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INTRODUCTION

1 Stimuli and Response

An organism or an automaton receives stimuli via its sensory receptor or-
gans, and performs actions via its effector organs. To say that certain actions
are a response to certain stimuli means, in the simplest case, that the actions
are perfomed when and only when those stimuli occur.

In the general case both the stimuli and the actions may be very com-
plicated.

In order to simplify the analysis, we may begin by leaving out of account
the complexities of the response. We reason that any sort of stimulation,
or briefly any event, which affects action in the sense that different actions
ensue according as the event occurs or not, under some set of other circum-
stances held fixed, must have a representation in the state of the organism
or automaton, after the event has occurred and prior to the ensuing action.

So we ask what kind of events are capable of being represented in the
state of an automaton.

For explaining actions as responses to stimuli it would remain to study
the manner in which the representations of events (a kind of internal re-
sponse) lead to the overt responses.

Our principal result will be to show (in Sections 7 and 9) that all and
only the events of a certain class called “regular events” are representable.

2 Nerve Nets and Behavior

McCulloch and Pitts [McC 43] in their fundamental paper on the logical
analysis of nervous activity formulated certain assumptions which we shall
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was supported by the RAND Corporation during the summer of 1951.



recapitulate in Section 3.

In showing that each regular event is representable in the state of a
finite automaton, the automaton we use is a McCulloch-Pitts nerve net.
Thus their neurons are one example of a kind of “universal elements” for
finite automata.

The McCulloch-Pitts assumptions were put forward as an abstraction
from neuro-physiological data. We shall not be concerned with the ques-
tion of how exactly the assumptions fit. They seem to fit roughly up to a
point, though one of McCulloch’s and Pitts’ results is that certain alterna-
tive assumptions can explain the same kind of behavior. With increasing
refinement in the neuro-physiological data the emphasis is no doubt on re-
spects in which the assumptions do not fit.

Our theoretical objective is not dependent on the assumptions fitting
exactly. It is a familiar strategem of science, when faced with a body of data
too complex to be mastered as a whole, to select some limited domain of
experiences, some simple situations, and to undertake to construct a model
to fit these at least approximately.

Having set up such a model, the next step is to seek a thorough un-
derstanding of the model itself. It is not to be expected that all features
of the model will be equally pertinent to the reality from which the model
was extracted. But after understandig the model, one is in a better position
to see how to modify or adapt it to fit the limited data better or to fit a
wider body of data and when to seek some fundamentally different kind of
explanation.

McCulloch and Pitts in their original paper give a theory for nerve nets
without circles [Part IT of their paper] and a theory for arbitrary nerve nets
[Part III]. The present article is partly an exposition of their results; but we
found the part of their paper dealing with arbitrary nerve nets obscure, so
we have proceeded independently there.

Although we are concerned with the model itself rather than its appli-
cation, a few remarks on the latter may prevent misunderstanding.

To take one example, as consideration of the model shows, memory can
be explained on the basis of reverberating cycles of nerve impulses. This
seems a plausible explanation for short-term memories. For long-term mem-
ories, it is implausible on the ground of fatigue, also on the ground that
calculations on the amount of material stored in the memory would call for
too many neurons [McC 49], and also on the basis of direct experimental
evidence that temporary suppression of nervous activity does not cut off
memory [GER 53].

The McCulloch-Pitts assumptions give a nerve net the character of a
digital automaton, as contrasted to an analog mechanism in the sense famil-
iar in connection with computing machines. Some physiological processes of



control seem to be analog. Just as in mathematics continuous processes can
be approximated by discrete ones, analog mechanisms can be approximated
in their effect by digital ones. Nevertheless, the analog or partly analog
controls may for some purposes be the simplest and most economical.

An assumption of the present mathematical theory is that there are no
errors in the functioning of neurons. Of course this is unrealistic both for
living neurons and for the corresponding units of a mechanical automaton.
It is the natural procedure, however, to begin with a theory of what hap-
pens assuming no malfunctioning. Indeed in our theory we may represent
the occurrence of an event by the firing of a single neuron. Biologically it
is implausible that important information should be represented in an or-
ganism in this way. But by suitable duplication and interlacing of circuits,
one could then expect to secure the same results with small probability of
failure in nets constructed of fallible neurons.

Finally, we repeat that we are investigating McCulloch-Pitts nerve nets
only partly for their own sake as providing a simplified model of nervous ac-
tivity, but also as an illustration of the general theory of automata, including
robots, computing machines and the like. What a finite automaton can and
cannot do is thought to be of some mathematical interest intrinsically, and
may also contribute to better understanding of problems which arise on the
practical level.

PART I. NERVE NETS

3 McCulloch-Pitts Nerve Nets

Under the assumptions of McCulloch and Pitts [McC 43], a nerve cell or
neuron consists of a body or soma, whence nerve fibers (azons) lead to one
or more endbulbs.

A nerve net is an arrangement of a finite number of neurons in which
each endbulb of any neuron is adjacent to (impinges on) the soma of not
more than one neuron (the same or another); the separating gap is a synapse.
Each endbulb is either ezcitatory or inhibitory (not both).

We call the neurons (zero or more) on which no endbulbs impinge input
neurons; the others, inner neurons.

At equally separated moments of time (which we take as the integers on
a time scale, the same for all neurons in a given net), each neuron of the net
is either firing or not firing (being quiet). For an input neuron, the firing
or not-firing at any moment ¢ is determined by conditions outside the net.
One can suppose each is impinged on by a sensory receptor organ, which
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under suitable conditions in the environment causes the neuron to fire at
time ¢. For an inner neuron, the condition for firing at time ¢ is that at least
a certain number A (the threshold of that neuron) of the excitatory endbulbs
and none of the inhibitory endbulbs impinging on it belong to neurons which
fired at time t — 1.

For illustration, consider the nerve net shown in Figure 1, with input
neurons J,K, L, M and N, and inner neuron P. Excitatory endbulbs are
shown as dots, and inhibitory as circles. The threshold of P is 3, as shown
by the number in the triangle representing its soma. The formula written
below the net expresses in logical symbolism that neuron P fires at time ¢,
if and only if all of J,K and £ and none of M and N fired at time ¢ — 1.
We are writting “P(t)” to say that neuron P fires at time ¢, “J(t — 1)” to
say that J fired at ¢ — 1, etc. The symbol “=” means if and only if (or is
equivalent to), “&” means and, “V” means or (in the non-exclusive sense),
and “—” means not.
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4 The Input to a Nerve Net

Consider a nerve net with k input neurons N,...,N;. We assume k > 1,
until 6.3. The input (or ezperience) over all past time up to the present
moment inclusive can be described by a table with k£ columns corresponding
to the input neurons, and with rows corresponding to the moments counting
backward from the present moment p. The positions are filled with 0’s and
1’s, where 0 is to stand for quiescence, and 1 for firing, of the neuron in
question at the moment in question.

For example with £ = 2 the table might be like Figure 5. The 1 in the
first row and first column means that N7 fires at time p, the 0 in the third
row and first column that A did not fire at time p — 2, etc. If this table is
extended down infinitely, we have a representation of the input, thought of
as extending over all past time, which for the time being we treat as infinite.
(In Section 6 we shall reconsider the matter.)

By an event we shall mean any property of the input. In other words, any
subclass of the class of all the possible tables describing the input over all
past time (and ending with the present p inclusive, except when otherwise
stated) constitutes an event, which occurs when the table describing the
actual input belongs to this subclass.

Examples of events with two neurons N7 and N3 are:

1) N fires at time p.
2) N> does not fire at time p, and N fired at time p — 1.
3) Ome of N7 and N, fires at time p.
4) N7 and N3 both fire at time p.
5) N, fired at some time.
)

(
(
(
(
(
(

6) N> fired at every time except p.

Of these, the input described by the table of Figure 5 constitutes an occur-
rence of events (1), (2), (3) and (5), but not of (4), while we need to know
the rest of the table to know whether it constitutes an occurrence of (6).
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5 Definite Events

5.1 “Definite Events” Defined

We shall discuss first events which refer to a fixed period of time, consisting of
some £ (> 1) consecutive moments p — £+ 1,...,p ending with the present.
We call such events definite of length (or duration) £. Of the preceding
examples, (1)—(4) are definite, but not (5) and (6).

Then in a table such as Figure 5 we need consider only the uppermost /¢
rows; e.g., that table for £ = 3 then describes an event also described by the
formula N1(p) & Na(p) & Ni(p—1) & Na(p—1) & Ni(p —2) & N2(p—2).

There are exactly k£ entries in a table describing the input on & neurons
for the £ moments p — £+ 1,...,p. Therefore there are exactly 2¥¢ possible
such tables. Therefore there are exactly 22* Jefinite events on k input
neurons of length £, since any particular one is determined by saying which
of the inputs described by the 2% k x £ tables would constitute an occurrence

of the event.

We call a definite event positive, if it occurs only when at least one input
neuron fires during the period to which the event refers. There are exactly
92*-1 positive definite events on k input neurons of length £, since that
input described by the table of all 0’s is excluded as an occurrence.

5.2 Representability of Definite Events: an Illustration

Consider the definite event which occurs when the pattern of firings fits
either the table of Figure 5 (stopped at three rows) or that of Figure 6.

