML

distinguishes between consistency, ease of navigation and low page density, but again

they only give pattern examples, and fail to define formally any measure that could be

generally applicable to other WE navigational models. OOWS, focusing more on how

the structural complexity of navigational models may affect quality in use attributes,

does formally define a set of measures to assess the size, width, depth and edge-to-node

ratio of OOWS navigational models. Based on this work, OO-H adapts such measures

to OO-H, and puts forward a set of additional measures that can be used to assess

consistency and ease of navigation in OO-H navigational models quantitatively,

although these measures still need to be theoretically and empirically validated.

An overview of the measures proposed in OOWS and OO-H is presented in Table 1.

This table does not include the measures of WebML, due to the lack of definitions. We

have also left out of the table the measures that cannot be expressed in terms of the

navigational constructs presented in Table 2, whose semantics are shared across

methodologies.

Measure Name Measure Definition

Number of Navigational
Contexts (NNC) (Abrahao et al.

The total number of navigational
contexts (context + sequence) in a

 11

2003) navigational map.
Number of Navigational Links
(NNL) (Abrahao et al. 2003)

The total number of navigational links
in a navigational map.

Density of a Navigational Map
(DeNM) (Abrahao et al,. 2003)

Number of navigational links/Number
of navigational contexts in a
navigational map

Depth of a Navigational Map
(DNM) (Abrahao et al., 2003)

The longest distance from a root
navigational context to a leaf context.

Breadth of a Navigational Map
(BNM) (Abrahao et al., 2003)

The total number of exploration
navigational contexts in a navigational
map.

Minimum Path Between
Navigational Contexts
(MPBNC) (Abrahao et al.,
2003)

The minimum number of navigational
links that are necessary to cross over
from a given source to a given target
navigational context within a
navigational map.

Navigation Pattern Coherence
of a Navigational Model
(NPCNM) (Cachero, 2005)

Degree of homogeneity in the
application of the existing
navigational patterns (index, guided
tour, indexed guided tour, showall) to
provide access to the system
information.

Domain Coverage of the
Navigational Model (DCNM)
(Cachero, 2005)

Percentage of domain relationships
which, having already been defined as
the conceptual relationships in which
a certain user type is interested, can
in actual fact be navigated by such a
user.

Navigational Model Simplicity
(NMS) (Cachero, 2005)

Percentage of navigational links in a
navigational model that support
domain relationships.

Number of Paths Between
Navigational Contexts
(NPBNC) (Abrahao et al.,
2003)

The amount of alternative paths to
cross over from a given source to a
given target navigational context
within a navigational map.

Compactness (Cp) (Abrahao et
al., 2003)

The degree of interconnectivity of a
navigational map.

Table 1: Internal Navigability Measures

Perhaps the most important characteristic of these measures is that they can be reused

among methodologies. However, this reuse is not evident, due to the already-mentioned

divergence in navigational constructs and nomenclature that exists in the WE field. To

overcome this problem, we have complemented Table 1 with a list of term equivalences

found in four of the best known WE methodologies. This list (see

 12

Table 2) includes all the navigation constructs involved in the definition of the measures

presented in Table 1.

 OOWS OO-H UWE WebML

Object Model Class diagram Class Diagram ER Model

Class Class Class Entity

D
om

ai
n

M
od

el

Relationship
(association,
aggregation,
composition)

Relationship
(association,
aggregation,
composition)

Relationship
(association,
aggregation,
composition)

Relationship

Navigational Map Navigational Model Navigational
Model

Hypertext
structure schema

Exploration
Navigational Context

Navigational Target Package Site View

Sequence
Navigational Context

Navigational Target Package Site View

Navigation Class Navigational Class Navigation Node Data Unit

Navigation
Link

Traversal Link
Requirement Link
Service Link

Navigation Link Link N
av

ig
at

io
n

M
od

el

Navigation Patterns Navigation patterns Access primitives Sortable Unit

 Table 2: Equivalence of WE Navigational Constructs

With this table, translation to the various different methodologies of the measures

presented in Table 1 is straightforward.

Given the facts that (1) the focus of the paper is the presentation of an MDA-based

process that permits to automatically assess and improve structural navigability

measures on early WE artifacts (navigational models), and not the validation of such

measures; (2) the use of complex measures do not guarantee the success of the

measurement; and (3) the scientific community has not yet provided an empirically

validated set of measures that can be used to assess navigability, we have decided to use

the relatively simple DCNM measure to illustrate our approach. This measure was

 13

originally defined in terms of OO-H constructs and it is marked in bold in Table 1.

Replicating the process presented in this paper with any empirically validated measure

or indicator proven successful to actually improve the navigability in use of the

application is straightforward, provided that such measures are based on data

maintained in the origin and/or target meta-models. Being OCL the chosen language to

express such measures and decision criteria, its expressive power assures that any kind

of structural restriction on the underlying meta-models can be defined as part of the

transformations.

The Domain Coverage of the Navigational Model (DCNM) measure

The DCNM measure was informally defined in (Cachero, 2005) as the Percentage of

domain relationships which, having already been defined as the conceptual

relationships in which a certain user type is interested, can in actual fact be navigated

by such a user. The rationale of this measure lies in the assumption that users may

expect to find in the Web application the same relationships that exist among concepts

in the problem space. Not finding these relationships in the application may therefore

diminish their general satisfaction with the application. Users are likely to describe this

phenomenon as a problem with the navigability of the application.

If we wish to obtain a value for this measure in OO-H, the first step consists in checking

which domain classes in the class diagram contribute to making up the user view, that

is, which of them support the navigational classes. We must then count the Number of

Relevant Relationships (NRR) that exists in the class diagram among such domain

classes. The reason why we are just interested in the NRR subset is that not every

concept is relevant for every navigational model. The third step consists in counting the

relationships that support navigation in the navigational model (i.e. counting the

 14

traversal links). This measure is referred to as the Number of Navigated Domain

Relationships (NNDR). With these two measures it is possible to calculate the DCNM

measurement result as NNDR/NRR*100. In this definition, words in italics refer to OO-

H specific concepts that will be further explained in section 4.

Let’s assume now that we want to redefine the calculation of this measure in terms of a

different WE methodology. For the sake of the example, we have chosen WebML,

which, not being originally based in UML, differs most in terminology with respect to

OO-H. Applying the list of equivalences presented in Table 2, the first task is to check

which entities in the ER model contribute to making up the user view, that is, which of

them support the data units. Secondly, we must count the Number of Relevant

Relationships (NRR) existing in the ER model among such entities. In the third place,

the links that appear in the hypertext structure schema must be counted. This value is

referred to as the Number of Navigated Domain Relationships (NNDR). With these two

values it is again possible to calculate the DCNM measurement result with the

measurement function NNDR/NRR*100.

The main problem with these informal definitions lies in the fact that they may be hard

to understand for people trying to adopt the measures. Our next point is to present how

this problem can be palliated by instantiating a common Software Measurement Meta-

Model that avoids ambiguities and fosters the completeness of the measure definition.

Use of the Software Measurement Meta-Model for the Definition

of Measures over Navigational Models

 15

Although software measurement plays an increasingly important role in Software

Engineering (Fenton and Pfleeger, 1997), there is no consensus on many of the concepts

and terminology used in this field, such as, ‘measurement’, ‘measure’, ‘metric’,

‘measurable attribute’, etc. Worse still, vocabulary conflicts and inconsistencies are

frequently found amongst the many sources and references commonly used by software

measurement researchers and practitioners, including international Software

Engineering standards (García et al., 2005).

In an effort towards the harmonization of the different software measurement standards

and research proposals, García et al. (2005) have proposed a Software Measure

Ontology (SMO). This ontology provides a common conceptualisation of software

measurement, where objects, concepts, entities and their relationships are explicitly

represented in an unambiguous and explicit way. Setting as our objective the obtaining

of a generic measurement model for navigational models, we have adopted SMO and its

corresponding Software Measurement Meta-Model (SMM) (Ferreira et al., 2006) (see

Figure 4).

SMO and SMM are represented by using a UML diagram. UML-based ontologies and

meta-models have the obvious advantages of being more widely understandable than

ontological languages and of being aligned with the MDE (Model Driven Engineering)

movement (PlanetMDE, 2005).

The classes in the SMM are packaged (shown using colours in Figure 4) according to

the following sub-ontologies of the SMO:

 16

- Characterization and Objectives includes the concepts required to establish the

scope and objectives of the measurement process.

- Software Measures aims at establishing and clarifying the key elements in the

definition of a measure.

- Measurement Approaches introduces the concept of measurement approach, to

generalize the different ‘approaches’ used by different kinds of measures for

obtaining their respective measurement results.

- Measurement Action establishes the terminology related to the act of measuring.

The “Software Measurement Characterization and Objectives” sub-ontology includes

the concepts required to establish the scope and objectives of the software measurement

process. The main goal of a software measurement process is to satisfy certain

information needs by identifying the entities (which belong to entity classes) and the

attributes of these entities (which are the focus of the measurement process). Attributes

and information needs are related through measurable concepts (which belong to a

quality model).

The “Software Measures” sub-ontology aims at establishing and clarifying the key

elements in the definition of a software measure. A measure relates a defined

measurement approach and a measurement scale (which belongs to a type of scale).

Most measures may or may not be expressed in a unit of measurement (for example,

nominal measures cannot be expressed in units of measurement), and can be defined for

more than one attribute. Three kinds of measures are distinguished: base measures,

derived measures, and indicators.

 17

The “Measurement Approaches” sub-ontology introduces the concept of measurement

approach to generalize the different “approaches" used by the three kinds of measures

for obtaining their respective measurement results. A base measure applies a

measurement method. A derived measure uses a measurement function (which rests

upon other base and/or derived measures). Finally, an indicator uses an analysis model

(based on a decision criteria) to obtain a measurement result that satisfies an

information need.

The “Measurement” sub-ontology establishes the terminology related to the act of

measuring software. A measurement (which is an action) is a set of operations having

the object of determining the value of a measurement result, for a given attribute of an

entity, using a measurement approach. Measurement results are obtained as the result of

performing measurements (actions).

Table 3 shows the concepts defined in the ontology.

