Chapter 7

How neural machine translation works

Juan Antonio Pérez-Ortiz

Universitat d’Alacant, Spain

Mikel L. Forcada

Universitat d’Alacant, Spain

Felipe Sanchez-Martinez

Universitat d’Alacant, Spain

This chapter presents the main principles behind neural machine translation sys-
tems. We introduce, one by one, key concepts used to describe these systems, so
that the reader achieves a comprehensive view of their inner workings and pos-
sibilities. These concepts include: neural networks, learning algorithms, word em-
beddings, attention, and the encoder—decoder architecture.

1 Introduction

The first thing you should know about neural machine translation (NMT) is that
it considers translation as a task involving operations on numbers performed
by mathematical systems called artificial neural networks: these systems take a
sentence and transform it into a series of numbers. They add some more num-
bers here (usually, thousands or millions of them), multiply by other numbers
there, perform a few additional, relatively simple, mathematical operations, and
eventually output a translation of the original sentence into another language.
Maybe you have always considered translation from a different perspective:
as an intellectual task that involves cognitive processes which can barely be ex-
plicitly enumerated and which take place in some deep areas of the human brain.

Juan Antonio Pérez-Ortiz, Mikel L. Forcada & Felipe Sanchez-Martinez. 2022.
How neural machine translation works. In Dorothy Kenny (ed.), Machine
/IIII translation for everyone: Empowering users in the age of artificial intelligence,
141-164. Berlin: Language Science Press.

https://doi.org/10.5281/zenodo.6760020

Juan Antonio Pérez-Ortiz, Mikel L. Forcada & Felipe Sanchez-Martinez

And you are indeed right! But the approximation currently carried out by com-
puters follows a completely different path: millions of mathematical operations
are performed in a fraction of a second to obtain a translation which may some-
times be labelled as adequate and may sometimes not. And it turns out that the
percentage of times they happen to be adequate has dramatically in the last few
years. But, historically, artificial neural networks were devised as a simplified
model of how natural neural networks such as our brains work, and the cognitive
processes carried out in it are also the result of distributed neural computation
processes which are not that different from the mathematical operations men-
tioned above.

This chapter will teach you the key elements of NMT technology. We will
start off by pointing out the connection between how translation could be car-
ried out in a human brain and how an NMT system undertakes it. This will help
us to introduce the basic concepts needed to get a comprehensive overview of
the principles of machine learning and artificial neural networks, which constitute
two of the cornerstones of NMT. After that, we will discuss the essential princi-
ples of non-contextual word embeddings, a computerised representation of words
with many interesting properties that, when combined through a mechanism
known as attention, will produce the so-called contextual word embeddings, a key
factor in the realisation of NMT. All these ingredients will allow us to present an
overall picture of the inner workings of the two most used NMT models, namely,
the transformer and the recurrent models. The chapter wraps up by introducing
a series of secondary themes that will improve your knowledge on how these
systems run behind the scenes.

2 An imperfect analogy between human translation and
NMT

To simplify the discussion a bit, let us make the radical approximation that trans-
lating a text is equivalent to translating each of its sentences independently of
each other. Let us now assume for a minute that translating a sentence is a two-
step process: the translator first determines the interpretation or meaning of the
whole source sentence and then produces in one go a sentence that allows more
or less the same interpretation, but is now written in the target language. But ev-
ery day translators encounter sentences that they have never seen before, such
as “The pencil slipped from my hand, stood up, and started talking to me”, and
can still translate them: how is that possible? Linguistics has formulated the an-
swer to this question as a principle, the principle of semantic compositionality:

142

7 How neural machine translation works

we build the interpretation of each sentence by combining the individual inter-
pretations of its component words, and the order in which they are combined is
dictated by the syntactic structure of the sentence in which words form phrases,
phrases form larger phrases, until one gets to the whole sentence. A translator
would then analyse this interpretation and perform the inverse procedure, but
in the target language. Of course, translators do not always process sentences as
a whole, particularly when they are long, and they may take shortcuts to avoid
building interpretations of whole sentences, but let us stick to this simplification
for a while.

NMT works in a similar way. When translating a sentence, during the en-
coding phase, the system assigns a neural representation, or embedding, to each
source-text word in isolation. These neural representations are then combined
to produce a similar representation, but this time at sentence level. As they are
combined, individual representations are also modified according to their con-
text; one could consider this a contextualised representation of interpretation
or meaning. Then, in the decoding phase, the sentence-level representations are
unravelled step by step to predict, one by one, the words in the target sentence.
The encoder and the decoder performing these two phases are artificial neural
networks interconnected into a single composite neural network.

As in the case of translators, current neural architectures do not really work
by considering the whole source sentence when producing each target word, but
rather have learned to pay attention to the relevant source words and the target
words already produced when they do so.

In the remaining sections of this chapter we will describe in more detail the
nature of these representations, the structure of the artificial neural networks
(which we may simply call "neural networks” from now on) that build and trans-
form them by selectively paying attention to what is important, and the ways
in which these artificial neural networks can be trained to do this task using
translation examples.