That is, exactly these two (out of the 223 = 64) 2 x 3 tables are to
constitute an occurrence of the event. The event is described by the right
member of the equivalence in Figure 7, which is obtained by combining
disjunctively the conjunctions describing the respective tables separately.
In the nerve net of Figure 7, the neuron P fires at time p + 2, if and only
if the event occurs ending at time p; or briefly, the net represents the event
by the firing of P with lag 2. The neurons N7, N|, N with just the axons
connecting them are a “delay net” (cf. Figure 4). The synapse at M1 with
the seven neurons involved is a “conjuctive net” (cf. Figure 1). That at P
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is a “disjunctive net” (cf. Figure 3).

The method of this illustration applies to every positive definite event
which occurs for some one or more tables.

There remains the case of the event which never occurs. This is repre-
sented by the firing of P say with lag 2 in the net of Figure 8. The neuron
Mz is inserted to show that we can have the net connected (in the obvious
sense); otherwise My could be omitted. M could be the P.

We have thus already proved that any positive definite event is repre-
sentable by firing a neuron with lag 2. However, we shall give a more flexible
treatment, listing this result as part of Theorem 1 Corollary 1.



5.3 Representability of Definite Events: General Theory

We consider logical expressions constructed using & and V from the ex-
pressions symbolizing the firing or non-firing of one of the k input neurons
Ni,...,N; at one of the £ moments p — £+ 1,...,p. Such an expression
we call a kf-formula, of depth equal to the greater number of successive
times & or V is used in its construction. Here we allow any bracket-
ing in conjunctions and disjunctions of more than two members; so e.g.,
[[N1(p) & Na(p)] & Na(p — 1)] V Ni(p) as written is of depth 3, but it can

be rewritten as [N1(p) & Na(p) & Nao(p —1)] V Ni(p) with depth 2.

This definitions can be given by mathematical induction on s, thus:

1. For each ¢ and j (¢ = 1,...,k;j = 1,...,£), Ni(p —j + 1) and
Ni(p — j + 1) are kL-formulas of depth 0.

2. For s > 0, if G1,...,Gy, (n > 2) are kl-formulas of depth < s, at
least one of them being of depth s — 1, then G1 & ... & G, and
G1 V ...V G, are kf-formulas of depth s. (Here each G, not of depth
0 is to be enclosed in brackets when written out.)

Since the truth or falsity of a kf-formula F' is determined logically from
only the truth or falsity of the N;(p — j + 1) which enter into it as prime
components, each F expresses a definite event E on k input neurons of
length 4.

We lose nothing essential by applying the negation symbol — only di-
rectly to the prime components. For by repeated use of the logical identi-
tiesG =G, G & ... &G, =G, V ... V Goand Gy V ... V G, =
Gi1 & ... & G,, negations symbols used otherwise could be moved in-
ward to the prime components without changing the depth. The only other
operations commonly employed in the two-valued propositional calculus,
namely — (implies) and =, can be expressed in terms of —, & and V thus:
G—-H=GV H, (G=H)=(G— H) & (H—G).

A circle (of length c) in a nerve net is a set of distinct neurons Ny, ..., N,
(¢ > 1) such that N; has an endbulb on N1 foreachi (i =1,...,¢—1) and
N has an endbulb on N;j. The nets so far considered are without circles,
including the conjuctive, disjunctive and delay nets (Figures 1, 3 and 4),
and certain nets composed thence.

Theorem 1 Let F' be any kf-formula of depth s, and let E be the definite
event on k input neurons of length £ which F expresses. There is a nerve
net of structure corresponding to F (and therefore without circles) which
represents FE by firing or by not firing, according as E is positive or non-
positive, a ceratin neuron P (inner if s > 0) at time p + s.



By saying that the net is of “structure corresponding to F”, we mean
that it is composed out of conjunctive and disjunctive nets (together with
delay nets) corresponding to the operations used in constructing F, as will
be indicated in the proof.

Proof by induction on s. Under our definition of k¢-formula not all of the
symbols N; (i = 1,...,k) need occur in F. In showing by induction how to
construct the net to correspond to the logical structure of F', we incorporate
only the neurons N; for which N; occurs in F. The others can be considered
as floating around, unless one wishes them connected to the rest of the net,
in which case if s > 1 they can be, e.g., as illustrated for A5 in Figure 8.

Basis: s = 0. Then F is Nj(p —j + 1) or N;y(p—j + 1) for some 7 and
j. Then Nj is also the P, if j = 1; and otherwise the P is a neuron
coming from N; by a suitable delay net (Figure 4).

Induction step: s >0. Then FisG1 & ... & G,or Gy V ... V G,. For
e=1,...,n, let M, be G, or G, according as (the event described by)
G is positive or non-positive, as will be known from the case which
applied to G.. Then G, (of depth s, < s) is equivalent to M, or M,
respectively, and by the hypothesis of the induction, there is a nerve
net with a neuron G, the firing or non-firing, respectively, of which
at time p + s, represents G.. Thence we obtain a neuron M, the
firing of which at time p + s — 1 represents M,; this M, is G, itself
if s¢ = s — 1, and otherwise a neuron coming from G, by a suitable
delay net. Now we have four cases, according to how F' is composed
out of M,..., M,, via the construction of F' from G1,...,G, and the
equivalence of each G, to one of M, and M,.

Case 1: A conjunction containing at least one unnegated factor, e.g.,
M, & My & M3 & M, & Ms. The event is then positive; so we
wish to represent it by the firing of a neuron P at time p 4+ s. A
conjunctive net (cf. Figure 1) gives us this neuron.

Case 2: A conjunction containing only negated factors, e.g.,
M, & M, & Ms. The event is then non-positive. But its
negation My & M, & Mj is positive. The latter is equivalent
to M1 V My V Ms. A disjunctive net (cf. Figure 3) represents
the latter by firing a neuron P at p + s; the net then represents
the original event by the non-firing of P at p + s, which is how
we wished it to be represented.

Case 3: A disjunction containing at least one negated term, e.g.,
M, VvV My V My V My V Ms. The event is non-
positive. But its negation is positive and equivalent to
M, & My & My & My & Ms. A conjunctive net represents

10
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P(p+2) =[Ni(p) V Na(p) V N3(p)] & [N1(p) V Nao(p) V Ns(p)]
& [Ni(p) V Nz(p) V Ni(p)].

Figure 9

the latter by firing a neuron P at p + s; then the original event
is represented by the non-firing of P at p + s.

Case 4: A disjunction containing only unnegated terms, e.g., M; V
My V Ms. The event is positive. A disjunctive net represents it
as desired by firing a neuron P at p + s.

Examples The net of Figure 7 is what the present method gives for
the formula there. Another illustration is in Figure 9. Treating the

three formulas N1(p) V Na(p) V Ns(p), Ni(p) V Na(p) V Ni(p)
and V1 (p) V Na(p) V Ns(p) gives us respective neurons Mj, M, and
M3 which represent the events expressed, the first which is positive by
firing (Case 4), the second and third which are non-positive by non-
firing (Case 3), at time p + 1. Then P is obtained to represent the

entire event which is positive by firing at time p + 2 (Case 1).

Corollary 1 To each positive (non-positive) definite event, there is a nerve
net without circles which represents the event by firing (not firing) a certain
inner neuron at time p + 2.

The result was stated (for positive events and without the remark on the
lag) by [McC 43].
Proof To infer this from the theorem, we need merely observe that the
method of 5.2 gives a kf-formula of depth < 2 to every definite event on k
input neurons of length £. (If the depth is < 2, a delay net may be used to
increase the lag to 2.) |

11



Discussion Readers familiar with symbolic logic will recognize the k¢-
formula so obtained as a principal disjunctive normal font of [HIL 28]; it is
“principal” because in each of its terms every one of Ni(p),..., Ng(p—£+1)
occurs negated or unnegated (with an exception in the case of Figure 8).

The formula of Figure 9 is a principal conjuctive normal form. If the
p.d.n.f. has n < 25 terms, the p.c.n.f. has 2¥¢ — n factors. (The p.c.n.f. is
obtained by evaluating the negation of the p.d.n.f. of the negation of the
event.)

The use of the p.d.n.f. simplifies the proof of representability (cf. 5.2),
and gives the fact that the lag can be held to 2, but the net constructed
may be unnecessarily complicated. The event may admit of being described
more simply by a disjunctive or conjuctive normal form not principal (which
still enables the lag to be held to 2). For example (with &k = 2,/ = 3),
[Na(p) & Na(p —2)] V Na(p —1) is a d.n.f., the p.d.n.f. for which would
have 40 terms (the p.c.n.f. 24 factors). There may be simpler equivalents

not disjunctive or conjunctive normal forms.

Since the theorem gives a representing net of corresponding structure to
the formula, the problem of finding as simple nets as possible to represent
definite events is correlated to the problem of finding simplest equivalents of
an expression in the propositional calculus, which has recently been treated
by [QUI 52].

In special cases the net may be constructed more simply than corre-
sponding to the formula; e.g., in Figure 2 taking p = £ — 1 the net represents
the event with lag 1, although the formula is of depth 3, and no equivalent
formula of depth 1 exists.

Reduction of the lag below 2 is not possible in general. For example
(with k = 3,£ = 1) the event N1(p) & (N2(p) V Ns3(p)) is not representable
with lag 1. For it is easily seen that no net consisting of a neuron P impinged
on only by endbulbs belonging directly to N7, N2 and N3 can represent this
event.

To hold the lag to 2, we may be obliged to have very large numbers of
endbulbs originating from or impinging on a given soma.