Term Definition
Measurement
Approach

Sequence of operations aimed at determining the value of a
measurement result. (A measurement approach is either a
measurement method, a measurement function or an
analysis model)

Measurement A set of operations having the object of determining the
value of a measurement result, for a given attribute of an
entity, using a measurement approach

Measurement
Result

The number or category assigned to an attribute of an entity
by making a measurement

Information Need Insight necessary to manage objectives, goals, risks, and
problems

Measurable
Concept

Abstract relationship between attributes of entities and
information needs

Entity Object that is to be characterized by measuring its attributes
Entity Class The collection of all entities that satisfy a given predicate
Attribute A measurable physical or abstract property of an entity, that

is shared by all the entities of an entity class
Quality Model The set of measurable concepts and the relationships

between them which provide the basis for specifying quality
requirements and evaluating the quality of the entities of a
given entity class

Measure The defined measurement approach and the measurement
scale. (A measurement approach is either a measurement
method, a measurement function or an analysis model)

 18

Scale A set of values with defined properties
Type of Scale The nature of the relationship between values on the scale
Unit of
Measurement

Particular quantity, defined and adopted by convention,
with which other quantities of the same kind are compared
in order to express their magnitude relative to that quantity

Base Measure A measure of an attribute that does not depend upon any
other measure, and whose measurement approach is a
measurement method

Derived Measure A measure that is derived from other base or derived
measures, using a measurement function as measurement
approach

Indicator A measure that is derived from other measures using an
analysis model as measurement approach

Measurement
Method

Logical sequence of operations, described generically, used
in quantifying an attribute with respect to a specified scale.
(A measurement method is the measurement approach that
defines a base measure)

Measurement
Function

An algorithm or calculation performed to combine two or
more base or derived measures. (A measurement function is
the measurement approach that defines a derived measure)

Analysis Model Algorithm or calculation combining one or more measures
with associated decision criteria. (An analysis model is the
measurement approach that defines an indicator)

Decision Criteria Thresholds, targets, or patterns used to determine the need
for action or further investigation, or to describe the level of
confidence in a given result
Table 3. SMO terms definition

For a better understanding of the SMO and SMM, interested readers are referred to

(García et al., 2005) where an exhaustive definition of the concepts defined in the four

packages can be found.

 19

Software Measures

Measurement Action

Characterization and Objectives

Measurement Approaches

Measurement Method
(from Measurement Approaches)

Base Measure
(from Software Measures)

1..n

1

1..n

1

uses

Measurement Function
(from Measurement Approaches)

0..n

0..n

0..n

0..n

uses

Derived Measure
(from Software Measures)

0..n

0..n

0..n

0..n

calculated with

0..n

0..n

0..n

0..n

uses

Type of Scale
(from Software Measures)

Information Need
(from Characterization and Objectives)

Indicator
(from Software Measures)

1..n

0..n

1..n

0..n

satisfies

Decision Criteria
(from Measurement Approaches)

Measurable Concept
(from Characterization and Objectives)

0..n

0..n

0..n

includes

0..n

1

1..n

1

1..n
is associated with

Unit of Measurement
(from Software Measures)Scale

(from Software Measures)

1..n

1

1..n

1
belongs to

Analysis Model
(from Measurement Approaches)

1..n

1

1..n

1

calculated with

1..n

1..n

1..n

1..n

uses

Quality Model
kind

1..n 1..n1..n 1..n

evaluates

Measurement Result
value

Measurement Approach
(from Measurement)

Attribute
(from Characterization and Objectives)

1..n

1..n

1..n

1..n

relates

Measure
(from Software Measures)

0..n 0..n0..n

transformation

0..n 1..n

0..1

1..n

0..1

expressed in

1..n

1

1..n

1

has

0..n1..n 0..n1..ndefined for 1..n

0..n

1..n

0..n

uses

Entity Class
(from Characterization and Objectives)

0..n 0..n0..n

includes

0..n

1

n

1

n

defined for

1 1..n1 1..n

has

Measurement
LocationInTime

1
1

1
1

produces

1

n

1

n

performs

n

1

n

1Is performed on

n

1

n

1
uses

Entity
(from Characterization and Objectives)

1..n

0..n

1..n

0..n

belongs to

n1 n1

Is performed on

0..n0..n

composed of

Figure 4: The Software Measurement Metamodel (SMM)

Our navigability measurement meta-model is defined, therefore, as an instantiation of

the SMM. We now go on to illustrate the instantiation of SMM for defining a concrete

navigability measurement model that, for the sake of simplicity, only covers the DCNM

measure, which was informally introduced in section 2.

SMM instantiation for the DCNM measure

Figure 5 shows the instantiation of SMM for defining, in an unambiguous way, a

navigability measurement model that includes the DCNM Measure through an object

model. This Measure aims at providing useful information to satisfy the Information

Need “Knowing the Navigability of a Navigational Model of a Web application” (To

 20

Know Navigability). The Measure is defined in the context of a Quality Model, named

NM (Navigability Model). This Quality Model is defined for the Entity Class Web

Conceptual Model (an abstract model that comprises all the PIMs associated with a web

application), which in our example includes two Entity Classes: Navigational Model

and Domain Model. The NM evaluates the Measurable Concept Navigability.

The Measurable Concept Navigability is related to three Attributes: Domain

Coverage, Structural Complexity NM and Structural Complexity DM. The Navigational

Model has two Attributes: Domain Coverage and Structural Complexity NM. The

Domain Model has the Attribute Structural Complexity DM.

The Derived Measure DCNM is defined for the Attribute Domain Coverage. DCNM

is calculated with a Measurement Function (DCNMFunction), which uses two Base

Measures, NNDR and NRR, defined in OO-H as follows:

− NNDR: Number of Navigated Domain Relationships that are related to traversal

links in the Navigational Model.

− NRR: Number of Relevant Relationships between classes in the Domain Model

(these classes should be the same classes that appear in the Navigational Model).

 21

us
es

A
M

_N
av

L:
 A

na
ly

si
sM

od
el

0.
.1

00
N

R
ea

l:
Sc

al
e

N
av

_L
: I

nd
ic

at
or

ca
lc

ul
at

ed
w

ith

C
ou

nt
N

N
D

R:
 M

ea
su

re
m

en
tM

et
ho

d
C

ou
nt

N
N

D
R:

 M
ea

su
re

m
en

tM
et

ho
d

N
um

SD
R:

 U
ni

to
fM

ea
su

re
m

en
t

N
um

SD
R:

 U
ni

to
fM

ea
su

re
m

en
t

To
K

no
w

N
av

eg
ab

ili
ty:

 In
fo

rm
at

io
n

N
ee

d
To

K
no

w
N

av
eg

ab
ili

ty:
 In

fo
rm

at
io

n
N

ee
d

sa
tis

fie
s

St
ru

ct
ur

al
C

om
pl

ex
ity

D
M:

 A
ttr

ib
ut

e
St

ru
ct

ur
al

C
om

pl
ex

ity
D

M:
 A

ttr
ib

ut
e

N
M

: Q
ua

lit
y

M
od

el
N

M
: Q

ua
lit

y
M

od
el

D
om

ai
nM

od
el:

 E
nt

ity
C

la
ss

D
om

ai
nM

od
el:

 E
nt

ity
C

la
ss ha

s

N
av

ig
ab

ili
ty:

 M
ea

su
ra

bl
eC

on
ce

pt
is

as
so

ci
at

ed
w

ith

ev
al

ua
te

s

W
eb

C
on

ce
pt

ua
lM

od
el

:E
nt

ity
C

la
ss

de
sc

rip
tio

n=
"A

bs
tra

ct
m

od
el

th
at

co
m

pr
is

es
al

lP
IM

so
fa

 W
eb

 A
pp

lic
at

io
n"

de
fin

ed
fo

r

in
cl

ud
es

D
om

ai
nC

ov
er

ag
e:

A
ttr

ib
ut

e

re
la

te
s

D
C

N
M

: D
er

iv
ed

M
ea

su
re

us
es

ha
s

de
fin

ed
fo

r

R
at

io
:T

yp
eo

fS
ca

le
R

at
io

:T
yp

eo
fS

ca
le

be
lo

ng
st

o

N
N

D
R

: B
as

e M
ea

su
re

N
N

D
R

: B
as

e M
ea

su
re

us
es

ex
pr

es
se

d
in

de
fin

ed
fo

r

C
ou

nt
N

R
R:

 M
ea

su
re

m
en

tM
et

ho
d

D
C

N
M

Fu
nc

tio
n:

 M
ea

su
re

m
en

tF
un

ct
io

n

de
sc

rip
tio

n=
"(

N
N

D
R

/N
R

R
)*

10
0"

ca
lc

ul
at

ed
w

ith

N
um

R
D

R:
 U

ni
to

fM
ea

su
re

m
en

t

N
um

N
at

ur
al:

 S
ca

le
N

um
N

at
ur

al:
 S

ca
le

be
lo

ng
st

o

ha
s

in
cl

ud
es

ha
s

N
R

R
: B

as
e M

ea
su

re
N

R
R

: B
as

e M
ea

su
re

ex
pr

es
se

d
in

ha
s

de
fin

ed
fo

r

D
C

_N
av

L:
 D

ec
is

io
n

C
ri

te
ri

a
de

sc
rip

tio
n=

“D

C
N

M
<=

80
->

D
C

N
M

_L
=N

ot
A

cc
ep

ta
bl

e“
D

C
N

M
>8

0 -
>D

C
N

M
_L

=A
cc

ep
ta

bl
e”

D
C

_N
av

L:
 D

ec
is

io
n

C
ri

te
ri

a
de

sc
rip

tio
n=

“D

C
N

M
<=

80
->

D
C

N
M

_L
=N

ot
A

cc
ep

ta
bl

e“
D

C
N

M
>8

0 -
>D

C
N

M
_L

=A
cc

ep
ta

bl
e”

us
es

re
la

te
s

ha
s

St
ru

ct
ur

al
C

om
pl

ex
ity

N
M

: A
ttr

ib
ut

e
St

ru
ct

ur
al

C
om

pl
ex

ity
N

M
: A

ttr
ib

ut
e

N
av

ig
at

io
na

lM
od

el:
 E

nt
ity

C
la

ss

re
la

te
s

us
es

us
es

de
fin

ed
fo

r

O
rd

in
al

:T
yp

eo
fS

ca
le

O
rd

in
al

:T
yp

eo
fS

ca
le

A
cc

ep
t_

N
ot

A
cc

ep
t:S

ca
le

ha
s

be
lo

ng
st

o

de
sc

rip
tio

n=
“N

av
_L

"

de
sc

rip
tio

n=
“D

C
N

M
"

de
sc

rip
tio

n=
“C

ou
nt

N
R

R"

de
sc

rip
tio

n=
“N

R
R

"

de
sc

rip
tio

n=
“N

N
D

R
"

de
sc

rip
tio

n=
“C

ou
nt

N
N

D
R"

de
sc

rip
tio

n=
“A

M
_N

av
L"

us
es

A
M

_N
av

L:
 A

na
ly

si
sM

od
el

0.
.1

00
N

R
ea

l:
Sc

al
e

N
av

_L
: I

nd
ic

at
or

ca
lc

ul
at

ed
w

ith

C
ou

nt
N

N
D

R:
 M

ea
su

re
m

en
tM

et
ho

d
C

ou
nt

N
N

D
R:

 M
ea

su
re

m
en

tM
et

ho
d

N
um

SD
R:

 U
ni

to
fM

ea
su

re
m

en
t

N
um

SD
R:

 U
ni

to
fM

ea
su

re
m

en
t

To
K

no
w

N
av

eg
ab

ili
ty:

 In
fo

rm
at

io
n

N
ee

d
To

K
no

w
N

av
eg

ab
ili

ty:
 In

fo
rm

at
io

n
N

ee
d

sa
tis

fie
s

St
ru

ct
ur

al
C

om
pl

ex
ity

D
M:

 A
ttr

ib
ut

e
St

ru
ct

ur
al

C
om

pl
ex

ity
D

M:
 A

ttr
ib

ut
e

N
M

: Q
ua

lit
y

M
od

el
N

M
: Q

ua
lit

y
M

od
el

D
om

ai
nM

od
el:

 E
nt

ity
C

la
ss

D
om

ai
nM

od
el:

 E
nt

ity
C

la
ss ha

s

N
av

ig
ab

ili
ty:

 M
ea

su
ra

bl
eC

on
ce

pt
is

as
so

ci
at

ed
w

ith

ev
al

ua
te

s

W
eb

C
on

ce
pt

ua
lM

od
el

:E
nt

ity
C

la
ss

de
sc

rip
tio

n=
"A

bs
tra

ct
m

od
el

th
at

co
m

pr
is

es
al

lP
IM

so
fa

 W
eb

 A
pp

lic
at

io
n"

de
fin

ed
fo

r

in
cl

ud
es

D
om

ai
nC

ov
er

ag
e:

A
ttr

ib
ut

e

re
la

te
s

D
C

N
M

: D
er

iv
ed

M
ea

su
re

us
es

ha
s

de
fin

ed
fo

r

R
at

io
:T

yp
eo

fS
ca

le
R

at
io

:T
yp

eo
fS

ca
le

be
lo

ng
st

o

N
N

D
R

: B
as

e M
ea

su
re

N
N

D
R

: B
as

e M
ea

su
re

us
es

ex
pr

es
se

d
in

de
fin

ed
fo

r

C
ou

nt
N

R
R:

 M
ea

su
re

m
en

tM
et

ho
d

D
C

N
M

Fu
nc

tio
n:

 M
ea

su
re

m
en

tF
un

ct
io

n

de
sc

rip
tio

n=
"(

N
N

D
R

/N
R

R
)*

10
0"

ca
lc

ul
at

ed
w

ith

N
um

R
D

R:
 U

ni
to

fM
ea

su
re

m
en

t

N
um

N
at

ur
al:

 S
ca

le
N

um
N

at
ur

al:
 S

ca
le

be
lo

ng
st

o

ha
s

in
cl

ud
es

ha
s

N
R

R
: B

as
e M

ea
su

re
N

R
R

: B
as

e M
ea

su
re

ex
pr

es
se

d
in

ha
s

de
fin

ed
fo

r

D
C

_N
av

L:
 D

ec
is

io
n

C
ri

te
ri

a
de

sc
rip

tio
n=

“D

C
N

M
<=

80
->

D
C

N
M

_L
=N

ot
A

cc
ep

ta
bl

e“
D

C
N

M
>8

0 -
>D

C
N

M
_L

=A
cc

ep
ta

bl
e”

D
C

_N
av

L:
 D

ec
is

io
n

C
ri

te
ri

a
de

sc
rip

tio
n=

“D

C
N

M
<=

80
->

D
C

N
M

_L
=N

ot
A

cc
ep

ta
bl

e“
D

C
N

M
>8

0 -
>D

C
N

M
_L

=A
cc

ep
ta

bl
e”

us
es

re
la

te
s

ha
s

St
ru

ct
ur

al
C

om
pl

ex
ity

N
M

: A
ttr

ib
ut

e
St

ru
ct

ur
al

C
om

pl
ex

ity
N

M
: A

ttr
ib

ut
e

N
av

ig
at

io
na

lM
od

el:
 E

nt
ity

C
la

ss

re
la

te
s

us
es

us
es

de
fin

ed
fo

r

O
rd

in
al

:T
yp

eo
fS

ca
le

O
rd

in
al

:T
yp

eo
fS

ca
le

A
cc

ep
t_

N
ot

A
cc

ep
t:S

ca
le

ha
s

be
lo

ng
st

o

de
sc

rip
tio

n=
“N

av
_L

"

de
sc

rip
tio

n=
“D

C
N

M
"

de
sc

rip
tio

n=
“C

ou
nt

N
R

R"

de
sc

rip
tio

n=
“N

R
R

"

de
sc

rip
tio

n=
“N

N
D

R
"

de
sc

rip
tio

n=
“C

ou
nt

N
N

D
R"

de
sc

rip
tio

n=
“A

M
_N

av
L"

DCNMFunction

Figure 5: A Navigability Measurement Model
is then defined as follows: (NNDR/NRR)*100.

22

NNDR is defined for the Attribute Structural Complexity NM. NRR is defined for the

Attribute Structural Complexity DM. Furthermore, both NNDR and NRR have the

Scale Natural Number (NumNatural) which belongs to the Type of Scale Ratio. The

Unit of Measurement of NNDR is numSDR (number of supported domain

relationships). The Unit of Measurement of NRR is numRDR (number of relevant

domain relationships).

NNDR is calculated by a Measurement Method CountNNDR, which counts the total

number of supporting relationships in a Navigational Model. NRR is calculated by a

Measurement Method CountNRR, which counts the total number of relevant

relationships between classes in the Domain Model (these classes should support the

classes that appear in the Navigational Model).

DCNM is a percentage, so it has the Scale 0..100NReal (real numbers in the range

0..100), which belongs to the Type of Scale Ratio. This is an scalar value, so it does not

have Unit of Measurement.

For the satisfaction of the Information Need we have defined the Indicator

Navigability Level (Nav_L). Nav_L is calculated with an Analysis Model, named

AM_NavL, which uses the measure DCNM.

AM_NavL also uses a Decision Criterion, given the name of DC_NavL, for the

calculation of the Indicator Nav_L. DC_NavL, which is defined as follows:

DCNM<=80 Nav_L= Not Acceptable

DCNM>80 Nav_L= Acceptable

 23

So the Indicator Nav_L can take two values, Acceptable or Not Acceptable. This

Indicator, as a measure, has a discrete Scale Accept_NotAccept, which belongs to the

Type of Scale Ordinal.

In Table 4 we show the equivalences among the example instantiations and the

navigability measurement meta-model terms.

Term Instantiation for the Navigability Measurable Concept
Information
Need

Knowing the Navigability of a Navigational Model of a Web
application

Measurable
Concept

Navigability

Entity Class Web conceptual model: navigational model and domain model
Attribute (1) Domain coverage – (2) Structural complexity NM (for NM)

– (3) Structural complexity DM (for DM)
Quality Model NM-Navigability Model
Derived
Measure

DCNM

Measurement
function

DCNMfunction=(NNDR*NRR)/100

Scale 0..100NReal
Type of Scale Ratio
Unit of
Measurement

-

Base Measure (1) NNDR - (2) NRR
 Scale Natural Number
 Type of Scale Ratio
Unit of
Measurement

(1) numSDR- (2)numRDR

Measurement
Method

(1) Count the total number of supporting relationships in a
Navigational Model– (2) Count the total number of relevant
relationships between classes in the Domain Model

Indicator Nav_L
 Scale 0Acceptable-NonAcceptable
 Type of Scale Ordinal
Analysis
Model

Am_NavL=f(DCNM)

Decision
Criteria

If f(DCNM) <=80 then NonAcceptable else NonAcceptable

Table 4. WE-Measurement Meta-model instantiation example

The resulting DCNM measurement model is reusable across WE methodologies. Only

the details of the measurement methods for the base measures (i.e. the particular way of

 24

counting relationships and links, encapsulated in the CountNNDR and CountNRR

concepts) need to be adapted to the constructs of the chosen WE methodology.

This adaptation can be again facilitated by the set of equivalences presented in Table 2

(see also the example given above, where DCNM was redefined in terms of WebML).

Furthermore, since the measurement model is independent of any concept regarding the

particular application domain, we can reuse the navigability measurement model across

application domains. We must, however, be careful with this reuse, as empirical

evidence indicates that acceptable values of measures (which are included in the

navigability measurement model by means of the decision criteria instantiation) may

differ among Web application domains (e.g. e-commerce, educational, financial, etc.)

(Ivory and Hearst, 2001).

In the following section we show how the navigability measurement model presented in

Figure 5 can be integrated into an MDE-based WE development process (see Figure 3)

to facilitate the automatic assessment and improvement of measures performed on WE

navigational models. This integration can only be achieved when based on an

underlying navigational meta-model. At this point we face a problem: the WE field has

not yet reached an agreement on a common set of navigation concepts that could make

up a general meta-model. For this reason, the definition of the transformations needed to

assess and evolve the navigational model according to the measures included in the

navigability measurement model must be specifically defined for each WE

methodology. To illustrate our approach, we have chosen OO-H, whose fundamentals

are presented next.

 25

OO-H in a nutshell

OO-H is a WE methodology that provides the designer with the process and notation

necessary for the development of Web-based interfaces and their connection with

previously-existing business logic modules.

Publication
title: String
date: Date

Author
name: String
e-mail: String

Library

name: String

**

* 1..*

1..*1..*

keywords

1..*1..*articles

articlesauthors

authors

publications

library

Article

title: String
abstract: String
complete: URL

addPublication

Keyword

word: String

1..*1..*

0..*

addArticle

associateAuthor

0..*

0..* addAuthor

addKeyword

associateKeyword

p2k

a2k

p2a

a2a

a2p

l2p

 l

To achieve this goal,

which is expressed by

based on the domain m

of individual Web pa

VisualWADE (Cacher

the data sources and th

syntactic correctness

underlying, MOF-base

the concepts involved

we will focus on the do

approach.

Figure 6: Library System Domain Mode
OO-H provides three complementary views: a domain model,

means of a UML-compliant class diagram, a navigational model,

odel, and a presentation model, which describes the appearance

ges. The methodology is supported by a CAWE tool called

o, 2003), that includes a model compiler capable of generating

e logic modules in the desired implementation environment. The

of the OO-H models is achieved through the definition of an

d meta-model, which systematically and unambiguously defines

and their relationships. For the sake of simplicity, in this paper

main and navigational models, which are enough to illustrate our

26

The OO-H Domain Model

As we have already stated, the OO-H domain model is defined by means of a UML

class diagram. By way of example, let’s suppose we want to model a Web application to

deal with a Library system. The Domain model of such system is depicted in Figure 6.

There, we can observe how the library keeps track of a set of publications, each one

having a set of keywords by which it is characterized. Each publication is composed of a

set of articles. Each article has a title, an abstract and an URL to the complete text. The

articles are authored by zero or more authors, and are defined by one or more keywords

among those defined for the publication in which they are contained. This model is the

basis on which the navigational model is constructed, as we now go on to demonstrate.

The OO-H Navigational Model

The OO-H navigational model reflects the paths the user can follow through the

information domain in order to achieve her goals.

