Tree k-grammar models for natural language
modelling and parsing

Jose L. Verdi-Mas, Mikel L. Forcada, Rafael C. Carrasco, and Jorge
Calera-Rubio *

Departament de Llenguatges i Sistemes Informatics
Universitat d’Alacant, E-03071 Alacant, Spain,
{verdu,mlf,carrasco,calera}@dlsi.ua.es

Abstract. In this paper, we compare three different approaches to build
a probabilistic context-free grammar for natural language parsing from
a tree bank corpus: (1) a model that simply extracts the rules contained
in the corpus and counts the number of occurrences of each rule; (2) a
model that also stores information about the parent node’s category, and
(3) a model that estimates the probabilities according to a generalized
k-gram scheme for trees with £ = 3. The last model allows for a faster
parsing and decreases considerably the perplexity of test samples.

1 Introduction

Context-free grammars are the customary way of representing syntactical struc-
ture in natural language sentences. In many natural-language processing appli-
cations, obtaining the correct syntactical structure for a sentence is an important
intermediate step before assigning an interpretation to it. Choosing the correct
parse for a given sentence is a crucial task if one wants to interpret the meaning
of the sentence, due to the principle of compositionality [1, p. 358], which states,
informally, that the interpretation of a sentence is obtained by composing the
meaning of its constituents according to the groupings defined by the parse tree.

But ambiguous parses are very common in real natural-language sentences
(e.g., those longer than 15 words). Some authors (e.g. [2]) propose that a great
deal of syntactic disambiguation may actually occurs without the use of any
semantic information; that is, just by selecting a preferred parse tree. It may
be argued that the preference of a parse tree with respect to another is largely
due to the relative frequencies with which those choices have lead to a success-
ful interpretation. This sets the ground for a family of techniques which use a
probabilistic scoring of parses to the correct parse in each case.

Probabilistic scorings depend on parameters which are usually estimated
from data, that is, from parsed text corpora such as the Penn Treebank [3].
The most straightforward approach is that of treebank grammars [4]. Treebank
grammars are probabilistic context-free grammars in which the probabilities that

* The authors wish to thank the Spanish CICyT for supporting this work through
project TIC2000-1599.

a particular nonterminal is expanded according to a given rule are estimated as
the relative frequency of that expansion by simply counting the number of times
it occurs in a manually-parsed corpus. This is the simplest probabilistic scor-
ing scheme, and it is not without problems. Better results were obtained with
parent-annotated labels [5] where each node stores contextual information in the
form of the category of the node’s parent. This fact is in agreement with the
observation put forward by Charniak [4] that simple PCFGs, directly obtained
from a corpus, largely overgeneralize. This property suggests that, in these mod-
els, a large probability mass is assigned to incorrect parses and, therefore, any
procedure that concentrates the probability on the correct parses will increase
the likelihood of the samples.

In this spirit, we introduce a generalization of the classic k-gram models,
widely used for string processing [6], to the case of trees. The PCFGs obtained
in this way consist of rules that include information about the context where
the rule is applied. One might call these PCFGs offspring-annotated CFGs (by
analogy to Johnson’s [5] parent-annotation concept).

2 A generalized k-gram model

Recall that k-gram models are stochastic models for the generation of sequences
$1, 82, ... based on conditional probabilities, that is:

1. the probability P(s1s2...s:| M) of a sequence in the model M is computed

as a product ppr(s1)par(s2|s1) - - - pa(se|sis2...s¢-1), and
2. the dependence of the probabilities pas on previous history is assumed to be

restricted to the immediate preceding context, in particular, the last k£ — 1
words: par(se|s1 ... se—1) = pr(Se|St—k+1 - - St—1)-

Note that in this kind of models, the probability that the observation s; is
generated at time ¢ is computed as a function of the subsequence of length k£ — 1
that immediately precedes s; (this is called a state). However, in the case of trees,
it is not obvious what context should be taken in to account. Indeed, there is
a natural preference when processing strings (the usual left-to-right order) but
there are at least two standard ways of processing trees: ascending (or bottom-
up) analysis and descending (or top-down) analysis. Ascending tree automata
recognize a wider class of languages [7] and, therefore, they allow for richer
descriptions.

Therefore, our model will compute the expansion probability for a given node
as a function of the subtree of depth k — 2 that the node generates!, i.e., every
state stores a subtree of depth k — 2. In the particular case k = 2, only the label
of the node is taken into account (this is analogous to the standard bigram model
for strings) and the model coincides with the simple rule-counting approach used
in treebank grammars. For instance, for the tree depicted in Fig. 1, the following
rules are obtained:

! Note that in our notation a single node tree has depth 0. This is in contrast to
strings, where a single symbol has length 1.