Corollary 2 To each positive (non-positive) definite event, there is a num-
ber s and a nerve net without circles, composed of neurons each having, and
impinged upon by, at most two endbulbs and of threshold at most 2, which
represents the event by the firing (non-firing) of a certain neuron at time
p+s.

Proof By using & and V only as binary operations in the k¢-formula, no
neuron in the net construction for the theorem will be impinged upon by
more than two endbulbs. Each inner neuron outside of the delay nets has
only one endbulb. Each input neuron and delay net can if necessary be

12



replaced (increasing the lag) by a tree of neurons each with at most two
endbulbs. 0

We have been considering representation of an event ending with time
p by the firing or by the non-firing of a certain neuron at a certain time
p+ s (s > 0). More generally we can consider representation by a property
of the state of the net (i.e., the firing or non-firing of each of its neuron) at
p—+ s; i.e., the state of the net is to have or not to have this property at time
p + s, according as the event did or did not occur ending with time p. In
the following lemma and corollary, it is not being assumed that the event is
definite or the net without circles.

Lemma 1 An event which is representable in a nerve net by a property of
the state at time p+ s for a given s > 0 is representable by a property of the
state of the same net at time p.

Proof What happens at times < p can only affect the state of the net at
time p+ s via the state of the entire net, including both the k input neurons
and, say, m inner neurons, at time p. O

Corollary 3 An event which is representable in a nerve net by a property
of the state at time p + s for a given s > 0 is representable by the firing or
the non-firing (according to the nature of the property) of a certain inner
neuron in o suitable net at time p + 2.

Proof We can treat the k + m neurons as though all of them were input
neurons, for the purpose of applying Corollary 1. By Lemma 1, the property
in question is equivalent to a property of the k 4+ m neurons at time p. The
latter constitutes a definite event of length 1 on the k£ 4+ m neurons. O

5.4 Nerve Nets without Circles

Theorem 2 Given any nerve net without circles and given any inner neu-
ron N in that net, the firing (non-firing) of that neuron at time p + 1 is
equivalent to the occurrence of a positive (non-positive) definite event.

This theorem was stated (for positive events) by [McC 43].

Proof Whether or not N fires at p + 1 is completely determined by the
state (firing or non-firing) at p of those neurons A7, ..., N/ having endbulbs
impinging on N. Consider those of A,..., ] which are inner neurons,
and repeat the argument. Since there are no circles, any chain of neurons
beginning with A/ and each impinged on by an endbulb of the next must
terminate (with an input neuron). Let £+ 1 be the greatest of the lengths of
these chains; since N is inner, £ > 1. After £ steps, no inner neurons remain

13



to be considered. Thus whether or not N fires at time p + 1 is completely
determined by the state of certain input neurons at certain times between
p—~+1 and p inclusive; i.e., N'’s firing at time p+1 is equivalent to a definite
event of length ¢. This event is positive, as firing can only be propagated
but not originated under the law for an inner neuron’s firing. O

Remark Any definite event is expressible by a logical formula, e.g., by a
principal disjunctive normal form as in 5.2. So a priori there is a formula
to express the event of the theorem. By utilizing the condition for firing
at each synapse, which can be formulated in logical symbols depending on
the threshold and the numbers and kinds of the endbulbs (cf. Figures 1-3
for several examples), one can build up a formula directly in £ steps, as
McCulloch and Pitts indicate.

Corollary 1 Any event which is representable in a nerve net without circles
by the firing (non-firing) of a given inner neuron N at time p+ s for a given
s > 1 is positive (non-positive) definite.

Proof By the theorem, the firing of A at time p + s is equivalent to the
occurrence of a positive definite event ending with time p+s—1. But by the
hypothesis that A’s firing at time p + s represents an event, i.e., one ending
with time p (cf. Section 4), the input over the moments p+1,...,p+s—1
has no effect on whether N fires at time p + s. O

Corollary 2 Any event which is representable in a nerve net without circles
by a property of the state at time p + s for a given s > 0 is definite.

Proof By Corollary 1, with Theorem 1 Corollary 3 (which does not intro-
duce circles). O

6 Indefinite Events: Preliminaries

6.1 Examples

Let “(Et)” mean there ezists at ...such that, “(t)” mean for all t, and “—”
mean implies. The net in Figure 10 has a circle of length 1. If at some
time ¢ < p the input neuron N fires, then M will fire at every subsequent
moment, in particular at p+ 1 as the formula expresses. But the firing of M
at time p 4+ 1 does not represent the indefinite event (Et);<,N(t) (i.e., we
do not have M(p + 1) = (Et)i<,N(t)), if past time is infinite, because the
firing of M at time p + 1 can also be explained by M having fired at every
past moment, without A/ having ever fired. Similar examples are given in
Figures 11 and 12.

14
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This difficulty is not escapable by using other nets to represent the
events, or in other examples of indefinite events, but constitutes the general
rule, by Theorem 6 in Section 10 below with Lemma, 1.

Of course any living organism or constructed robot has only a finite
past. Theorem 6 shows that we must take this into account in the theory;
otherwise we might be tempted to simplify the theory by the fiction of an
infinite past, as we did in Section 5.

6.2 Initiation

Accordingly we shall hereafter assume (except when we indicate otherwise)
that the past for our nerve nets goes back from p (the present) a finite time
only, the first moment of which shall be 1 on our time scale. The range of
the time variable in our logical formulas shall be the integers from 1 forward.

Now if in the net of Figure 10 M is quiet at time 1, we do have M (p+1) =
(Et)i<pN(t); in Figure 11 if M fires at time 1, M (p+ 1) = ()<, N (t); and
in Figure 12 if M fires at time 1, M(p + 1) = (Et);<pN(t). Thus the nets
of Figures 10 and 12 are able to remember that A has fired since their
beginning by changing M from the state it had initially; while the net of
Figure 11 is able to recognize that A has never failed to fire by preserving

M in the state it had originally, as [HOU 45, p. 109] have commented.

The nets in question only represent the events in question, when the
inner neuron M has the state mentioned at time 1.

This again is the general rule for indefinite events, by Theorem 7 with
Lemma 1. (Lemma 1 holds for finite past.)

We illustrate this now by showing that to represent the event (t);<, N (%)
at least one inner neuron must fire at time 1. For let the proposed repre-
sentation be by a property of the state at time p (Lemma 1), i.e., solely of
this state and not also of the value of p. Say N is the only input neuron.
Were all the inner neurons quiet at ¢ = 1, then with the input shown in the
table of Figure 13 all inner neurons would be quiet at ¢ = 2, so the state at
t = 2 would be indistinguishable from that with Figure 14 at ¢ = 1. Hence
with Figure 13 the net would have the same state for p = 2,3,4,... as with
Figure 14 for p = 1,2, 3, ..., respectively, though with the former (¢);<, N (t)
is false, with the latter true.

Accordingly in studying the representability of events, we shall hereafter

16



t 1 2 3 4
N 1 1 11
Figure 14

not only choose a net for the purpose but also choose the state (firing or
non-firing) of each inner neuron at time 1.

As the example of (t);<pN(t) shows, for some events it will not be suffi-
cient to have all the inner neurons quiet initially.

We are developing the theory of McCulloch-Pitts nerve nets as an illus-
trative case of the theory of finite automata. From the standpoint of the
latter theory, one initial state is as reasonable as another. The alternative
of excluding such events as (t);<, N (p) from the class of representable events
would be more awkward.

To one who feels that the firing of inner neurons at time 1 requires
explanation under the McCulloch-Pitts laws of neural behavior, we need
merely say that we have isolated certain input neurons Ni,...,N}; and a
certain portion ¢ = 1,2,3,... of time for the input for the events to be
represented. We can go outside those neurons and that part of time to
bring about any assumed state of our inner neurons at time ¢ = 1. This is
most simply accomplished by adding an extra input neuron N1, which is
to fire at ¢ = 0 and then only, and which is to have on each of the inner
neurons we wish fired at ¢ = 1 a number of excitatory endbulbs equal to the
threshold of that neuron, but no other endbulbs.

A more complicated device, which requires an extra input neuron X but
no extra moment of time, is illustrated in Figure 15 for the event ()<, N (p).
The event is represented by firing P at t = p + 2 if K is fired, but all
inner neurons are quiet, at ¢t = 1. We can imagine K exposed to continual
environmental stimulation which guarantees its firing at ¢ = 1; but its firing
at later times does not interfere with the representation. If K did not fired
at t = 1, but first at some later time ¢ = u, P’s firing at p+2 would represent
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that N had fired at all moments from v to p inclusive.!

6.3 Definite Events Reconsidered

An event is a partition of the class of all the possible inputs over the past
(including the present) into two subclasses, those inputs for which the event
occurs and those inputs for which the event does not occur. The possible
inputs on k neurons N,..., N} are described by k X p tables of 0’s and 1’s
with columns for NVi,..., Ny and rows for ¢t = p,...,1. As p varies over all
positive integers, these are all tables of 0’s and 1’s with k& columns and any
finite number of rows.

In Section 5 we used k x £ tables to describe inputs over the last £
moments ending with the present.

Now that our time has an initial moment 1, we must be careful whenever
we give a table with k£ columns and a finite number, say ¢, of rows to describe
an input, to make it clear whether we intend it to describe the input over
the complete past (so p = £) or only over the last £ moments of the past
(so p > £). In the one case we call the table initial, in the other non-initial.