Association
(from Conceptual Core)

TravesalLink

0..1

*

0..1

Argument
(from Conceptual Core)

NavigationalArgument

1

*

ServiceLink

*

1
hasArgLink

Operation
(from Conceptual Core)

Attribute
(from Conceptual Core)

NavigationalOperation

1

*

ActFrom

1

*

refersToOp

NavigationalAttribute

1

*

refersToAttr

Class
(from Conceptual Core)

NavigationalClass

1

*

hasOperations
1

hasAttributes

*1

refersToC

NavigationalTarget NavigationalNode

NavigationalModel

*

1

hasNodes

1

0..10..1

pointsTo

NavigationalLink
contextPattern : String
isSameNode : Boolean
filterOrigin : String
filterTarget : String
activationMode : String
targetNavitagionPattern : AccessType
originObjectNumber : PopulationType

0..1 0..*
origin

1 1..*
target

1

*

hasLinks

Collection
0..1

1..*

0..1

RequirementLink

refersToArg

refersToAssoc

*

Figure 7: OO-H Navigational Meta-Model
27

It is usually organized around navigational targets (subsystems), each one encapsulating

views defined over domain classes, as well as links used to interconnect them. This

model is based on an OO-H navigational meta-model that is presented in Figure 7. In

this Figure we can observe how, as in most WE approaches, the main constructs of the

OO-H navigational model are Navigational Classes (NC), Navigational Links (NL) and

Collections (C). Navigational Classes provide restricted views over conceptual classes.

They define which items (attributes and operations), out of the set that the conceptual

class provides, are accessible to the role that is associated with the Navigational Model.

Navigational Links reflect navigation steps through the information. This is the richest

construct in OO-H, which in this sense greatly differs from other approaches where the

main construct is the Navigational Class. The attributes of the NL meta-class allow for

the specification of not only the population of the target view (targetFilter) and the

navigation structure through this population (targetNavigationPattern), but also the

objects from which such navigation is possible (originFilter), the cardinality of the

origin set of objects (numberObjectsInOrigin) and whether the user interacts or not with

the application in order to activate such navigation (activationMode). In OO-H there are

different types of NL: Traversal Links define navigation paths between Navigational

Nodes (collections, classes and/or navigational targets), Requirement Links define

starting points for user navigation, and Service Links capture navigation paths by which

the user can interact with the underlying business logic. Within these, traversal links are

the most commonly used, and may support the semantics of an underlying domain

relationship. Lastly, Collections are access mechanisms (menus) that group together

navigation paths. To illustrate their use, let's imagine that we want to model the

navigation view of a reader actor who interacts with the library system depicted in

 28

Figure 6. A navigational model example corresponding to this view is presented in

Figure 8.

View Authors

Articles

View Articlesby Publication
View Articlesby Keyword

Enter application

Authors: Author

Publications : Publication

Articles: Article

Keywords: Keyword

Reader
Menu

title
abstract

name

word title

e-mail

Articles

This m

depicte

to dec

Public

connec

Public

These

domain

where

above,

domain

additio

and Ar

Figure 8: Initial Navigational Model Corresponding to a Reader Actor
odel reflects a system whose navigation is organized around a collection that,

d as an inverted triangle, represents the Reader Menu. This menu allows the user

ide between two paths: View Articles by Keyword and View Articles by

ation. Both paths are defined by means of traversal links, which also serve to

t the remaining navigational classes that the model is composed of: Keywords,

ations, Articles and Authors.

navigational classes are in fact in OO-H views of the corresponding UML

 classes. For example, Publications is a view of the domain class Publication,

all the operations and the date attribute have been hidden. As we have stated

 traversal links may reflect underlying conceptual relationships of the application

. If this is the case, OO-H decorates the traversal link icon (an arrow) with an

nal circle. In our example, the traversal link ‘Articles’ defined between Keywords

ticles is an example of a traversal link that has been defined upon the underlying

29

conceptual relationship a2k that was presented in Figure 6. To further understand the

navigational model depicted in Figure 8, a storyboard of the resulting application is

presented in Figure 9.

Reader Menu

View Articles by Keyword
View Articles by Publication

Articles

• Web Modeling Language (WebML): a Modeling Language
for Designing Web Sites . View Authors
Designing and maintaining Web applications is one of the major
challenges for the software industry of the year 2000. In this paper
we present Web Modeling Language (WebML), a notation for
specifying complex Web sites …

• Conceptual Modeling of Device-Independent Web
Applications. View Authors
The Object-Oriented Hypermedia (OO-H) methodological
proposal and their associate pre-competitive CAWE (Computer-Aided
Web Engineering) Tool capture all the relevant properties involved in
the modelling and implementation of Web Application Interfaces…

…

Keywords

MDD Articles

Navigability Articles

WebE Articles

…

Authors
1. Jaime Gómez

jgomez@dlsi.ua.es

2. Cristina Cachero

ccachero@dlsi.ua.es

3. Oscar Pastor

opastor@dsic.upv.es

Publications

IEEEMultimedia Articles

IWWOST Articles

Let’

to th

we c

Pub

one

Now

holl

are

we g

navi

Figure 9: Storyboard of the Reader Actor Interface in the Library System
s now calculate intuitively the DCNM measurement result if we apply the measure

e OO-H navigational model depicted in Figure 8. Comparing Figure 6 and Figure 8,

an observe that there are four classes that support the navigational model: Keyword,

lication, Article and Author. These classes are related by means of two associations,

shared aggregation and two compositions, which makes a total of five relationships.

, if we look at the navigational model, we can see three traversal links with a

ow circle at one of its ends, which means that only three out of the five relationships

supported by them. If we now apply the DCNM measurement function (3/5*100),

et a result of 60, which means that 60% of the domain relationships that could be

gated by the reader are in fact supported by her navigational model. This value

30

violates the level of acceptance for the Indicator Nav_L, because it is less than 80 (see

Figure 5). Therefore, the navigational model must be improved by introducing certain

design modifications (in this case the addition of new traversal links).

Our next intention is to set out how both the navigability assessment (e.g. measurement

of the domain coverage attribute and subsequent calculation of the Nav_L indicator) and

the navigational model evolution (e.g. model transformation to improve navigability)

can be automated in the context of our MDE-based WE development process presented

in Figure 3.

MDE Evaluation & Evolution of Navigational Models

MDE makes it possible to formalize the evaluation and evolution of the navigational

models by means of artefacts called transformations. In fact, MDE transformations are

themselves models, instances of a well defined meta-model and with the same reuse

capabilities as any other model in the approach. Another important aspect is that these

transformations clearly state the interconnection and traceability between concepts

appearing in different models throughout the process (Balasubramanian et al., 2006).

Among the set of transformation languages proposed to define these transformations,

the Query/Views/Transformations language (OMG-QVT, 2005), defined by the OMG,

has raised particular interest within the research community. QVT suffers from several

well known problems, however:

• The QVT Relations graphical language is based on a proprietary notation that (1)

has to be learnt (higher learning curve) and (2) needs to be explicitly added to tools.

This fact means that, up to now there have been no commercial graphical tools that

support the QVT notation in full.

 31

• The QVT Relations graphical language represents patterns at the object level. For

this reason the graphical language lacks the expressivity that is needed to capture

some meta-model characteristics (e.g. cardinalities), that can only be reflected at

type level.

All these problems have led the research community to look for alternatives. One such

alternative is UPT (Meliá and Gomez, 2006). UPT is a transformation language inspired

by the QVT standard, which defines a MOF-compliant meta-model and a UML profile.

This profile extends the UML class diagram semantics, and allows for (1) a lower

learning curve to modelling transformations and (2) the use of UML tools to support the

modelling process. These reasons have made us opt to define the transformation that

automates the DCNM measure in UPT. Figure 10 shows how this transformation is

defined as an instance of the UPT Meta-model. Furthermore, Figure 10 also presents the

elements that take part in the definition of this transformation.

MOF

OO

H-DomainMetamodel OOH-NavigationalMetamodelUPT-Metamodel

DCNMTransformation

<<instantiates>>

OOH-DomainModel OOH-NavigationalModel

<<instantiates>> <<instantiates>>

<<instantiates>>
<<instantiates>>

<<instantiates>>

<<source>>

<<source>>

<<target>>

SM-Metamodel

Navigability Measurement Model

<<instantiates>>

<<source>>

<<instantiates>>

)

The DC

check th

are perf

Model (

Figure 10: Model Transformation Pattern (adapted from Bézivin 2004
NMTransformation requires three source domains (that is, domains used to

e fulfilment of certain conditions) and one target domain (where modifications

ormed if necessary). The first source domain is the Navigability Measurement

which contains the definition of the DCNM measure that is used in our example

32

to assess and improve the navigational model, see Figure 5). The second source domain

is the OO-H-DomainModel, where the transformation checks the domain relationships

that are relevant for the navigational model. The third source domain is the OO-H-

NavigationalModel, where the transformation checks which relationships can already be

navigated by the user. Lastly, the target domain is again the same OO-H Navigational

Model, where new traversal links are included if needed. The following section shows

how the DCNMTransformation manipulates each model.

DCNM Transformation Map

Model-driven navigability improvement of navigational models implies two main tasks:

assessment and transformation. When aiming to simplify their materialization, it is

usual to apply a divide-and-conquer strategy which consists in defining a chain of

relations (also called rules) that makes up a transformation map. Going back to our

example, Figure 11 shows the transformation map that depicts the set of rules that the

DCNMTransformation is composed of. This transformation automates both the DCNM

measurement and the navigational model redesign actions to be performed if the

measurement result is out of the established bounds. Within this map, each task is

performed by a different type of rule. On the one hand, the calculus of the measurement

result is performed by means of a root evaluation rule (identified by the tagged values

relationType=evaluation, isRoot=true). Evaluation rules are relations that do not

perform changes on the models. They therefore work exclusively with Check-only

domains (stereotyped <<C>>). Check-only domains are non-modifiable domains used

by the transformation rule to check the compliance of certain conditions. On the other

hand, the design decisions aimed at improving the measurement result are captured by

evolution rules. Evolution rules work with both Check-only and Enforceable domains

(stereotyped <<E>>). Enforceable domains are modifiable domains by which the

 33

transformation declares the obligation for certain relationships and/or objects to be

present/missing in the domain, causing the creation or deletion of model elements if

necessary.