VP — V NP PP
NP — Det N
PP - P NP

PP
A NN

Det N P NP

Det N

Fig. 1. A sample parse tree of depth 3.

However, in the case k = 3, which will be called child-annotated model, the
expansion probabilities depend on the states that are defined by the node label,
the number of descendents the node and the sequence of labels in the descendents
(if any). Therefore, for the same tree the following rules are obtained in this case:

VPy nppp = V NPpet,n PPpnp
NPDet,N — Det N
PPpxp — P NPpet,~

where each state has the form Xgz, ..z . This is equivalent to performing a
relabelling of the parse tree before extracting the rules.

Finally, in the parent-annotated model (PA) described in [5] the states de-
pend on both the node label and the node’s parent label:

SVP — V VPNP VPPP
VENP — Det N
VEpPP —, P PPNP
PPNP — Det N

It is obvious that the £ = 3 and PA models incorporate contextual informa-
tion that is not present in the case k = 2 and, then, a higher number of rules
for a fixed number of categories is possible. In practice, due to the finite size of
the training corpus, the number of rules is always moderate. However, as higher
values of k lead to a huge number of possible rules, huge data sets would be nec-
essary in order to have a reliable estimate of the probabilities for values above
k = 3. A detailed mathematical description of this type of models can be found
in [§]

3 Experimental results

3.1 General conditions

We have performed experiments to assess the structural disambiguation per-
formance of k-gram models as compared to standard treebank grammars and
Johnson’s [5] parent-annotation scheme, that is, to compare their relative ability
for selecting the best parse tree. We have also used the perplexity as an indi-
cation of the quality of each model. To build training corpora and test sets of
parse trees, we have used English parse trees from the Penn Treebank, release
3, with small, basically structure-preserving modifications:

— insertion of a root node (ROOT) in all sentences, (as in Charniak [4]) to
encompass the sentence and final periods, etc.;

— removal of nonsyntactic annotations (prefixes and suffixes) from constituent
labels (for instance, NP-SBJ is reduced to NP);

— removal of empty constituents; and

— collapse of single-child nodes with the parent node when they have the same
label (to avoid having an infinite number of parse trees for some sentences).

In all experiments the training corpus, consisted of all of the trees (41,532) in
sections 02 to 22 of the Wall Street Journal portion of Penn Treebank, modified
as above. This gives a total number of more than 600,000 subtrees. The test set
contained all sentences in section 23 having less than 40 words.

3.2 Structural disambiguation results

All grammar models were rewritten as standard context-free grammars, and
Chappelier and Rajman’s [9] probabilistic extended Cocke-Younger-Kasami pars-
ing algorithm was used to obtain all possible parse trees for each sentence in the
test sets and to compute their individual and total probabilitites; for each sen-
tence, the most likely parse was compared to the corresponding tree in the test
set using the customary PARSEVAL evaluation metric [10, 11, p. 432] after dean-
notating the most likely tree delivered by the parser. PARSEVAL gives partial
credit to incorrect parses by establishing three measures:

— labeled precision (P) is the fraction of correctly-labeled nonterminal brack-
eting (constituents) in the most likely parse which match the parse in the
treebank,

— labeled recall (R) is the fraction of brackets in the treebank parse which are
found in the most likely parse with the same label, and

— crossing brackets (X) refers to the fraction of constituents in one parse cross
over constituent boundaries in the other parse.

The crossing brackets measure does not take constituent labels into account and
will not be shown here. Some authors (see, e.g. [12]) have questioned partial-
credit evaluation metrics such as the PARSEVAL measures; in particular, if one

wants to use a probability model to perform structural disambiguation before
assigning some kind of interpretation ot the parsed sentence, it may well be
argued that the exact match between the treebank tree and the most likely tree
is the only possible relevant measure. It is however, very well known that the
Penn Treebank, even in its release 3, still suffers from problems. One of the
problems worth mentioning (discussed in detail by Krotov et al. [13]) is the
presence of far too many partially bracketed constructs according to rules like
NP — NN NN CC NN NN NNS, which lead to very flat trees, when one can,
in the same treebank, find rules such as NP — NN NN, NP —- NN NN NNS
and NP — NP CC NP, which would lead to more structured parses such as the
one in Fig. 2. Some of these flat parses may indeed be too flat to be useful for

NP
NP CC NP
N T~
NN NN NN NN NNS
Fig. 2.

semantic purposes; therefore, if one gets a more refined parse, it may or may not
be the one leading to the correct interpretation, but it may never be worse than
the flat, unstructured one found in the treebank.