'"McCulloch and Pitts consider the problem of “solving” nets with their initial state
unspecified. To “solve” for a given inner neuron P, say at time p + 1, means then to find
for which inputs over time 1,...,p and initial states of the inner neurons P will fire at
time p+ 1. In the following net, the necessary and sufficient condition that P fire at p+1
is that N fire at all times < p and both P and Q fire

N K&;
W W Plp+1) = ()<, N(t) & P(1) & Q(1).

at time 1. This seems to be a counterexample to the formula next after (9) on [McC 43,
p. 126], the proof of which we did not follow; for if we understand the formula correctly, it
implies that the condition for firing of P should only require the existence of one neuron
that fires initially. (Their 0 seems to be our 1.) This apparent counterexample discouraged
us from further attempts to decipher Part III of [McC 43].

18



The table may be thought of as carrying a tag saying, respectively, p = £ or
p > £. There was no necessity for this in Sections 4 and 5, as there tables
referring to the complete past were infinite.

A definite event of length £ in Section 5 was one in which the partition
of the inputs over the complete past is such that any two inputs which
agree in the upper £ rows of their tables always fall into the same one of
the subclasses. But now when p < £ there won’t be £ rows in the table
describing the input. For such a p, can the event occur? The convention we
adopt is that the event shall not occur in this case. Thus the inputs of the
first subclass for a definite event of length £ are those described by a set of
non-initial £ x £ tables. If F; is the logical formula we used in Section 5 to
describe a definite event, the event is now described by F1 & p > £. The
negation of this is £y V p < £, while the formula for the complementary
definite event of length £ is E; & p > £, which is not equivalent, except for
£ =1 when the “& p > ¢” and “V p < £” are superfluous.

The identical event (written Iy, or briefly I) which occurs no matter what
the input (the second subclass of the partition being empty) is a definite
event of length 1; the improper event (written I or T) which never occurs
(the first subclass being empty) can be considered as a definite event of
length £ for every £.

With the sole exception of the improper event, a given event can be
definite of length £ for only one £, and the set of the k x £ tables (all of them
non-initial) which describes it is unique. This was not the case in Section 5,
as there a definite event of length ¢ was also definite of length m for each
m > £; but now this would be absurd (except for the improper event) as the
extra specification that p > m would contradict that the event can occur for
p=4...,m—1.

The definite events we have just finished describing (22M of them for a
given k and /) are those which arise most naturally from those considered
in Section 5 by taking into account that now the past may not include £
moments.

We now find it advantageous to introduce also a new kind of definite
event on k neurons of length ¢, by changing the specification for all the
tables that p > £ to p = £; we do not include the improper event among
these. These definite events we call initial. For a given k and £, there are
22* _ 1 of them. An event can be an initial definite event for only one £, and
the set of the k x £ tables (all of them initial) which describes it is unique.
If F4 & p > £ is a given non-initial definite event not improper, £ & p = /¢
is the corresponding initial definite event.

In Section 5 p entered the formulas for events only relatively, but now the
events can refer to the value of p. This may seem somewhat unnatural; but,
reversing the standpoint from which we were led to this in 6.1 and 6.2, if we
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Li(p)=p>1.

Figure 16

£1 W +L3

Li(p)=p > 3.

Figure 17

are to analyze nerve nets in general, starting from arbitrary initial states, we
are forced to give p an absolute status. This is illustrated in Figures 16-21,
where the formula gives for each net the “solution” for L1, i.e., the condition
for its firing. The “4+” indicates initial firing of the indicated neuron; inner
neurons not bearing a “+” are initially quiet.

Our theory can now include the case £ = 0. (In Sections 4 and 5 we
were assuming k > 1, which of course is required for nets without circles;
Lemma 1 and Theorem 1 Corollary 3 hold for k£ = 0.) For k = 0 there are
exactly three definite events of a given length £, namely p > £, p = £ and
p # p; only p # p is positive. The nets of Figures 16-21 can be considered
as representing events for k£ = 0.

6.4 Representability of Definite Events

In Section 5 we showed how to construct nets which represent definite events
on k > 0 input neurons of length ¢ under the assumption of an infinite past.

+£1 ,@W

Li(p)=p < 3.

Figure 18
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Li(p=p=1

Figure 19

£ %,@ +L3

Li(p)=p=3.
Figure 20

Li(p) = [p = 1(mod 3)].

Figure 21
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The proof there that the nets represent the events is valid now for non-initial
(initial) definite events for values of p > £ (p = £), when the nets are started
with all inner neurons quiet at time £ = 1. To make the following discussion
general, we can take the representation to be by a property of the state of
the net at ¢ = p (cf. Lemma 1).

Using these nets now can sometimes give raise to a “hallucination” in
the sense that the state of the net at ¢ = p has the property without the
event having occurred. By reasoning similar to that in 6.2 in connection
with Figures 13 and 14, this will happen for suitable inputs, when p > £ in
the case of an initial definite event, and when p < £ (so £ > 1) in the case
of a definite event which can occur without the firing of an input neuron at
its first moment ¢t =p — £ + 1.

Conversely these are the only cases in which it will happen. For consider
any nerve net a property of which at ¢ = p represents a non-initial (initial)
definite event correctly for p > £ (p = £), when the net is started at t = 1
with all inner neurons quiet. For there to be a hallucination when p =m < ¢
(so £ > 1) means that for some input c; ...cy, over t = 1,...,m the net has
at ¢ = m a state having the property which goes with occurrence of the
event. Now let the input c; ... c,, be assigned instead tot =¢—m+1,...,¢
and an input consisting of only non-firings ¢} ...c,_ tot=1,...,¢ —m.
With the input ¢} ...c,_,, the state of the inner neurons at t = £ —m + 1
must consist of all non-firings, as it did before at ¢ = 1. So with the input
¢} - -Cp_,Cl1 - - - C the net will have at ¢ = £ the state it had before at ¢t = m,
which shows that ¢/ ... ch_mcl ...Ccyy constitutes an occurrence of the event.

Call a definite event of length £ prepositive, if the event is not initial,
and either £ = 1 or the event only occurs when some input neuron fires at
t=p—£+1. (For k =0, then only p > 1 and p # p are prepositive.)
Prepositiveness is a necessary and suficient condition for representability in
a nerve net with all the inner neurons quiet initially.

This result suggests our first method for constructing nets to represent
non-prepositive definite events. Say first the event is non-initial and ¢ > 1.
We supply the L1 of Figure 16, and treat it as though it were a kK + 1 — st
input neuron, required to fire at t = p — £+ 1 (but otherwise no taken into
account) in reconsidering the event as on the k + 1 neurons N7,..., N, L.
This event on k + 1 neurons is prepositive, so our former methods of net
construction (Section 5) apply.

A second method is to use the net of Figure 17 or 18; e.g., if the repre-
sentation is by firing an inner neuron P (quiet at ¢ = 1) at ¢ = p + s, the
inhibitory endbulb of £; in Figure 18 shall impinge upon P, and the figure
is for £ 4+ s = 5. If the representation is by a property of the state at ¢ = p,
that property shall include that £; of Figure 17 fire (for £ = 3) or that £
of Figure 18 not fire (for £ = 4),
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For initial definite events, the respective methods apply using Figures 19
and 20 instead of Figures 16 and 17, respectively.

The upshot is that only by reference to artifically produced firing of
inner neurons at ¢ = 1 could an organism recognize complete absence of
stimulation of a given duration, not preceded by stimulation; otherwise it
would not know whether the stimulation had been absent, or whether it had
itself meanwhile come into existence.

As already remarked in 6.2, instead of an initially fired inner neuron
as in Figures 16-20, we could use an additional input neuron X subject to
continual environmental stimulation.

A hallucination of the sort considered would be unlikely to have a serious
long-term or delayed effect on behaviour; but when definite events are used
is building indefinite ones, this cannot be ruled out without entering into
the further problem of how the representation of events is translated into
overt responses.

For organisms, the picture of the nervous system as coming into total
activity at a fixed moment ¢ = 1 is implausible in any case. But this only
means that organisms (at least those which survive) do solve their problems
for their processes of coming into activity. For artificial automata or ma-
chines generally it is familiar that starting phenomena must be taken into
account.

Of course our analysis need not apply to the whole experience and the
entire nerve net of an organism, but ¢ = 1 can be the first moment of a
limited part of its experience, and the nerve net considered a sub-net of its
whole nerve net.

7 Regular Events

7.1 Regular sets of tables and regular events

In this section as in 6.3 we shall use k x £ tables (for fixed k¥ and various /£,
with each table tagged as either non-initial or initial) to describe inputs on
k neurons Ny, ..., N over the time t = p — £+ 1,...,p for which an event
shall occur. But we shall not confine our attention to the case of 6.3 that
the set of tables describing when the event occurs are all of them k x £ tables
for the same £ and either all non-initial or all initial.

First we define three operations on sets of tables. If F and F are sets of
tables, £ V F (their sum or disjunction) shall be the set of tables to which
a table belongs exactly if it belongs to E or belongs to F.

If F and F are sets of tables, EF (their product) shall be the set of tables
to which a table belongs exactly if it is the result of writing any table of F'
next below any non-initial table of E; if the table of E has ¢; rows and that
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of F' has /5 rows, the resulting table has ¢; + ¢ rows, is initial exactly if
the table of F is initial, and describes an occurrence of an event consisting
in the event described by F' having occurred ending with t = p — 41, as
evidenced by the input over t = p — £, — 4o + 1,...,p — 41, followed by
the event E having occurred ending with ¢ = p, as evidenced by the input
over t =p—41 +1,...,p. The notation FF is written so that we proceed
backward into the past in reading from left to right.