«Relation»
CheckNavigationStructuralAssociations

«Relation»

«Relation»
CheckDCNM

«Relation»
SelectNonNavigatedAssociations

«Relation»«Relation»
DefineNewTraversalLink

relationType Evaluation
isRoot=true
relationType=evaluation

Evolution

<<Transformation>>
DCNMTransformation

isRoot=false
relationType=evolution

We shall now examin

DCNM Evaluatio

Figure 12 presents th

When = nm1.tLinks.coveredAssociations->asS

Where = CheckNonNavigatedAssociations (as
CheckDCNM(Indicator,DomainMode

When = nm1.tLinks.coveredAssociations->asS

Where = CheckNonNavigatedAssociations (as
CheckDCNM(Indicator,DomainMode

DerivedMeasure

Figure 12

AnalysisModel

DecisionCriteria

description: String =
“DCNM<=80->DCNM_L=Not Acceptable“

DCNM>80 ->DCNM_L=Acceptable”

DecisionCriteria

description: String =
“DCNM<=80->DCNM_L=Not Acceptable“

DCNM>80 ->DCNM_L=Acceptable”

Measu

description: String

1 +mm

1..*+decision

1..*+analysisM

BaseMe

MeasurementM
1+mmethod

1.+bm

1..*+dcnm

«Domain»
Indicator

description: String = “Nav_L”

description: String = “DCNM”

description: String = “AM_NavL”

description:

description: String = “Cou

Figure 11: DCNM Transformation Map
e each of these rules in detail.

n Rule: CheckDCNM

e CheckDCNM evaluation rule.

«Relation»
CheckDCNM

«Domain»
DomainModel

Association

«Domain»
(nm1)

NavigationalModel

et()->size()/DomainModel.associations->size()*100<=80

sociations, tLinks,nm1)
l, nm1)

et()->size()/DomainModel.associations->size()*100<=80

sociations, tLinks,nm1)
l, nm1)

Attribute Attribute

Class Class

+link

+coveredAssociations

0..*

0..*+tLinks
1+model

«C»

OOH.NavigationalModel

0..*+associations

1+model

«C»

OOH.DomainModel

0..1+associationOrigin

1+roleOrigin

0..*+referredAttribute

1+endType

0..* +associationTarget

1 +roleTarget

0..*+referredAttribute

1+endType

1

+navClass

+coveredClass

1

1..*

+navClass

+coveredClass

1

1..*

: CheckDCNM Evaluation Rule

rement Function

= “(NNDR/NRR) *100"

ethod

«C» SMM

BaseMeasureasure

ethod MeasurementMethod
1+mmethod

.* 1..*+bm

String = “NNR” description: String = “NNDR”

ntNNR” description: String = “CountNNDR”

Navigation ClassNavigation Class

Association

TraversalLink

34

This relation must check whether the DCNM derived measure is applicable to the actual

navigational model. This is done in the rule branch that starts with the Indicator Check-

only domain. In Figure 12 we observe how each component of the derived measure

pattern defined in this rule can be matched with a corresponding element in the model

presented in Figure 5 (where, for the sake of readability, these have been marked in

bold). This rule must, moreover, calculate the Nav_L measurement result, which

depends only on the DCNM measure. We have already stated that, to get the

DCNMFunction measurement function result, we needed to know two base measures:

NNDR (number of navigated domain relationships) and NRR (number of relevant

relationships). NNDR is calculated by means of the rule branch whose root is the check-

only OO-H NavigationalModel domain (aliased nm1). This rule branch implements the

CountNNDR measurement method. In this rule branch we have selected the traversal

links that are related to a domain association (multiplicity 1). The number of traversal

links that fulfil this condition is calculated by means of the OCL sub-expression

nm1.tLinks.coveredAssociations->asSet()->size(), where the asSet() operation is an

OCL operation that eliminates duplicates. This sub-expression is located in the When

clause of the rule. The value of this sub-expression on Figure 8 would be three, which

corresponds to the three links marked with a circle. NNR is in turn calculated by means

of the rule branch whose root is the check-only OO-H DomainModel domain. In this

branch (implementing the CountNRR measurement method), we have selected the

associations that connect two classes that support at least one navigational class each

(multiplicity 1..*). Again, the number of relationships (associations, aggregations,

compositions) that fulfil this condition is obtained by means of the OCL sub-expression

DomainModel.associations->size(), located in the When clause of the rule. The value of

this sub-expression, when applied to the model presented in Figure 8, would be five,

 35

which corresponds to the five relationships (two associations, one shared aggregation

and two compositions) that exist between and among the four classes (Keyword,

Article, Publication, Author) that take part in the support of the navigational model.

In addition, the When clause is responsible for the calculation of the DCNM

measurement result. This result is calculated by dividing the two OCL sub-expressions

and multiplying the result by 100. In our example, this operation gives a result of 60

(3/5*100).

Finally, the Nav_L measurement result (which takes the value of the DCNM

measurement result) must be compared with the value established in the DC_NavL

decision criteria (<=80). If the comparison is positive (which is the case for the

navigational model of Figure 8), then the Where clause is executed. The Where clause

includes two rule calls. The first call (SelectNonNavigatedAssociations) starts the chain

of evolution rules that modify the navigational model nm1 to improve the DCNM

measurement result. This rule, as we have stated before, is called with three parameters

(marked in bold in Figure 12): (1) the set of candidate associations (the five

relationships in our example), (2) the set of traversal links (three in our example) that

support an underlying domain relationship and (3) the navigational model (nm1 in our

example) where the new traversal links are to be added. The second call is a recursive

one that serves to check whether the measurement result is now acceptable once the

model has evolved.

The fact that UPT is semantically richer than the QVT-Relations language makes

possible to automatically derive the QVT-Relations textual specification out of the UPT

 36

rule. The QVT-Relation specification of the three rules included in this paper is

presented in Appendix A.

The SelectNonNavigatedAssociations Evolution Rule

The SelectNonNavigatedAssociations rule (see Figure 13) is in charge of selecting, from

the set of relevant relationships, a random relationship among those that are not yet

supported by the navigational model. The fact that the DCNM measurement result is

lower than 100 ensures that there is at least one relationship that fulfils this restriction.

To reach its objective, the rule compares the two sets of objects received as parameters,

trying to find a domain relationship that does not correspond with any of the

relationships supported by a traversal link in the second set. This condition is expressed

in the When clause of the rule by the OCL expression Not((nA=n1 and nB=n2) or

(nA=n2 and nB=n1)), where n1 and n2 are variables that refer to domain classes that

are related by an association, and nA and nB are variables that refer to domain classes

that support the navigational classes in the navigational model and which are connected

by a traversal link. This expression also takes into account that bidirectional

associations may be represented by traversal links going in any of the two directions.

«Relation»
SelectNonNavigatedAssociations

«Domain»
Association
«Domain»

Association
«Domain»

TraversalLink

Class

- name: String= n1
Class

- name: String= n2

AttributeAttribute

When=Not((nA=n1 and nB=n2) or (nA=n2 and nB=n1))
Where=DefineNewTraversalLink(Association,newTLink)

Class

- name: String= nA

Class

1+referredClass

0..*+navClass 0..* +navClass

1 +referredClass

0..* +referredAttribute

1 +endType

0..*+referredAttribute

1+endType

0..* +linkTarget

1 +navClassTarget

0..*+linkOrigin

1+navClassOrigin

0..1 +associationTarget

1 +roleTarget

0..1+associationOrigin

1+roleOrigin

«C»«C»

OOH.NavigationalModel
OOH DomainModel

«Domain»
(nm1)

NavigationalModel

0..*+tlinks

1+model

«E»

OOH.NavigationalModel

- name: String= nB

-<<key>> name :String = nav1 +“2”+nav2

(newTLink)
TraversalLink

NavigationalClass

- name: String= nav1

AttributeAttribute

NavigationalClass

- name: String= nav2

Figure 13: SelectNonNavigatedAssociations Evolution
37

The third branch of the rule corresponds to an enforceable domain with a newTLink

element whose name is constructed by concatenation of the strings nav1+“2”+nav2.

This name is decorated with a <<key>> stereotype. This stereotype causes the branch

to look for any model element that matches the key value, and only if this is not found is

a new element created. In our example (see Figure 8) we will suppose the rule has

chosen the p2k relationship in the direction from the navigational class Publications to

the navigational class Keywords. This relationship causes the name of the newTLink to

be set to ‘Publications2Keywords’. The fact that the relationship is not supported in the

navigational model ensures that this link does not exist either. It is therefore created.

Both the p2k relationship and the new traversal link newTLink are passed in the Where

clause to the DefineTraversalLink rule, which is in charge of completing the definition

of the new traversal link, namely specifying the origin and target OO-H navigational

classes.

It is important to note that this rule is not deterministic. The reason is that the decision

criteria implies that providing the user with navigation through at least 80% of the

domain relationships is bound to improve the navigability of the application, regardless

of which domain relationships are finally left out of the navigational map. The

definition of a deterministic transformation that chose the best candidate relationship to

be included in the model (according for example to certain semantic criteria) would

require that the navigational meta-model provided such semantic information.

Unfortunately, to our knowledge extent, up to now none of the current WE navigation

meta-models cover such issues.

The DefineNewTraversalLink Evolution Rule

The last UPT relation, called DefineNewTraversalLink, is displayed in Figure 14. This

relation involves only the two domains received as parameters: the check-only domain

 38

Association (which reflects the relationship chosen in the previous rule to be the basis of

the new traversal link) and the enforceable domain TraversalLink, which represents the

new link created. The leftmost branch of the relation keeps the name of the association

parameter in the variable na, and the name of the two ends of the relationship in the

variables role1 and role2. In addition, it keeps the name of the navigational classes that

are supported by the corresponding domain classes in the variables nav1 and nav2.

Returning to our example, if we suppose that the previous rule has selected the p2k

relationship, the value of na would be “p2k”, the value of nav1 would be “Publications”

and the value of nav2 would be “Keywords” (see Figure 8). It also has to be

remembered that, in a class diagram, in the absence of a role name, the one assumed is

that of the class. Therefore, the value of role1 would be set to “Publication” and the

value of role2 would be set to “Keyword”.

«Relation»
CreateNavigationStructuralAssociation

«Domain»
Association

- name: String= na

«Domain»
NavigationalAssociation

Class Class

Attribute

 Figure 14: DefineNewTraversalLink Evolution

- name: String= role1
Attribute

- name: String= role2

NavigationalClass NavigationalClass

Association

- name

«Domain»
NavigationalClass

- name: String= nav1

«Domain»
NavigationalClass

0..* +referredAttribute

1 +endType

0..*+referredAttribute

1+endType

0..* +link

1 +referredAssociation

0..*+linkTarget

1+navClassTarget

0..*+linkOrigin

1+navClassOrigin

0..1
+associationTarget

1 +roleTarget

0..1+associationOrigin

1+roleOrigin

«E»«C»

1+referredClass

1..*+navClass

1+referredClass

1..*+navClass

«Relation»
DefineNewTraversalLink

«Domain»
Association

- name: String= na

«Domain»

TraversalLink

Class Class

Attribute

NavigationalClass NavigationalClass

Association

- <<key>>name: String=na

Attribute
- name: String= role1 - name: String= role2

- name: String= nav2

«Domain»
NavigationalClass

- name: String= nav1

«Domain»
NavigationalClass

0..* +referredAttribute

1 +endType

0..*+referredAttribute

1+endType

0..* +link

1 +referredAssociation

0..*+linkTarget

1+navClassTarget

0..*+linkOrigin

1+navClassOrigin

0..1
+associationTarget

1 +roleTarget

0..1+associationOrigin

1+roleOrigin

«E»«C»

1+referredClass

1..*+navClass

1+referredClass

1..*+navClass

OOH DomainModel OOH.NavigationalModel

- <<key>>name: String=nav1 - <<key>>name: String=nav2

- name: String= nav2

 39

As we have asserted before, the aim of the enforceable domain in this rule is not to

create new objects but just to connect the newTLink to the rest of the model elements (in

this case the p2k relationship whose navigation it must support, as well as the origin and

target navigational classes). This is again achieved by means of the <<key>> stereotype.