3 Artificial neural networks

To make sense of NMT, one needs to consider in more detail the artificial neural
networks (Goodfellow et al. 2016) that perform it: what they are made of, how
they work and how they are trained.

The name neural clearly invokes neurons and the way in which the nervous
systems of animals, and particularly people’s brains, work. Artificial neural net-
works are indeed made up of thousands or millions of artificial units that resem-
ble neurons whose activation (that is, how excited or inhibited they are) depends

143

Juan Antonio Pérez-Ortiz, Mikel L. Forcada & Felipe Sanchez-Martinez

on the signals they receive from other neurons and the strength of the connec-
tions carrying these signals.

3.1 Artificial neurons

Artificial neurons are the main building blocks of artificial neural networks.
These artificial neurons (we will simply call them neurons from now on) may
be seen as operating in two steps when updating their state or activation. Let us
imagine the simple situation in Figure 1 in which we study how the activation of
neuron S, is updated in response to stimuli received from neurons S;, Sy, and Ss.

/

Figure 1: Updating the state S, of artificial neuron 4 in response to stim-
uli received from neurons 1, 2 and 3.

1L1><Sl+’LU2><SQ+U73><S3>

In the first step, the activations of neurons S;, S, and S3, all of them connected
to neuron S, are added, but first each one is multiplied by a weight (w;, w, and
ws) representing the strength of their connections; these weights determine how
their activations are turned into actual stimuli for neuron S;. Weights may be
positive or negative. For instance, if weight w, is positive and the activation of S,
is high, it will contribute to exciting neuron S, (a positive stimulus); if, however,
wy, is negative, it will contribute to inhibiting neuron S, (a negative stimulus). In
general terms, neurons connected through positive weights tend to be simulta-
neously excited or inhibited, while neurons connected through negative weights
tend to be in opposite states. Coming back to neuron Sy, if we add the stimuli
coming from each neuron, we get a net stimulus:

x:W1X51+W2XSZ+W3XS3. (1)

The net stimulus x can take any possible value, negative or positive, but it
is not the activation of neuron S, yet. In the second step, neuron S, reacts to
this stimulus. In the example, when the stimulus is intermediate, that is, not too
positive or too negative, the neuron S, is very sensitive to it. However, when

144

7 How neural machine translation works

stimuli get large (no matter if positive or negative), changes in their values have
a lesser impact on the output, as the neuron is respectively largely inhibited or
largely excited.

In the example, neuron S, is such that its activation is bound between —1 and
+1. Figure 2 represents how neuron S, reacts to the stimulus in equation 1. The
reaction is represented with a function F(...), called the activation function, which
is applied to the stimulus; the result is the activation of Sy:

Sy = F(x) = F(wy X S; + wy X Sy + wy x S3). (2)
1 T T
F(x
05 | -
X
g
s
5 Or .
[(]
2
e
(®)
©
_05 - -
-1 I 1
_4 -2 0 2 4
stimulus x

Figure 2: How a neuron reacts to the total stimulus received.

As can be seen, for values around 0 in the horizontal axis the reaction is pro-
portional to the stimulus, but for large positive or negative stimuli, when the
neuron is very inhibited or very excited, the reaction is much smaller. For this
kind of neuron, the actual extreme values of —1 and +1 are never reached, no
matter how strong the total stimulus is. As said above, neuron S, in our exam-
ple is a specific type of neuron with an activation that varies between —1 and +1.
There are other kinds of activation functions with different ranges, but exploring
them is out of the scope of this chapter.

3.2 From neurons to networks

Neurons like the one discussed in the previous section may be connected to form
an artificial neural network that performs a specific computational task, to solve

145

Juan Antonio Pérez-Ortiz, Mikel L. Forcada & Felipe Sanchez-Martinez

Y @ -
0 ‘/‘%

hidden layer output layer

Figure 3: An artificial neural network with three three hidden neurons
and two output neurons. Each connection has a weight not shown in
the diagram. The three input neurons on the left are represented by
smaller circles to emphasise the idea that they directly emit the values
of the external input, but, unlike regular neurons, they do not compute
a stimulus or react to it via an activation function.

a specific problem. In a network, some neurons receive external stimuli which
act as inputs to the network (much as our eyes are connected to our brain and
feed it with images) and represent an instance of the problem to be solved; some
neurons, known as hidden neurons, receive stimuli only from other neurons; and
finally, some neurons, known as output neurons represent the solution to the
problem (a bit like the signals sent to the muscles of one of your hands to move
it in a specific way). Figure 3 shows an example of such a neural network with five
neurons; the network takes three inputs, which are fed to three hidden neurons,
which in turn stimulate two output neurons.

When building a neural network to solve a specific problem, one first needs
to determine its architecture: how many neurons it has, how they are connected,
which neurons receive external inputs and which neurons are designated as out-
put neurons; but the actual computation performed depends on the weights of all
of the connections in the network. How these weights are arrived at is explained
in Section 3.5. Suffice it to say here, that one nice feature of artificial neural net-
works is that they may be trained to perform a task from examples, that is, their
weights may be set to specific values by observing a set of solved examples, each
one made up of the values of input signals representing the problems, and the
values of the desired output activations representing the solutions.