Obviously £ V F and EF are associative operations. We may write
EOF for F, E' for E, E? for EE, E® for EEE, etc.

If E and F' are sets of tables, E % F (the iterate of E on F, or briefly
E iterate F) shall be the infinite sum of the sets F, EF, EEF,..., or in
self-explanatory symbolism F' V EF V EEF V ...or Y °  E"F.

The regular sets (of tables) shall be the least class of sets of tables which
includes the unit sets (i.e., the sets containing one table each) and the empty

set and which is closed under the operations of passing from E and F' to
E V F,to EF and to E x F.

And event shall be regular, if there is a regular set of tables which de-
scribes it in the sense that the event occurs or not according as the input is
described by one of the tables of the set or by none of them.

To include the case & = 0 under these definitions, we shall understand
that for £ = 0 and each £ > 1 there are two k x £ tables, one non-initial and
one initial.?

Any finite set of tables is obviously regular, in particular the empty set,
and the sets of k£ x £ tables all with a given £ and either all non-initial or all
initial; so every definite event is regular.

In writing expressions for regular sets or the events they describe we
may omit parentheses under three associative laws ((3) — (5) in 7.2), besides
which we also omit parentheses under the conventions of algebra treating
E VvV F, EF and E % F as analogous to e + f, ef and e"f. For example,
N V NI«I means N V (N(IxI)). We may use the same letter to designate
a definite event or the set of tables for it or the table itself in the case of a
unit set of tables.

We write £ = F to say that F and F are the same set of tables; £ = F
(E is equivalent to F') to say that they describe the same event. Obviously
E =F — E = F. The converse is not true in general, as we illustrate now
for regular sets of tables.

Thus with & = 1, if N is the non-initial 1 x 1 table consisting of 1 (which
describes the definite event symbolized in Section 5 by N(p)), and I is the
set of all 1 x 1 non-initial tables (cf. 6.3), then N V NI % I is the set of

2[McC 43] use a term “prehensible”, introduced quite differently, but in what seems to
be a related role. Since we do not understand their definition, we use another term.
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non-initial 1 x £ tables (for all £) with 1 in the top row. Now N V NI+xI =N
but N V NI«I# N.

We can also give counterexamples involving the distinction between non-
initial and initial tables. If F is a set of tables, by E° we denote the set of
tables resulting from the tables of E by redesignating as initial those which
are not already initial. For any £, E=FE V E°. Buteg., I #1 V I°.

(From E=F wecaninfer ¥ V G=F V G,G V E=G V F,EG =
FG,GE =GF,ExG = FxG and G+ E = G« F by the general replacement
theory of equality, since £ V G, EG and E * G are defined as univalent
operations on sets of tables. If = is replaced by =, the third and fifth of
these inferences fail to be valid in general, because the lengths of the tables
in E apart from the event described by them enter into the meaning of EG
and F «G. Thuse.g.,, N V NI« =N but (N V NI«xI)N # NN and
(N V NI«xI)*x N # N xN.

We have now two systems of notation for describing events:

(A) The logical symbolism as used for definite events is Section 5 (supple-
mented is Section 6 by suffixing p > £ or p = £) and for some examples
of indefinite events in Section 6,

(B) the symbolism, usually starting with capital letters to represent def-
inite events, by which we describe regular events (via regular sets of
tables) in this section.

The question of translatability between the two systems has not yet been
thoroughly investigated. By Theorem 8 in Section 12, to any expression (B)
there is a logical notation (A), provided sufficient mathematical symbolism is
included. Of course we have given no exact delimitation of what symbolism
is to be included under (A), so the problem of translatability is not precise.
In any case, with very limited mathematical symbolism included under (A),
a non-regular event can be expressed, as we shall see in Section 13. It is an
open problem whether there is any simple characterization of regularity of
events directly in terms of the symbolism (A).

Some examples of translation from (A) to (B) follow. In the examples
not involving N, k can have any fixed value > 0; involving N only, > 1;
involving K also, > 2. Sets of non-initial k& x 1 tables expressing that A fires
at time p, that K fires at p, and that K and N both fire at p, are denoted
by N, K, and L, respectively. Also I is to be all non-initial k£ x 1 tables;
and to any set E of k x 1 non-initial tables, E is the complementary set of
k x 1 non-initial tables, in particular I is the empty set (cf. 6.3).
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N+*N° vV NxNN«N°,

IxN

N x N°

N x L

NxL°V NxLxK*K_
I«xNIxN

call this M
(N* NN*N)* M

I3

IO

(I3) * I°

I° v II° v I’r°

7.2 Algebraic Transformations of Regular Expressions

We list some equalities for sets of tables.

investigation of equivalences.)

1
2
3
4

(
(
(
(
(5
(6
(7
(8
(9
10

11

,_.
W

EV E=E.
EV F=F V E.
EVF)VG=EV (FV Q).
EF)G = E(FG).

(
(
(ExF)G =E=x* (FQ).
(

)

)

)

)

)

) (E vV F)G=EG Vv FG.

) E(F Vv G)=EF Vv EG.
)Ex(FV G)=E*F vV ExG.
) ExF=F V ExEF.

) ExF=F V EExF.

) ExF=E*«(F VvV EF v E’F v
JEVI=IV E=E

) ET=TE=1

) ExI=1

) T+E =

) E°V F° = (EV F)°.
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EF° = (EF)°.
E°F=1.

ExF°=(ExF)°.

(EV F°)xG=E=xG.

(17)
(18)
(19)
(20) E°«F =F.
(21)
(22) E°° = E°.
(23)

r'=T

To prove (11), we have

o0 oo s—1 Ie'S) s—1
ExF=Y E'F=Y Y E4"F = E*Y E'F.
n=0 q=017r=0 q=0 r=0

In this subsection, we shall deal with particular ways of expressing a
regular set of tables under the definition in 7.1. As we saw there, we can
as well start with any sets of tables for definite events, instead of simply
with the unit sets and the empty set. By a regular erpression, we shall
mean a particular way of expressing a regular set of tables starting with
sets of tables for definite events and applying zero or more times the three
operations (passing from F and F to E V F, EF or E « F); the occurrences
of sets of tables for definite events with which the construction starts we
call them wunits. A unit is of length £, if the definite event described by it
is of length ¢; initial, if that is initial. (It comes to almost the same to let
“regular expression” mean a notation for a regular set of tables obtained
by starting with symbols for definite events and combining them by use of
the notations “E V F”, “EF” and “FE % F”, and most of what we say can
be read either way. But when we say that I does not occur in a regular
expression as a unit, in terms of notation we would mean that neither “I”
nor any other symbol for the empty set occurs as a unit. Also, in terms of
notation we would have to identify the units whenever they are not all of
them single letters.)

Lemma 2 Fach regular expression is reducible either to I or to a regular
expression in which I does not occur as a unit.

Proof By repeated use of (12) — (15). O

Lemma 3 Fach regular ezpression G is reducible to the form Gi VvV G5
where G1 contains no initial units.
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Proof, by induction on the number n of units in G.

Basis: n = 1. Then G is a unit. If G is not initial, let G; = G and use (12)
and (23). If G is initial, let G5 = G and use (12).

Induction step: n > 1.

Case 1: G is £ V F. By the hypothesis of the induction, £ =
E; vV E and F = F; V Fs. Thence, using (2), (3) and (16),
G = (E1 \Y Fl) \Y (E2 V FQ)O.

Case 2: (G is EF. Using the hypothesis of the induction, (6) and (7),
(18) and (12), and (17), G=FEF, V (ElFQ)O.

Case 3: G is Ex F. By the hypothesis of the induction, (21), (8) and
(19), G= E1 * F1 V (E1 * FQ)O.

a

We define recursively the “earliest units” of a regular expression, thus.

1. A regular expression consisting of only one unit is its earliest unit.

2. The earliest units of E and the earliest units of F' are the earliest units
of FE VvV F.

3. The earliest units of F' are the earliest units of EF and of E * F'.

Lemma 4 Each regular expression G is reducible to I or to a reqular ex-
pression in which I does not occur as a unit and only earliest units are
initial.

Proof, by induction on the number n of units in G.

Basis: n = 1. Then G is I, or not I but a unit and therefore earliest.

Induction step: n > 1.

Case 1: Gis £ VvV F. Use the hypothesis of the induction.

Case 2: G is EF. By Lemma 3, E = E; V FEj;. Thence, using

(6), (18) and (12), G = E1F. Now apply the hypothesis of the
induction to F.

Case 3: G is E x F. Using Lemma 3 and (21), G = E; x F. Apply
the hypothesis of the induction to F.
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In transforming regular expressions we may reconstitute the units; e.g.,
when E; and FE» are units of lengths ¢; and 45, F;1 not being initial and
neither being I, then E;FE, can be taken as a new unit, which is of length
£1 4+ £ and initial or not according as Fj is initial or not.

Lemma 5 For each s > 1: Each regular expression is reducible either to I
or else to a reqular expression not containing I as a unit, having initial units
only as earliest units, and having the form of a disjunction of one or more
terms of two kinds: a unit of length < s, or a reqular expression composed
of units all of length > s.