In this rule, it is certain that the rule is going to find the association (in our example the

p2k relationship), and therefore just the link between the traversal link and this

relationship is created. Similarly, the two NavigationalClass instances that correspond

to the p2k relationship (Publications and Keywords) are sure to be found, and

consequently only the links between those two navigational classes and the new

traversal link at meta-model level are established.

Once this final evolution rule has been executed, the control returns to the evaluation

rule of Figure 12. The result of assessing the model with the new traversal link

‘Publications2Keywords’ now gives a DCNM measurement result of 80 (still <=80),

which causes the whole sequence to be started again with the aim of finding another

association that has not yet been navigated. In this new iteration, there is only one

relationship that is not yet supported in the navigational model: the p2a relationship. Its

inclusion as a new traversal link called ‘Publications2Authors’ now causes the DCNM

measurement result to be 100 (100% of domain relationships are present in the

navigational model). This result does not fulfil the When clause of the CheckDCNM

rule, and so it finally causes the transformation to stop.

The new navigational model that results from this process can be seen in Figure 15. We

now set out to show how all this process is supported by the WebSA Tool that

accompanies UPT.

 40

Publications2Authors

Publications2Keywords

View Articles by PublicationView Articles by keyword

View Authors

Articles

Enter Application

Reader
Menu

Authors: Author

Publications: Publication

Articles: Article

Keywords: Keyword

name
e-mail

title
date

word

title
abstract

Articles

Figure 15: New Navigational Model after the DCNM transformation has been

completed

Tool support

We have already made the assertion that an MDE approach must specify the modelling

languages, models, translations between models and languages, along with the process

used to coordinate the construction and evolution of the models (Kent, 2002). To ensure

that the burden of maintaining more than one formal model does not outweigh the

benefits of models as tools for abstraction, powerful tool support is required.

Additionally, each domain, organization and project may have their own requirements

for models, mappings and processes, and therefore the tool should be flexible enough to

adapt to this fact. Such is the case of the tool that we have used to provide an

implementation of our approach: WebSA Tool (Meliá and Gómez, 2006). WebSA Tool

provides support both for model2text imperative transformations and model2model

declarative transformations. Within the context of this paper’s aims, only the latter are

relevant, however. The process followed in the tool to automate our approach can be

seen in Figure 16. The WebSA Tool has pre-built support for the OO-H Domain and

 41

Navigation meta-models, the SMM and the WebSA specific meta-models. Other meta-

models for DSML’s could be added in the tool with little effort, provided that they are

expressible as class diagrams, whose XMI representation is understandable by the tool.

The WebSA tool is also capable of generating the code for any transformation

expressed in UPT. In order to illustrate this feature, the java code automatically

generated by the tool for the transformation DefineNewTraversalLink (see Figure 14) is

included in Appendix B. As we can observe in Figure 16, the first step in executing the

transformation consists in loading the Original Navigational Model, the Domain Model

and the DCNM Measurement Model by means of their XMI specification. All the

models being stereotyped UML class diagrams, this textual description can be achieved

with any UML compliant tool.

Set Origin Models

Set Navigability Transformation

Original Navigational Model (XMI)

Domain Model (XMI)

UPT Transformation(XMI)UPT Transformation(XMI)

Navigability-improved Navigational Model (XMI)Navigability-improved Navigational Model (XMI)Execute Navigability Transformation

DCNM Measurement Model (XMI)

s

The next step is

definition of tra

also obtain its

consists in the

to perform the p

also generates

Figure 16: WebSA Tool supporting proces

 to provide the transformation itself. Right now the tool only accepts the

nsformations using UPT. Since this definition is a class model, we can

XMI specification; this tool must be loaded in the tool. The third step

execution of the transformation. The tool generates the Java code needed

attern checking/enforcement on the original models, and, if necessary, it

the XMI specification of the models that have been changed due to the

42

transformation execution (in our case just the Navigability-improved Navigational

Model, see Figure 16). A snapshot of the tool can be seen in Figure 17.

l

Conclusions and

In this paper we addre

applications from an

understood as the effici

around in the applicatio

recognised as a key a

approach to ensuring n

restructuring rules to th

comes late, is labor-inte

The engineering appro

measurement-based and

measures for navigation

Figure 17: Snapshot of the WebSA Too
Further Work

ssed the question of how to assure the navigability of Web

early stage in development onwards. Navigability in use,

ency, effectiveness and satisfaction with which users can move

n to satisfy specific goals under specific conditions, is widely

ttribute for the success of a Web application. The common

avigability is one of applying heuristic evaluation criteria and

e Web application once it has been deployed. This approach

nsive and is costly.

ach that we developed is based on two principles: it is

 it is model-driven. Previous research has proposed navigability

al models, allowing an early assessment of the navigability of

43

the Web application that is based on such a model. However, the measures defined were

highly dependent on the chosen Web application engineering methodology. A first

contribution of our approach is that the method proposed for defining the measures is

independent of the Web application engineering methodology used, making our

approach more generable and reusable than previous solutions. This independence of

particular Web engineering methodologies has been achieved by incorporating into the

measure definition process a navigability measurement model that instantiates the

Software Measurement Meta-Model (SMM), which is itself derived from the Software

Measurement Ontology (SMO). The navigability measures defined are thus stated in the

generic terms defined by the SMM and their definition can be translated into the

language of a particular Web engineering methodology.

A second contribution of our approach is that it goes further than the mere assessment

of a Web application’s navigability in an early stage of development. We have shown

how navigability measurement models can be integrated in a model-driven Web

application engineering process, to assure automatically that the navigational models

resulting from that process are compliant with the set of selected decision criteria

related to the navigability measures. This process includes a set of model

transformations for assessing and bringing about the evolution of navigational models in

an automatic way. Including an automatic early navigability assessment and

improvement process in Web application engineering methodologies contributes to

guaranteeing certain quality levels without significantly increasing development costs or

time to market.

To illustrate our approach, the Domain Coverage of the Navigational Model (DCNM)

measure as applied to OO-H Navigational Models has been used in this paper. We also

showed how this measure can be implemented by a set of UPT model evaluation and

 44

evolution rules that specify a transformation of an OO-H navigational model into a

version with an improved DCNM value. We further explained how the execution of

these rules can be accomplished by the WebSA tool that provides support for model

transformations.

This example, though simple, demonstrates the feasibility of our approach. The main

implication of our research for Web application engineering practice is that we showed

that ensuring the navigability of Web applications can become an integral aspect of the

model-driven development of these applications. We are nevertheless aware of the

current limitations of our research and the future work that is needed to implement our

approach in Web application engineering practice.

First of all, the proposal of measures is of no value if their practical use is not shown

empirically (Basili et al., 1999, Kitchenham et al., 1995, Moody, 2005). Therefore,

when tackling the navigability assessment task based on internal measures, we must

take into account that the correlation between internal, external and in-use measures is

never perfect, and the effect that the value of a given internal navigability measure has

upon an associated external/in use navigability measure must be determined empirically

(ISO/IEC 9126, 2001). Unfortunately, such empirical research has not been undertaken

yet.

Second, the lack of a common ontology and meta-model for Web application

engineering makes it necessary to redefine the model transformations for each

methodology, which is precisely the aspect that bears the highest workload in our

approach. In this sense, we are already working on a common navigation meta-model,

as well as on the definition of transformations from this common meta-model to the

meta-models defined by particular Web application engineering methodologies, to

assure their compatibility.

 45

A third limitation of the approach presented is its focus on syntactic features of Web

application models. This limitation was highlighted by the impossibility to define the

UPT rule SelectNonNavigatedAssociations (Figure 13), associated to our example

DCNM navigability measure, in a deterministic way. The traditional absence of

automatic quality assessment in Web application engineering has clearly affected the

kind of information that is defined in the different Web engineering meta-models.

Semantic aspects that would be taken into account when evolving an application (via its

models) to better meet quality criteria, are not always incorporated and thus not

available for measurement. The automation of the quality assurance process suggests a

need for enrichment of current Web engineering meta-models with semantic

information that serves to fine-tune quality-focused model transformations.

Fourth, the WebSA Tool used to illustrate the model-driven aspects of our approach

needs to be refined and extended to be more flexible. With that in mind, we are working

on WebSA Tool support for other transformation languages apart from UPT, such as

QVT. Our approach in this sense envisages providing both the meta-model of the new

transformation language and a transformation, defined in UPT, from this meta-model to

the UPT meta-model. In this way all the work performed on the execution engine can be

reused.

As a final note, we consider our approach to the automatic assessment and improvement

of models general, in the sense that it could equally be used with different quality

attributes and/or models than navigability. In future research we will develop and

evaluate other measures and design evolution patterns that would serve to improve the

architectural view of Web applications automatically.

 46

Acknowledgments

Research funding was obtained from the Spanish Ministry of Science and Technology

(Grant PR2006-0374 for University Teaching Staff Stages at foreign Universities,

projects MEC-FEDER (TIN2004-03145), ESFINGE (TIN2006-15175-C05-05),

METASIGN (TIN2004-00779) and DSDM (TIN2005-25866-E)). The research reported

upon in this paper is also part of the DADASMECA project (GV05/220), financed by

the Valencia Government, and the DADS (PBC-05-012-2) and the DIMENSIONS

(PBC-05-012-1) projects, financed by the Regional Science and Technology Ministry of

Castilla-La Mancha (Spain).

We would like to thank Silvia Abrahao (Valencia University of Technology) for her

insightful comments on the mapping between OO-H and OOWS constructs.

 47

REFERENCES

ABRAHAO S and INSFRAN E (2006) Early Usability Evaluation in Model-Driven

Architecture Environments. In Proceedings of the Sixth IEEE International Conference

on Quality Software, 287-294, IEEE Press, Wiley, Chichester.

ABRAHAO S, CONDORY-FERNANDEZ N, OLSINA L and PASTOR O (2003)

Defining and Validating Metrics for Navigation Models. In Proceedings of the Ninth

IEEE International Software Metrics Symposium, 200-210, IEEE Press, Wiley,

Chichester.

ASSMANN U, ZSCHALER S and WAGNER G (2006) Ontologies, Meta-Models, and

the Model-Driven Paradigm. Ontologies for Software Engineering and Technology.

Springer-Verlag, Heidelberg.

AUER T (1999). Quality of IS Use. European Journal of Information Systems, 7(3),

192-201.