For this reason, we have chosen to give, in addition to the exact-match figure,
the percentage of trees having 100% recall, because these are the trees in which
the most likely parse is either exactly the treebank parse or a refinement thereof
in the sense of the previous example.

Here is a list of the models which were evaluated:

— A standard treebank grammar, with no annotation of node labels (k=2),
with probabilities for 15,140 rules.

— A child-annotated grammar (k=3), with probabilities for 92,830 rules.

— A parent-annotated grammar (PARENT), with probabilities for 23,020 rules.

— A both parent- and child-annotated grammar (BOTH), with probabilities for
112,610 rules.

As expected, the number of rules obtained increases as more information
is conveyed by the node label, although this increase is not extreme. On the
other hand, as the generalization power decreases, some sentences in the test set
become unparsable, that is, they cannot be generated by the grammar. See table
below.

The results in table 1 show that

— The parsing performance of parent-annotated and child-annotated PCFG is
similar and better than those obtained with the standard treebank PCFG.

MoDEL| R P | fr—100%|EXACT|PARSED| t
k=2 |70.7%|76.1%| 10.4% |10.0%| 100% |57
k=3 |79.6%|74.3%| 19.9% |13.4%| 94.6% | 7

PARENT|80.0%(81.9%| 18.5% [16.3% | 100% (340

BotH |80.5%|74.5%| 22.7% [15.5%| 79.6% | 4

Table 1. Parsing results with different annotation schemes: labelled recall R, labelled

precision P, fraction of sentences with total labelled recall fr_;go%, fraction of exact

matches, fraction of sentences parsed, and average time per sentence in seconds.

The performance is measured both with the customary PARSEVAL metrics
and by counting the number of maximum-likelihood trees that (a) match
their counterparts in the treebank exactly, and (b) contain all of the con-
stituents in their counterpart (100% labeled recall, fr—190%). The fact that
child-annotated grammars do not perform better than parent-annotated
ones may be due to their larger number of parameters compared to parent-
annotated PCFG, which may make them difficult to estimate accurately
from currently available treebanks (only about 6 subtrees per rule in the
experiments).

— The average time to parse a sentence shows that child annotation leads to
parsers that are much faster. This is not surprising because the number of
possible parse trees considered is drastically reduced; this is, however, not
the case with parent-annotated models.

It may be worth mentioning that an analysis of parse trees produced by child-
annotated models tend to be more structured and refined than parent-annotated
and unannotated parses which tend to use rules that lead to flat trees in the sense
mentioned.

3.3 Perplexity results

We have also used the perplexity of a test sample S = {w1, ..., w5} as an indi-

cation of the quality of the model, PP = ﬁ ZEI log, p(w| M), where p(w;|M)

is the sum of the probabilities of all of the parse trees of the sentence w;. Since
unparsable sentences would produce an infinite perplexity, we have studied the
perplexity of the test set for linear combinations of two models M; and M; with
plw|M; — M;) = Ap(w|M;) + (1 — A)p(wi|M;). The mixing parameter A was
chosen, in steps of 0.05, in order to minimize the perplexity.

The best results were obtained with a mixture of the child-annotated (k = 3)
and the parent-annotated models with a heavier component (65%) of the first
one. The recall and precision of that mixture were respectively 82.1% and 81%
and the fraction of sentences with total labelled recall fr—_qgo% scored 22.2%,
similar to using both annotations models at the same time but covering all
the test set. The minimum perplexity PP,, and the corresponding value of A
obtained are shown in the table 2.

MIXTURE MODEL |PP, | A

k=2and k=3 |90.80.25
k = 2 and PARENT|108.7| 0.6
k=2and Bora | 94 |0.3
k = 3 and PARENT| 88 [0.65
Table 2. Mixture parameter \,, that gives the minimum test set perplexity for each
linear combination. The lowest perplexity was obtained with a combination of the k=3
and parent-annotation models. All mixture models covered all the set test.