One can always take the number of terms of the second kind to be one,

since a disjunction of terms of the second kind is a term of the second kind
(cf. (2) and (3)).
Proof For s = 1, Lemma 5 coincides with Lemma 4. Now take a fixed
s > 2, and suppose that after applying Lemma 4 we have a regular expres-
sion G of the second type there. Transformation of G by any of (1)—(11),
which include all individual transformation steps used in what follows, pre-
serves this type. This enables us below to reconstitute F1Fs ... E,,, where
Ey, ..., E, are units, as a new unit. Now we show by induction on the
number n of units in G, that G can be transformed into a disjunction of
terms of the two kinds for Lemma 5.

Basis: n = 1. Then G is of the first or second kind according as its length
1s < s or > s.

Induction step: n > 1.

Case 1: Gis F V F. Then E and F will each be of the second type
of Lemma 4. So by the hypothesis of the induction, £ and F' are
both expressible as disjunctions of terms of only the two kinds.
Thence so is £ V F, by combining the two disjunctions as one
disjunction.

Case 2: G is EF. Using the hypothesis of the induction, (6) and (7),
EF is then equal to a disjunction of terms each of which is of one
of the four types

EIFI EIIFII EIIFI EIFII

where ’ identifies a factor (originally a term of the disjunction
for E or for F) of the first kind, ” of the second kind. By the
reasoning of Case 1, it will suffice to show that each of these four
types of products is expressible as a disjunction of terms of the
two kinds.
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But E'F' can be reconstituted as a unit, and according as this
new unit is of length < s or > s, E'F' becomes of the first or of
the second kind.

The product E”F" is of the second kind.

Now consider E"F'. Using (4)—(6), the F' can be moved pro-
gressively inward until finally F’ occurs only in parts of the form
HF' where H is a unit of length > s. Each such part can be
reconstituted as a unit of length > s+ 1, so that E”F’ becomes
of the second kind.

For E'F" we proceed similarly, using (4) (from right to left), (7),
and (10) followed by (7) and (4).

Case 3: G is E x F. Applying to E * F successively (11) and (9),
ExF=FV EFV E’FV ...V E~'FV Ex*EFV EFV
E?F vV ...V E*"'F). Since E*F, ..., E°"'F are simply repeated
products, by the method of Case 2 (repeated as necessary) each
of F,EF,E?F,...,E° 'F is expressible as a disjunction of terms
of the two kinds. Now consider E?; by taking the disjunction
for E given by the hypothesis of the induction, and multiplying
out ((6) and (7)), we obtain a sum of products of s factors each
as in Case 2 we obtained a sum of products of 2 factors each.
A product in which the factors are all of the first kind can be
reconstituted as a unit, which will be of length > s since the
number of the factors is s, so it becomes of the second kind. All
other types of products which can occur include a factor of the
second kind, so by the treatment of the three types of products
E"F", E"F' and E'F" under Case 2 (repeated as necessary),
each of these becomes of the second kind. So E* (after suitable
reconstitution of units) becomes of the second kind. Now by the
treatment of the two types of products E”F" and E"F' under

Case 2, E(F vV EF VvV E?F Vv ... V E°'F) and hence
E*+xES(F vV EF V E?F vV ... V E°*'F) become of the second
kind.

a

Lemma 6 FEach regular expression is reducible without reconstituting the
units to a disjunction of one or more terms of the form FE;F; where each E;
is a unit and F; is empty (then E;F; is E;) or regular (then E; is non-initial).

Proof For a regular expression G of the second type of Lemma 4, one can
see, by induction on the number n of units in GG, that G can be transformed
(using only (4), (6), (10)) into a disjunction of terms of the two kinds for
Lemma 6. O
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7.3 Representability of regular events

A k x £ table is prepositive (positive), if it describes a prepositive definite
event 6.4, i.e., if it is not initial and either £ = 1 or there is a 1 in its lowest
row (a positive definite event 5.1, 6.3, i.e., if there is a 1 is some row). A
set of tables is prepositive (positive), if every table of the set is prepositive
(positive).

Theorem 3 7o each regular event, there is a nerve net which represents
the event by firing a certain inner neuron at time p + 2, when started with
suitable states of the inner neurons at time 1. If the event is describable by
a prepositive and positive regular set of tables, the representation can be by
a net started with all inner neurons quiet.

Proof We begin by establishing the theorem for a regular event described
by a term G of the second kind for Lemma 5 with s = 2. We use induction
on the number n of units in G.

We will arrange that the neuron (call it the output neuron) which is
to fire at p + 2 exactly if the event occurs ending with time p shall be of
threshold 1 impinged on by only excitatory endbulbs (as in Figure 3), and
shall have no axons feeding back into the net.

Basis: n = 1. We construct a net to represent (the event described by) G
by the method of proof of Theorem 1 Corollary 1 if G is prepositive
(a fortiori positive, since £ > s > 1), and otherwise this with the first
method of 6.4 (with a neuron of Figure 16 or Figure 19) which makes
the event prepositive (so positive) as an event on k+ 1 neurons, so the
representation is by firing at time p 4+ 2 in both cases.

Induction step: n > 1.

Case 1: G is F V F. By the hypothesis of the induction, there are
nets which represent £ and F', respectively, each in the manner
described, say with respective output neurons P and (). To rep-
resent £/ V F, we “identify” P and (), i.e., we replace them by a
single neuron (call it P) having all the endbulbs which impinged
separately on P and on @; and of course we similarly identify
the input neurons Ny, ..., Ni. The resulting net is diagramed in
Figure 22. The box marked £ stands for the net for F except for
its input neurons and output neuron. The heavy line leading to
P from this box represents the axons which formerly led to the
output neuron P in the net for F.

Case 2: G is EF. Consider the expression E’ which is obtained from
E by altering each unit to make it refer to one new input neuron
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Figure 22 E V F

Figure 23 EF

Figure 24 ExF
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N1 required to fire at the second moment of each earliest unit
(but otherwise not affecting the occurrence or non-occurrence of
the respective definite events); by the hypothesis that the units
are of length > 2, there is a second moment. Then E’ is of the sec-
ond kind for Lemma 5 with the same number of units as F, since
the alteration gives a regular expression with the same structure
in terms of its respective units under the three operations. So
by the hypothesis of the induction we can represent E' and F
by nets as described. However we simplify the construction by
leaving out the neuron of Figure 16 in the case of each earliest
non-prepositive unit of E’ (this unit is non-initial, by one of the
properties of G secured in Lemma 5). Now the net for EF is
obtained by identifying the new input neuron Ny, in the net for
E'" with the output neuron Q of the net for F', besides of course
identifying the input neurons N1, ..., N} for the two nets, and
taking as output neuron the output neuron P for E’ (Figure 23).
The event E’ is positive, since Ny 1 is required to fire at its sec-
ond moment. No hallucination is possible as a result of leaving
out the neurons of Figure 16 for earliest non-prepositive units of
E', since Ni41 (required for those units to fire at their second
moment) cannot fire until two moments after an occurrence of F,
by the construction of the net for F'. These omissions of neurons
of Figure 16 are to give the last statement of the theorem.

Case 3: G is E « F. The nets for E' and F are combined as in
Figure 24.

O

Conclusion This completes the induction to show the representability of
a regular event described by a term G of the second kind for Lemma 5
with s = 2. Terms of the first kind are treated as under the basis (but
using Figure 16 additionally in the case with £ = 1 of a prepositive non-
positive term), and the disjunction of terms (if there are more than one) as
under Case 1. The case the event is T has already been treated in Section 5
(Figure 8).

Discussion If the original regular expression for the event is already in
terms of units each of length > 2, the proof of the theorem is straightforward
and yields nets of complexity corresponding very well to that of the regular
expression. (For simplification of the nets representing the units, possibly at
the cost of increasing the lag above 2, cf. the discussion following Theorem 1
Corollary 1.) The difficulty which calls for complicated reformulation via
the proof of Lemma 5 arises when we try to combine in succession the
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representations of events some of them shorter than the time necessary for
the net to organize a representation of the preceding event by the firing of
a single neuron; the solution by Lemma 5 consists in considering grosser
events before trying to combine the representations.

Theorem 4 To each event constructed from reqular events by the operations
&, Vv, —, there is a nerve net which represents the event by firing a certain
inner neuron at time p + 2, when started with suitable states of the inner
neurons at time 1.

The proof will follow. By Corollary Theorem 5 below, all representable
events are regular. So by Theorem 4 and 5 together, combinations of regular
events by &, V and — are regular, which with Theorem 3 includes Theorem 4.
We have not defined & and — as operations on sets of tables, so EF and
FE x F cannot be used after the application of & or —.