BALASUBRAMANIAN K, AGOKHALE A. KARSAI G, SZTIPANOVITS J and

NEEMA S. (2006) Developing Applications Using Model-Driven Design

Environments. IEEE Computer, 39(2), 33-40.

BASILI V, SHULL F and LANUBILE F. (1999) Building Knowledge through Families

of Experiments. IEEE Transactions on Software Engineering, 25(4), 435-437.

 48

BEVAN N. and AZUMA M. (1997) Quality in use: incorporating human factors into

the software engineering lifecycle. 3rd International Software Engineering Standards

Symposium (ISESS '97). pp. 169-179

BÉZIVIN J (2004) In Search of a Basic Principle for Model-Driven Engineering.

Novática 5(2), 21-24.

BRIAND LL, MORASCA S and BASILI V (1999) Defining and Validating Measures

for Object-based High-level Design. IEEE Transactions on Software Engineering,

25(5), 722-743.

BRIAND LL, WÜST J, IKONOMOVSKI S and LOUNIS H (1999b) Investigating

Quality Factors in Object-Oriented Designs: An Industrial Case-Study. 21st

International Conference on Software Engineering, Los Angeles, CA. 345-354

BRIAND LL, WÜST J and LOUNIS H (2001) Replicated case studies for investigating

quality factors in object-oriented designs. Empirical Software Engineering, 6 (1) 11-58

BRIAND LL and WÜST J. (2002) Empirical Studies of Quality Models in Object-

Oriented Systems. Advances in Computers, Academic Press, 59, 97-166.

CACHERO C (2003). OO-H: Una Extensión a los Métodos OO para el Modelado y

Generación Automática de Interfaces Hipermediales. PhD Thesis, University of

Alicante, Spain. Available on-line at http://www.dlsi.ua.es/~ccachero/pTesis.htm

 49

http://www.dlsi.ua.es/~ccachero/pTesis.htm

CACHERO C (2005). OO-H Navigability Measures. Technical Report, University of

Alicante. Available on-line at http://www.dlsi.ua.es/~ccachero/pPublicaciones.htm.

CALERO C, RUIZ J and PIATTINI M (2004) A Web Metrics Survey Using WQM. In

Proceedings of the Fourth International Conference on Web Engineering, 147-160,

Springer-Verlag, Heidelberg, LNCS 3140.

CAPLAT G and SOURROUILLE JL (2003) Considerations about Model Mapping. In

Proceedings of the Workshop in Software Model Engineering, Sixth International

Conference on the Unified Modelling Language, Springer-Verlag, Heidelberg, LNCS

2863.

CERI S, FRATERNALI P and BONGIO A (2000) Web Modeling Language (WebML):

a Modeling Language for Designing Web Sites. Computer Networks, 33(1-6), 137-157.

COMAI S, MATERA M and MAURINO A (2003) A Model and an XSL Framework

for Analyzing the Quality of WebML Conceptual Schemas. In Proceedings of the

International Workshop on Conceptual Modeling Quality, 339-350. Springer-Verlag,

Heidenberg, LNCS 2784.

EL-EMAM K, BENLARBI S, GOEL N and RAI S (2001) The Confounding Effect of

Class Size on the Validity of Object-Oriented Metrics, IEEE Transactions on Software

Engineering, 27(7), 630-650.

 50

http://www.dlsi.ua.es/~ccachero/pPublicaciones.htm

FENTON NE and PFLEEGER SL (1997) Software Metrics. A Rigurous and Practical

Approach. PWS Publications.

FERREIRA M, GARCÍA F, BERTOA M, CALERO C, VALLECILLO A, RUIZ F,

PIATTINI M and BRAGA JL (2006). Medición del Software: Ontología y Meta-

modelo. Technical Report UCLM-TSI-001, University of Castilla-La Mancha.

FISHER J. (1999) Improving the Usability of Information Systems: the Role of the

Technical Communicator. European Journal of Information Systems, 8(4), 294-303.

GARCIA F, BERTOA MF, CALERO C, VALLECILLO A, RUIZ F, PIATTINI M and

GENERO M (2005) Towards a Consistent Terminology for Software Measurement.

Information and Software Technology, 48(8), 631-644.

GENERO M, MANSO MªE, VISAGGIO A, CANFORA G and PIATTINI M (2007)

Building a Metric-based Prediction Model for UML Class Diagram Maintainability,

Empirical Software Engineering (to be published).

GOMEZ J, CACHERO C and PASTOR O (2001) Conceptual Modeling of Device-

Independent Web Applications. IEEE MultiMedia, 8(2), 26-39.

HENNICKER R and KOCH N (2000) A UML-based Methodology for Hypermedia

Design. In Proceedings of the UML 2000, 410-424, Springer-Verlag, Heidelberg, LNCS

1939.

 51

HEUSER L (2004) The Real World or Web Engineering? In Proceedings of the Fourth

International Conference on Web Engineering, 1-5, Springer-Verlag, Heidelberg, LNCS

3140.

ISO/IEC 9126 (2001) Software Engineering – Product quality – Part 1: Quality Model.

International Organization for Standardization, Geneva.

IVORY MY (2004) Automated Web Site Evaluation. Kluwer Academic Publishers,

Norwell.

IVORY MY and HEARST MA (2001) The State of the Art in Automating Usability

Evaluation in User Interfaces. ACM Computing Surveys, 33(44), 470-516

IVORY MY, MEGRAW R (2005) Evolution of Web Site Design Patterns. ACM

Transactions on Information Systems, 23(4), 463-497.

KENT S (2002) Model-Driven Engineering. In Proceedings of the Third International

Conference on Integrated Formal Methods, p 286-298, Springer-Verlag, Heidelberg,

LNCS 2335.

KITCHENHAM B, PFLEEGER S and FENTON N (1995) Towards a Framework for

Software Measurement Validation. IEEE Transactions of Software Engineering, 21(12),

929-943.

 52

KOCH N and KRAUS A (2003) Towards a Common Meta-model for the Development

of Web Applications. In Proceedings of the Third International Conference on Web

Engineering, 497-506, Springer-Verlag, Heidelberg, LNCS 2722.

KOCH N (2006) Transformation Techniques in the Model-Driven Development

Process of UWE. In Proceedings of the Sixth International Conference on Web

Engineering, ACM Press, New York.

LANG M and FITZGERALD B (2005) Hypermedia Systems Development Practices: A

Survey. IEEE Software, 22(2), 68-75.

MANSO MªE, GENERO M. and PIATTINI M. (2003) No-Redundant Metrics for UML

Class Diagrams Structural Complexity. In Proceedings of the CAISE 2003, 127-142,

Springer-Verlag, Heidelberg, LNCS 2681.

MELIÁ S, GÓMEZ J and SERRANO JL. (2006) UPT: A Graphical Transformation

Language based on a UML Profile. In Proceedings of the Second European Workshop

on Milestones, Models and Mappings for Model-Driven Architecture, 81-97, Springer-

Verlag, Heidelberg.

MELIA S, KRAUS A and KOCH N (2005) MDA Transformations Applied to Web

Application Development. In Proceedings of the Fifth International Conference on Web

Engineering, ACM Press, New York.

 53

MELLOR SJ, SCOTT K, UHL A and WEISE D (2004) MDA Distilled. Principles of

Model-Driven Architecture. Addison-Wesley Professional, Boston.

MOODY DL (2005) Theoretical and Practical Issues in Evaluating the Quality of

Conceptual Models: Current State and Future Directions. Data and Knowledge

Engineering, 55(3), 243-276.

MYERS BA and ROSSON MB (1992) Survey on User Interface Programming. In

Striking a Balance. In Proceedings of the International Conference for Human-

Computer Interaction (CHI’92), 195-202, ACM Press, New York.

Nielsen J (2000) Designing Web Usability: The Practice of Simplicity. New Riders,

Berkeley.

OMG-OCL (2006) Object Constraint Language (OCL). OMG doc. formal/2006-05-01.

OMG-MOF (2006) Meta Object Facility (MOF) v2.0. OMG doc. formal/2006-01-01.

OMG-QVT (2005) MOF QVT Final Adopted Specification. OMG doc. ptc/05-11-01

OMG-UML (2005) UML 2.0 Superstructure Specification. OMG doc. formal/2005-07-

04.

OMG-XML (2005) XML Metadata Interchange (XMI) Specification v2.1. OMG doc.

formal/2005-09-01.

 54

PASTOR O, ABRAHAO S and FONS JJ (2001) An Object-Oriented Approach to

Automate Web Applications Development. In Proceedings of the Second International

Conference on Electronic Commerce and Web Technologies, 6-28, Springer-Verlag,

Heidelberg, LNCS 2115.

PLANET MDE (2005) MDE (Model Driven Engineering). Community Portal.

Available electronically at: http://www.planetmde.org (last accessed in May 2007).

POELS G and DEDENE G. (2001) Evaluating the Effect of Inheritance on the

Modifiability of Object-Oriented Business Domain Models, In Proceedings of the Fifth

European Conference on Software Maintenance and Reengineering (CSMR 2001),

Lisbon, Portugal, 20-28.

SCHAUERHUBER A, WIMMER M and KAPSAMMER E (2006) Bridging Existing

Web Modeling Languages to Model-Driven Engineering: A Meta-model for WebML.

In Proceedings of the Second Model-Driven Web Engineering Workshop, ACM Press,

New York.

SCHMIDT DC (2006) Model-Driven Engineering. IEEE Computer, 39(2), 25-31.

SINGH SN, DALAL N and SPEARS N (2005) Understanding Web Home Page

Perception. European Journal of Information Systems, 14, 288–302.