4 Conclusion

We have introduced a new probabilistic context-free grammar model, offspring-
annotated PCFG, in which the grammar variables are specialized by annotating
them with the subtree they generate up to a certain level. In particular, we
have studied offspring-annotated models with & = 3, that is, child-annotated
models, and have compared their parsing performance to that of unannotated
PCFG and of parent-annotated PCFG [5]. Child-annotated models are related
to probabilistic bottom-up tree automata [7] . The experiments show that:

— The parsing performance of parent-annotated and child-annotated PCFG

are similar.

Parsers using child-annotated grammars are much faster because the number

of possible parse trees considered is drastically reduced; this is, however, not

the case with parent-annotated models.

— Child-annotated grammars have a larger number of parameters than parent-
annotated PCFG which makes it difficult to estimate them accurately from
currently available treebanks.

— Child-annotated models tend to give very structured and refined parses in-
stead of flat parses, a tendency not so strong for parent-annotated grammars.

— The perplexity of the test sample decreases when a combination of models
with child-annotated and parent-annotated is used to predict string proba-
bilities.

We plan to study the use of statistical confidence criteria as used in grammat-
ical inference algorithms [14] to eliminate unnecessary annotations by merging
states, therefore reducing the number of parameters to be estimated. Indeed,
offspring-annotation schemes (for a value of & > 3) may be useful as starting
points for those state-merging mechanisms, which so far have always started with
the complete set of different subtrees found in the treebank (ranging in the hun-
dreds of thousands). We also plan to study the smoothing of offspring-annotated
PCFGs and to design parsers which can profit from these.

References

1. A. Radford, M. Atkinson, D. Britain, H. Clahsen, and A. Spencer. Linguistics: an
introduction. Cambridge Univ. Press, Cambridge, 1999.

10.

11.

12.

13.

14.

L. Frazier and K. Rayner. Making and correcting errors during sentence com-
prehension: Eye movements in the analysis of structurally ambiguous sentences.
Cognitive Psychology, 14:178-210, 1982.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a
large annotated corpus of english: the penn treebank. Computational Linguistics,
19:313-330, 1993.

Eugene Charniak. Tree-bank grammars. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence and the Eighth Innovative Applications
of Artificial Intelligence Conference, pages 1031-1036, Menlo Park, 1996. AAAI
Press/MIT Press.

Mark Johnson. PCFG models of linguistic tree representations. Computational
Linguistics, 24(4):613-632, 1998.

Peter F. Brown, Vincent J. Della Pietra, Peter V. deSouza, Jenifer C. Lai, and
Robert L. Mercer. Class-based n-gram models of natural language. Computational
Linguistics, 18(4):467-479, 1992.

Maurice Nivat and Andreas Podelski. Minimal ascending and descending tree
automata. SIAM Journal on Computing, 26(1):39-58, 1997.

J.R. Rico-Juan, J. Calera-Rubio, and R.C. Carrasco. Probabilistic k-testable tree-
languages. In A.L. Oliveira, editor, Proceedings of 5th International Colloquium,
ICGI 2000, Lisbon (Portugal), volume 1891 of Lecture Notes in Computer Science,
pages 221-228, Berlin, 2000. Springer.

J.-C. Chappelier and M. Rajman. A generalized CYK algorithm for parsing
stochastic CFG. In Actes de TAPD’98, pages 133-137, 1998.

Ezra Black, Steven Abney, Dan Flickinger, Claudia Gdaniec, Ralph Grishman,
Philip Harrison, Donald Hindle, Robert Ingria, Frederick Jelinek, Judith Klavans,
Mark Liberman, Mitch Marcus, Salim Roukos, Beatrice Santorini, and Tomek
Strzalkowski. A procedure for quantitatively comparing the syntatic coverage of
english grammars. In Proc. Speech and Natural Language Workshop 1991, pages
306-311, San Mateo, CA, 1991. Morgan Kauffmann.

Christopher D. Manning and Hinrich Schiitze. Foundations of Statistical Natural
Language Processing. MIT Press, 1999.

John Carroll, Ted Briscoe, and Antonio Sanfilippo. Parser evaluation: A survey
and a new proposal. In Proceedings of the International Conference on Language
REsources and Evaluation, pages 447-454, Granada, Spain, 1998.

Alexander Krotov, Robert Gaizauskas, Mark Hepple, and Yorick Wilks. Com-
pacting the Penn Treebank grammar. In Proceedings of COLING/ACL’98, pages
699-703, 1998.

Rafael C. Carrasco, Jose Oncina, and Jorge Calera-Rubio. Stochastic inference of
regular tree languages. Machine Learning, 44(1/2):185-197, 2001.