Proof of theorem 4 To each of the regular events which enter in the
construction by &, V and — of the given event, consider a regular expres-
sion for the regular event. Apply to this Lemma 5 with s = 2, and to the
resulting terms of the second kind Lemma 6. Thus we obtain an expres-
sion for the given event by the operations &, V and — from components
E\Fy,...,E,F,, where each E; is an expression for a definite event and F;
is a regular expression (then the definite event expressed by FE; is non-initial
and of length > 2) or empty. Let E! come from E; as E' come from E in the
proof of Theorem 3 Case 2 if F; is regular, and be the result of introducing an
extra input neuron Ny ; to fire at the first moment of E; if F; is empty. Now
consider (as an event on the k+m neurons N1, ..., Ng, Ngy1,---, Ngrm) the
same combination of EY, ..., E! as the given event is of F1 Fy, ..., Ep, Fy,. If
this combination of EY,. .., E], when treated as a definite event in the sense
of Section 5 (not Section 6) of length equal to the greatest of the lengths of

1s-- -, Ey, is not positive, we make it so by adding “& E;,  ,” where E]
refers to the firing of a neuron Ny i,,+1 at time p. Now use the method of
net construction for Theorem 1 Corollary 1 to construct a representing net
for this event on k 4+ m or k + m + 1 neurons. Then for each ¢ for which
F; is regular, identify Ny; with the output neuron of a net given by Theo-
rem 3 representing F;; and for each i for which F; is empty make Ny ; an
inner neuron required to fire at time 1, as in Figure 16 if E; is non-initial or
1 =m + 1, and as in Figure 19 if E; is initial. O

7.4 Problems

Numerous problems remain open, which the limited time we have given to
this subject did no permit us to consider, although probably some of them
at least can be solve quickly.
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Is there an extension of Theorem 1 Corollary 2 to all regular events?

By the complete set of tables for an event we mean the set of tables all of
them initial which describes the event. By the minimal set of tables for an
event we mean the set of tables describing the event each of which has the
property that neither a proper upper segment of it, nor itself if it is initial,
as a non-initial table describes an occurrence of the event. The complete
set of tables for a regular event is regular, by Theorem 3 and the proof of
Theorem 5. Is the minimal set necessarily regular? If so, can a regular
expression for it be obtained effectively from a regular expression for the
complete set?

What kinds of events described originally in other terms are regular? We
have only some examples of translation from (A) to (B) (end 7.1), and one
of an indirectly established closure property of regular events (Theorem 4
with Theorem 5).

Given a regular expression for an event, it may be difficult to see of
what the event consists. We know cases in which a very complicated regular
expression is equivalent to a much simpler one, e.g., some arising via the
proof of Theorem 5. Are there simple normal forms for regular expressions,
such that any regular expression is equal, or is equivalent, to one in a nor-
mal form? Is there an effective procedure for deciding whether two regular
expressions are equal, or are equivalent?

Our reason for introducing the regular events, as given by regular sets of
tables described by regular expressions, is Theorem 5, which we discovered
before Theorem 3. By using the notion of regular events, we thus demon-
strate that a McCulloch-Pitts nerve net can represent any event which any
other kind of finite digital automaton (in the sense to be developed in detail
in Section 8) can represent. This of course includes a number of special
results which McCulloch and Pitts obtained for alternative kinds of nerve
nets, but is more general. The way is open to attempt similarly to verify
the like for other kinds of “cells” in place of neurons, or to seek some char-
acterization of the properties of the cells in order that aggregates of them
have the capacity for representing all representable (i.e., all regular) events.

PART II. FINITE AUTOMATA

8 The Concept of a Finite Automaton

8.1 Cells

Time shall consist of a succession of discrete moments numbered by the
positive integers, except in Section 10 where all the integers will be used.
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We shall consider automata constructed of a finite number of parts called
cells, each being at each moment in one of a finite number > 2 of states.

We shall distinguish two kinds of cells, input cells and inner cells.

An input cell admits two states, 0 and 1 (or “quiet” and “firing”), which
one is assumed at a given moment being determined by the environment.

The restriction to 2 states for input cells makes the notion of an input
to the automaton coincide with the notion of an input to a nerve net as
formulated in Sections 4 and 6.3. But the present theory would work equally
well with more then 2 states. Nothing would be gained, however, as p cells
admitting each admitting 2 states could be used to replace one cell admitting
any number g (2 < g < 2P) of states 0,1,...,qg — 1, where if ¢ < 2P we
could either consider only inputs in which states ¢q,...,2P7 — 1 do not occur
or identify those states with the state ¢ — 1 in all the operations of the
automaton.

The number of states of an inner cell is not restricted to 2, and different
inner cells may have different numbers of states.

The state of each inner cell at any time ¢ > 1 is determined by the states
of all the cells at time ¢ — 1. Of course it may happen that we do not need
to know the states of all the cells at time ¢t — 1 to infer the state of a given
inner cell at time ¢. Our formulation merely leaves it unspecified what kind
of a law of determination we use, except to say that nothing else than the
states of the cells at t — 1 can matter.

For time beginning with 1, the state of each of the inner cells at that
time is to be specified (except in Section 11).

A particular example of a finite automaton is a McCulloch-Pitts nerve
net (Part I). Here all the cells admit just 2 states. Another example is
obtained by considering inner neurons with “alterable endbulbs” which are
not effective unless at some previous time the neuron having the endbulb
and the neuron on which the endbulb impinges were simultaneously fired.
A neuron with 7 such alterable endbulbs admits 2"t' states. Many other
possibilities suggest themselves.

8.2 State

With & input cells Nq,..., N (k > 0), and m inner cells My,..., M,
(m > 1) with respective numbers of states si,..., Sy, there are exactly
2k .51 ... s, possible (complete) states of the automaton. We can consider
each states as a combination of an external state, of which there are 2F
possible, and an internal state, of which there are s -...- s, possible.

The law by which the states of the inner cells at time ¢t > 1 are determined
by the states of all the cells at time ¢ — 1 can be given by specifying to each
of the complete states at time ¢ — 1 which one of the internal states at time
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t shall succeed it.

We could indeed consider the entire aggregate of m internal cells as
replaced by a single one admitting s; - ... - s, states. We shall not take
advantage of this possibility, because we have in view applications of the
theory of finite automata in which the cells have certain simple properties
and are connected in certain simple ways.

We could also (but shall not) get along with a single input cell, by
scheduling the inputs on the k original input cells to come in successively
in some order on the new one, which would alter the time scale so that &
moments of the new scale correspond to 1 of the original. Events referring
to the new time scale could then be interpreted in terms of the original.

Now let us call the states aq,...,a, where r = 28 . sy . ... . s, and the
internal states by, ..., b, where ¢ = s1-...-s,,. Let the notation be arranged
so that the internal state at time 1 is bi.

With the internal state at time 1 fixed, the state at time p is a function
of the input over the time 1,...,p (including the value of p, or when k = 0
only this).

So each of the states ai,..., a, represents an event, which occurs ending
with time p, if and only if the input over the time 1, ..., p is one which results
in that one of ai,..., a, being the state at time p. Thus the automaton can
know about its past experience (inclusive of the present) only that it falls
into one of r mutually exclusive classes (possibly some of them empty).

Similarly an internal state at time p + 1, or a property of the complete
state at time p, or a property of the internal state at time p+1, or a property
of the internal state at time p 4+ s for an s > 1 which does not depend on
the input over the time p+1,...,p+s—1, represents an event. Thus to say
that the state at time p has a certain property is to say that the state then is
one of a certain subclass of the r possible states, so that the past experience
falls into the set sum (or disjunction) of the representative classes of past
experiences which are separately represented by the states of the subclass.

What sorts of events can be represented? As the concept of input is
the same as in Part I, we can use the notion of “regular event” which was
introduced in Section 7. The following theorem, together with Theorem 3
referring to a special kind of finite automaton, answer the question.

9 Regularity of Representable Events
Theorem 5 In any finite automaton (in particular, in a McCulloch-Pitts
nerve net), started at time 1 in a given internal state by, the event repre-

sented by a given state existing at time p s reqular.

Proof Since the initial internal state is specified, there are 2* possible
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initial states (the results of combining the given initial internal state by
with each of the 2¥ possible external states at time 1).

So if we can show that the automaton starting from a given state at
time 1 will reach a given state at time p, if and only if a certain regular
event occurs ending with time p, then the theorem will follow by taking the
disjunction of 2% respective regular events, which is itself a regular event.

O

Given any state a at time ¢t — 1 (¢ > 2), exactly 2* states are possible at
time ¢, since the internal part of the state at time ¢ is determined by a, and
the external part can happen in 2¥ ways. Let us say each of these 2* states
is in relation R to a.

The next part of our analysis will apply to any binary relation R defined
on a given set of r > 1 objects ay,...,a, (called “states”), whether or not
it arises in the manner just described.

Consider any two a and @ of the states, not necessarily distinct. We
shall study the strings of states dyd,—1...d; (p > 1) for which d, is a, d4
is @, and for each ¢ (¢t = 2,...,p) d¢ is in relation R to d;—1 (in symbols,
d¢ R dy—1); say such strings connect a to a.

We say a set of strings is “regular” under the following definition (chosen
analogously to the definition of “regular” sets of tables in 7.1).

The empty set and for each i (¢ = 1,...,r) the unit set {a;} having as
only member a; considered as a string of length 1 are reqular. If A and B
are regular, so is their sum, written A V B. If A and B are regular, so is the
set, written AB, of the strings obtainable by writing a string belonging to
A just left of a string belonging to B. If A and B are regular, so is the sum,
written A x B, for n = 0,1,2,... of the sets A... AB with n A’s preceding
the B.

Lemma 7 The strings dp...d; connecting a to a constitute a regular set.
Proof of Lemma, by induction on r.

Basis: r = 1. Then @ is a. If aRa (i.e., if R is an irreflexive relation), the
set of the strings connecting a to a is the unit set {a}, which is regular.
If aRa, then the set is {a, aqa, aaq,...}, which is regular, since it can
be written A % A where A = {a}.