 55

http://www.planetmde.org/

Appendix A: QVT-Relation specification of UPT

Transformations

In Table 5 we are presenting the QVT-Relation specification that is automatically

generated from the UPT specification of the three rules that implement the DCNM

measure in the context of OO-H (see Figure 12, Figure 13 and Figure 14).

transformation DCNMTransformation (smm:SMM, ohhd:OOHDomain, oohn: OOHNavigation)
{
 key TraversalLink {name};
 key NavigationalClass {name};
 key Association {name};
 key Class {name};

 top relation CheckDCNM
 {
 checkonly domain i:Indicator {
 description='Nav_L',
 dcnm = drm:DerivedMeasure{
 description='DCNM',
 analisysM= am:AnalysisModel {
 description='AM_NavL',
 decision= dc:DecisionCriteria {
 description = 'DCNM<=80->DCNM_L=Not Acceptable
 and DCNM>80->DCNM_L=Acceptable'
 }
 },
 mmethod = mm1:MeasurementMethod {
 description = “(NNDR/NRR) *100',
 bm = bm1:BaseMeasure { description = 'NNR',
 mmethod = mm2:MeasurementMethod {description='CountNNR'}
 },
 bm = bm2:BaseMeasure { description = 'NNDR',
 mmethod = mm3:MeasurementMethod {description='CountNNDR'}
 }

 }
 }
 };
 checkonly domain dm:DomainModel {
 associations = aso1:Association {
 roleOrigin = a1:Attribute {
 endType = Class {coveredClass = nc1:NavigationClass{}}
 },
 roleTarget = a2:Attribute {
 endType = Class {coveredClass = nc2:NavigationClass{}}
 }
 };
 checkonly domain nm1:NavigationalModel{
 tlinks = tl:TraversalLink{
 converedAssociations = aso2:Association {}
 }

 };
 when {
 nm1.tLinks.coveredAssociations->asSet()->size()/dm.associations->size()*100<=80
 }
 where {
 CheckNonNavigatedAssociations (aso1, tl,nm1);CheckDCNM(i,dm, nm1)

 }
 }

 relation SelectNonNavigatedAssociations {

 56

 n1, n2, nA, nB: Class;
 nav1, nav2: String;
 checkonly domain aso: Association {
 roleOrigin = a1:Attribute { endType = c1:Class{name = n1}},
 roleTarget = a2:Attribute { endType = c2:Class{name = n2}}
 };
 checkonly domain tl: TraversalLink {
 navClassOrigin = nc1:NavigationalClass {
 name = nav1,
 referredClass = rc1:Class {name = nA}
 },
 navClassTarget = nc2:NavigationalClass {
 name = nav2,
 referredClass = rc2:Class {name = nB}
 }

 };
 enforceable domain nm1: NavigationalModel {
 tlinks = newTLink:TraversalLink { name = nav1 + "2" + nav2 }
 };
 when {
 Not((nA=n1 and nB=n2) or (nA=n2 and nB=n1))
 }
 where {
 DefineNewTraversalLink(aso,newTLink)
 }
 }

 relation DefineNewTraversalLink {
 na, nav1, nav2, role1, role2: String
 checkonly domain aso: Association {
 name = na,
 roleOrigin = a1:Attribute {
 name = role1,
 endType = Class {
 navClass = nco1:NavigationalClass {name = nav1}
 }
 },
 roleTarget = a2:Attribute {
 name = role2,
 endType = Class {
 navClass = nco2:NavigationalClass {name = nav2}
 }
 }
 };
 enforceable domain tl: TraversalLink {
 navClassOrigin = nct1:NavigationalClass {name = nav1},
 navClassTarget = nct2:NavigationalClass {name = nav2},
 referredAssociation = nct3:NavigationalClass {name = na}
 };
 }

}
}

Table 5 QVT-Relation Specification of CheckDCNM Rule

As an example, the QVT-Relation corresponding to Figure 12 is translated into a top

relation block in Table 5. Inside this block, each branch of the relation is preceded by

their nature (checkonly, enforceable). Inside each branch, we find a set of either simple

pairs attribute-value or complex structures that are further decomposed until reaching

 57

the attribute-value level of detail. Last, when and where clauses are additional blocks of

the QVT-Relation specification.

Appendix B: Java Code corresponding to the

DefineNewTraversalLink Transformation

In order to illustrate the operationalization of the UPT transformations in the WebSA

tool, in Table 6 we present the Java Code, automatically generated by the WebSA Tool,

corresponding to the DefineNewTraversalLink Transformation.

Package utilidades.resultados;

import ooh.*;
import ooh.conceptualviewooh.*;
import ooh.navigationalviewooh.*;

public class DefineNewNavigationalLink{

 VariablesDomain variablesDomainCheckable = new VariablesDomain();
 Propiedad propiedadAux = null;

 public boolean execute(Association association, NavigationalAssociation navigationalAssociation, OOHPackage oOH){
 boolean result = true;

 // The checkable OOH.DomainView generation starts
 TableVariables variablesObjectCheckableAssociation = new TableVariables(association, "association", "Association");
 boolean saveTableObjectCheckableAssociation = true;
 propiedadAux = new Propiedad("na", association.refGetValue("name"));
 variablesObjectCheckableAssociation.addPropiedad(propiedadAux);
 if (saveTableObjectCheckableAssociation){
 saveTableObjectCheckableAssociation = false;
 Attribute roleTarget = (Attribute) association.getRoleTarget(); //It navigates through the roleTarget
 if (roleTarget != null){
 TableVariables variablesObjectCheckableRoleTarget = new TableVariables (roleTarget, "roleTarget", "Attribute");
 boolean saveTableObjectCheckableRoleTarget = true;
 propiedadAux = new Propiedad("role2", roleTarget.refGetValue("name"));
 variablesObjectCheckableRoleTarget.addPropiedad(propiedadAux);
 if (saveTableObjectCheckableRoleTarget){
 saveTableObjectCheckableRoleTarget = false;
 Class endType = (Class) roleTarget.getEndType();
 if (endType != null){
 TableVariables variablesObjectCheckableEndType = new TableVariables (endType, "endType", "Class");
 boolean saveTableObjectCheckableEndType = true;
 if (saveTableObjectCheckableEndType){
 saveTableObjectCheckableEndType = false;
 for (java.util.Iterator i2 = endType.getNavClass().iterator(); i2.hasNext();){
 NavigationalClass navClass = (NavigationalClass) i2.next();
 TableVariables variablesObjectCheckableNavClass =
 new TableVariables(navClass, "navClass", "NavigationalClass");
 boolean saveTableObjectCheckableNavClass = true;
 propiedadAux = new Propiedad("nav2", navClass.refGetValue("name"));
 variablesObjectCheckableNavClass.addPropiedad(propiedadAux);
 if (saveTableObjectCheckableNavClass){
 variablesObjectCheckableEndType.addRelacion(variablesObjectCheckableNavClass);
 saveTableObjectCheckableEndType = true;
 }
 }
 }
 if (saveTableObjectCheckableEndType){
 variablesObjectCheckableRoleTarget.addRelacion(variablesObjectCheckableEndType);

 58

 saveTableObjectCheckableRoleTarget = true;
 }
 }
 }
 if (saveTableObjectCheckableRoleTarget){
 variablesObjectCheckableAssociation.addRelacion(variablesObjectCheckableRoleTarget);
 saveTableObjectCheckableAssociation = true;
 }
 }
 }
 if (saveTableObjectCheckableAssociation){
 saveTableObjectCheckableAssociation = false;
 Attribute roleOrigin = (Attribute) association.getRoleOrigin();
 if (roleOrigin != null){
 TableVariables variablesObjectCheckableRoleOrigin = new TableVariables(roleOrigin, "roleOrigin", "Attribute");
 boolean saveTableObjectCheckableRoleOrigin = true;
 propiedadAux = new Propiedad("role1", roleOrigin.refGetValue("name"));
 variablesObjectCheckableRoleOrigin.addPropiedad(propiedadAux);
 if (saveTableObjectCheckableRoleOrigin){
 saveTableObjectCheckableRoleOrigin = false;
 Class endType = (Class) roleOrigin.getEndType();
 if (endType != null){
 TableVariables variablesObjectCheckableEndType = new TableVariables(endType, "endType", "Class");
 boolean saveTableObjectCheckableEndType = true;
 if (saveTableObjectCheckableEndType){
 saveTableObjectCheckableEndType = false;
 for (java.util.Iterator i3 = endType.getNavClass().iterator(); i3.hasNext();){
 NavigationalClass navClass = (NavigationalClass) i3.next();
 TableVariables variablesObjectCheckableNavClass =
 new TableVariables(navClass, "navClass", "NavigationalClass");
 boolean saveTableObjectCheckableNavClass = true;
 propiedadAux = new Propiedad("nav1", navClass.refGetValue("name"));
 variablesObjectCheckableNavClass.addPropiedad(propiedadAux);
 if (saveTableObjectCheckableNavClass){
 variablesObjectCheckableEndType.addRelacion(variablesObjectCheckableNavClass);
 saveTableObjectCheckableEndType = true;
 }
 }
 }
 if (saveTableObjectCheckableEndType){
 variablesObjectCheckableRoleOrigin.addRelacion(variablesObjectCheckableEndType);
 saveTableObjectCheckableRoleOrigin = true;
 }
 }
 }
 if (saveTableObjectCheckableRoleOrigin){
 variablesObjectCheckableAssociation.addRelacion(variablesObjectCheckableRoleOrigin);
 saveTableObjectCheckableAssociation = true;
 }
 }
 }
 if (saveTableObjectCheckableAssociation){
 variablesDomainCheckable.addTable(variablesObjectCheckableAssociation);
 } else result = false;
 // The checkable OOH.DomainView generation ends

 if (variablesDomainCheckable.getTables().isEmpty()) result = false;

 //The enforceable OOH.NavigationalView generation starts
 navigationalAssociation.refSetValue("name", variablesDomainCheckable.obtenerValorVariable("role1") + "2" +
 variablesDomainCheckable.obtenerValorVariable("role2"));

 Association referredAssociation = null;
 for (java.util.Iterator it0 = referredAssociation.refAllOfClass().iterator(); it0.hasNext();){
 Association referredAssociationAux = (Association) it0.next();
 try {
 if (referredAssociationAux.getName().equals(variablesDomainCheckable.obtenerValorVariable("na"))){
 referredAssociation = referredAssociationAux;
 break;
 }
 } catch(NullPointerException e){
 System.out.println (“The association with the name na has not been found”);
}
 }
 if (referredAssociation == null){

 59

 referredAssociation = referredAssociation.createAssociation();
 referredAssociation.refSetValue("name", variablesDomainCheckable.obtenerValorVariable("na"));
 }

 navigationalAssociation.setReferredAssociation(referredAssociation);
 NavigationalClass navClassOrigin = navigationalAssociation.createNavigationalClass();
 navClassOrigin.refSetValue("name", variablesDomainCheckable.obtenerValorVariable("nav1"));
 navigationalAssociation.setNavClassOrigin(navClassOrigin);
 NavigationalClass navClassTarget = navigationalAssociation.createNavigationalClass();
 navClassTarget.refSetValue("name", variablesDomainCheckable.obtenerValorVariable("nav2"));
 navigationalAssociation.setNavClassTarget(navClassTarget);

//The enforceable OOH.NavigationalView generation ends

 return result;
 }

}

Table 6 Java Code corresponding to the DefineNewTraversalLink Transformation

 60

	A Model-Driven Approach for the Improvement of Web Applicati
	Abstract
	Introduction
	Early Navigability Measurement in WE
	Contribution of the paper

	Related Work: Navigability Measures in WE
	The Domain Coverage of the Navigational Model (DCNM) measure

	Use of the Software Measurement Meta-Model for the Definitio
	SMM instantiation for the DCNM measure

	OO-H in a nutshell
	The OO-H Domain Model
	The OO-H Navigational Model

	MDE Evaluation & Evolution of Navigational Models
	DCNM Transformation Map
	DCNM Evaluation Rule: CheckDCNM
	The SelectNonNavigatedAssociations Evolution Rule
	The DefineNewTraversalLink Evolution Rule

	Tool support
	Conclusions and Further Work
	Acknowledgments
	REFERENCES
	Appendix A: QVT-Relation specification of UPT Transformation
	Appendix B: Java Code corresponding to the DefineNewTraversa