Induction step: r > 1.
Case 1: a = a. In this case any string connecting a to @ is of the

form
a—>a—a—...a—aq,
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where the number of a —’s is > 0 and each — represents inde-
pendently the empty string (this being possible only if aRa) or
a non-empty string without any a in it. Let ef,..., ey (g > 0) be
the states e such that aRe but e # a, and by,...,by (h > 0) the
states b such that bRa but b # a. Now any non-empty string
represented by an — must start with one of eq,...,e, and end
with one of by,...,by. For each pair e;b;, by the hypothesis of
the induction the set of the strings connecting e; to b; without
a in it is regular. Say Bi,..., By, are these regular sets; and let
A be {a}. Now if aRa, the set of the possible strings a — is
AV A(B1 V...V Bg,) (which reduces to A if gh = 0 or all the
B’s are empty); and if aRa, it is A(B1 V...V Bg) (which is empty
if gh = 0 or all the B’s are empty). Let this set be C. Then the
set of the strings leading from a to a is C * A (which reduces to
A if C is empty).
Case 2: a # a. Now we have instead

a—a—a—...a—a~a,

where the number of —’s is > 0 and each — and the ~» represents
independently the empty string or a non-empty string without
any a in it. If D is the set of the possible strings a ~», and
& = {a}, the set of the strings connecting a to @ is C * DE, which
is regular.

a

Proof of theorem (completed) We need to show that, for a given state
a and each of 2¥ states @, the state is a at time p and @ at time 1, if and
only if a certain regular event occurs over the time 1,...,p.

By the lemma, the set of the strings which can connect a to @ is regular.
Consider an expression for this regular set in terms of the empty set and the
sets {a;} as the units (cf. 7.2). In this expression let us replace each unit
{a;} by the unit set consisting of the k£ x 1 table which (if £ > 0) describes
the external part of the state a;, labeled initial or non-initial according to
whether that unit {a;} was earliest or not. Each empty set as unit we
replace by itself (but write it 7). There results a regular expression. The
state changes from @ at time 1 to a at time p, exactly if the event described
by this regular expression occurs over the time 1,...,p. O

Corollary The event represented by each of the following is likewise reg-
ular: an internal state at time p + 1, a property of the state at time p, a
property of the internal state at time p + 1, a property of the internal state
at time p+ s for an s > 1 which does not depend on the input over the time
p+1,....p+s—1.
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Proof An event represented by a property of the state at time p is the
disjunction of the events represented at time p by the states which have that
property. The other modes of representation reduce to this via Lemma 1
in 5.3 (which applies here just as to McCulloch-Pitts nerve nets). O

Discussion The regular expressions obtained by the proof of Theorem 5
have only initial units or I as earliest units and are built of units of length 1
(and likewise after simplification by Lemma, 2). It is clear in many examples
that great simplifications can be obtained by use of equivalences (7.1); but
we have made no study of the possibilities for proceeding systematically
with such simplifications.

The study of the structure of a set of objects ai,...,a, under a binary
relation R, which is at the heart of the above proof, might profitably draw
on some algebraic theory.

It is of course essential to our arguments that the number of cells and
the number of states for each be finite, so that the number of complete
states is fixed in advance. A machine of Turing [TUR 36] is not a finite
automaton, if the tape is considered as part of the machine, since, although
only a finite number of squares of the tape are printed upon at any moment,
there is no preassigned bound to this number. If the tape is considered as
part of the environment, a Turing machine is a finite automaton which can
in addition store information in the environment and reach for it later, so
that the present input is not entirely independent of the past. Whether this
comparison may lead to any useful insights into Turing machines or finite
automata remains undetermined.

APPENDICES

10 Representability in a Finite Automaton with
an Infinite Past

Theorem 6 An event E is representable by a property of the state at time
p of a finite automaton with an infinite past, only if E is definite.

Proof With £ > 0 input cells, a complete input is generated by choosing
between the finite number 2* of possible inputs at time p, then between the
same number of possible inputs at time p — 1, etc. ad infinitum.

By a theorem of Brouwer [BRO 24],3 also given by Konig [KON 27], if

3Brouwer’s treatment is intended for readers acquainted with intuitionistic set theory,
and his main effort is to demonstrate the theorem intuitionistically.
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for each input it is determined at some finite stage (i.e., from only the part of
the input occupying the time p,...,p — u for some u > 0) whether an event
occurs or not, then there is a number n > 0 such that for any input whether
or not the event occurs is determined from only the part of it occupying the
time p,...,p — n. In this case the event would be definite of length n + 1.

Now consider an indefinite event F. Contraposing Brouwer’s theorem,
there is an input cgcics ... such that for every u > 0 it is not determined by

the part of it cg...c, for the time p,...,p — u whether E occurs or not.
Case 1: E does not occur for the input cgcicy . ... Then for each u there is
an input cgcfcy .. ., coinciding with cocica ... over the time p,...,p—u

and diverging from it at some earlier moment, for which £ occurs.

Suppose FE is represented by a property of the state a time p. Say the
states which have the property are ai, ..., a,, and those which do not
are Qpy41,---,qp.

Let S be the set of all the sequences of states dypdids ... compati-
ble with the present state being one of ay,...,a,; i.e., dg is one of
ag,...,ar, and each d; has as its internal part that which is deter-
mined by d;4+; being the state at the immediately preceding moment.
There are r1 choices for dg, at most r for di, at most r for ds, etc.

Any sequence of states dyodids ... which can be assumed for the input
cgcicy ... must belong to S, since E occurs for cfcfcy ..., and must in
its first w + 1 choices dg ... d, be compatible with cocics. .., i.e., the
external part of dg . ..d, must be the input cg ... c, over the last u+1
moments p,...,p — u in cgcicCs .. ..

By Brouwer’s theorem, if for each sequence dgdids ... belonging to S
there were a u such that dg. .. d, is incompatible with cgcico ..., there
would be an n such that for each dgdids ... belonging to S the part
do...dy, is incompatible with cpcics ..., contradicting the preceding
remark for u > n.

So there is an infinite sequence dgdids ... in S which is compatible
with cocicy.... But dg is one of the states ai,...,a,,, although F
does not occur for cgcice ..., contrary to our supposition that F is
represented by the state at time p being one of ay,...,a,,.

Case 2: E occurs for the input cocicy.... Applying to E the reasoning

applied in Case 2 to E, it is absurd that F, and hence that E, be
represented by a property of the state at time p.
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11 Representability with a Finite Past but an Ar-
bitrary Initial Internal State

Theorem 7 An event E is representable by a property of the state at time
p of a finite automaton started with an arbitrary internal state at time 1,
only if E is non-initial definite of length 1.

Proof Let E be an event not non-initial definite of length 1. Then there
is some input ¢ for the moment p such that whether or not F occurs is not
determined by c alone; i.e., different choices cf ... c;),_l and cf ... CZ"—1 of
the input over 1,...,p — 1 for p = p’ and p = p” together with c at p make
FE occur or not occur, respectively. Suppose F is represented by a certain
property of the state at time p for a given initial internal state b;. Consider
the inner states b’ and b” produced at times p’ and p” from the initial internal
state by by the inputs ¢} ...c;,_; and cf ... c)y_, respectively. Now at time
1 let the input be c and the internal state be b’ or b”, respectively. Then
the property of the state is possessed or not possessed, respectively. Thus
the property cannot represent E for both b’ and b” as initial internal state;
for one of them it gives a false result for p = 1 and c as input. O

12 Primitive Recursiveness of Regular Events

To illustrate that only logical and mathematical symbolism on the level of
number theory is necessary to express regular events, we state the follow-
ing theorem. The notion of relative primitive recursiveness is defined in
[KLE 52]. For conformity with the notation there, the time variables for
this theorem shall range over 0,1,2,... instead of 1,2,3,....

Theorem 8 For any regular event E referring to input neurons N1, ..., N,
the predicate E(p) (= E occurs ending with time p) is primitive recursive in
the predicates Ni(t),..., Ni(t).

Method of proof Using Theorem 3, E(p) is equivalent to the existence
of a certain kind of a string of states d, ... do (cf. Section 9). a

13 A Simple Example of an Irregular Event

Consider the event E described as follows: A fired at time u? for every u
such that u? < p and only at those times. In symbols, E(p) = (£)i<p[N(t) =
(Bu)y<pt = u?).

No finite automaton can represent F, and hence by Theorem 3 F is not
regular. For suppose F is represented by a property of the state at time p of
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a finite automaton (admitting states ai,...,a,); say the states which have
this property are aq,...,a,.

Consider any number s such that 2s > r;. Suppose N fires at times
1,4,9,...,5% and never thereafter. Then E occurs for p = 1,2,...,5% + 2s
(= (s+1)2 — 1) and for no greater p.

Consider the states di,ds,ds,... of the automaton at the times s +
1,52 + 2,82 + 3,.... Beginning with time s + 1, A never fires, so the
external state is constant. Thus each of the states di,ds, ds,... after the
first is determined by the immediately preceding one. So, since there are
only r states altogether, the sequence di, d2, ds, ... is ultimately periodic.

However, during the time s? + 1,...,s? + 2s the state must be one of
ai,...,ap, since E occurs for these values of p. Hence, since 2s > ry, the
period must already have become established (i.e., the first repetition in
di,ds, ds, ... must already have occurred) by the time s? + 2s. Hence the
state at time (s + 1)? is one of ai,...,qa,,, although E does not occur for
p=(s+1)2

It is not suggested that the event would be of any biological significance.
The example is given to show the mathematical limitations to what events
can be represented.
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