146

7 How neural machine translation works

3.3 Layers of neurons

Imagine that you are an absolute beginner and want to learn some basic tech-
niques to paint landscapes in oils. A manual might teach you a step-by-step
over-simplified method with, for example, these four stages: drawing (a rough
composition is sketched in), colour distribution, drawing refinement, and finish
(when the final touches are made). The point here is not the number of stages
or the particular characteristics of each of them, but the fact that the whole pro-
cess flows in an incremental manner in such a way that the output of one step
becomes the input to the next one. Each step refines the previous outcome: the
outcome of the second step (colour distribution) is more of an actual landscape
painting than the outcome of the first one (drawing) and, similarly, the outcome
of the fourth stage (finish) can be conceptually considered as a better painting
than those resulting from any of the previous steps.

It turns out that neural computation benefits from a similar step-by-step in-
cremental process. Back in the sixties, researchers discovered that by including
multiple layers of neurons more complex tasks could be tackled. Each layer in a
multilayer neural network refines the output of the previous layer and takes a
bigger or smaller step towards the ultimate solution. The resulting architecture
would be similar to that in Figure 3 but with a number of additional hidden lay-
ers. One can clearly see this layered structure in the simple network in Figure 3:
computation, performed by two layers, takes place in two steps.

A model made of neurons organised in layers is referred to as a layered neu-
ral network. In spite of theoretical results proving that a two-layer network has
enough computational power to perform virtually any task (Hornik 1991), in the
real world, the computational power of neural networks appears to be correlated
with the number of layers; models with more than a few layers are often labelled
as deep neural networks and the corresponding training algorithms are known as
deep-learning algorithms.

As an example of the complexity that these deep models may reach, GPT-
3 (Brown et al. 2020), one of the largest neural networks released in 2020 in the
field of natural language generation, has 96 layers with tens of thousands of neu-
rons each, which results in around 175,000 million weights to be learned by the
training algorithm. Supercomputers were used to train the GPT-3 system, a pro-
cess that can take several weeks or even months, but it has been estimated that
learning the weights for such a model with a single powerful gaming desktop
personal computer would have taken more than 350 years.!

*OpenAl's GPT-3 language model: A technical overview” (2020). Retrieved from https://
lambdalabs.com/blog/demystifying-gpt-3.

147

https://lambdalabs.com/blog/demystifying-gpt-3
https://lambdalabs.com/blog/demystifying-gpt-3

Juan Antonio Pérez-Ortiz, Mikel L. Forcada & Felipe Sanchez-Martinez

3.4 Neural machine translation

If we manage to represent a source sentence as a set of inputs to a neural network,
and we can interpret the neural network’s outputs as a target sentence, we have
a neural machine translation (NMT) system. NMT first processes the words in the
source sentence. Fach time a source word is ingested by the encoder part of the
neural network, the activations of sets of specific neurons in the network change.
When the whole source sentence has been processed, the decoder part of the
network starts its work. It has been trained to provide, step by step, a probability
score for each possible target word in the translation, given the target words it
has already output. This is similar to how predictive keyboards in contemporary
smartphones work, but, as we will see, word predictions in NMT also depend on
the source sentence, as they are meant to be a translation of it.

NMT systems are deep neural networks with architectures that will be dis-
cussed later in section 6. They have thousands of neurons and millions of weights
(or many more) which have to be trained by providing examples taken from a
parallel corpus containing millions of source sentences and their translations.
Mathematical representations of the words in a given sentence in the source lan-
guage are fed as inputs to the neural network and the words in the corresponding
target-language sentence are used to represent the desired output. As you might
expect, training a large network in reasonable time is computationally demand-
ing: one needs very powerful, specialised number-crunching hardware to train
the network by showing it the examples over and over again. On each iteration,
small changes are made to the weights in the network to improve its prediction
of target words.

3.5 Training neural networks

Training a neural network is the process of determining the weight of the connec-
tions between its neurons so that, given a training set of input—-output examples,
it produces an actual output which is as close as possible to that in the relevant
example.

Training starts with a set of random weights or with weights taken from a neu-
ral network solving a similar task. During training weights are modified in such
a way that the value of an error function (also known as a loss function), which
measures how much actual outputs deviate from the desired outputs, is made as
small as possible. Training algorithms (also called learning algorithms) repeatedly
compute small corrections (updates) to weights until the error function is mini-
mal or small enough for all examples in the training set, or a certain performance

148

7 How neural machine translation works

is observed in a different development set, which has been reserved or “held out”
for this purpose (see Section 7.2). The technical details of the training algorithm
are beyond the scope of this chapter; let us just say that it is usually based on
computing how much the error function varies when each weight is varied by a
fixed but very small amount (the gradient of the error function), and then vary-
ing each weight a bit in the direction in which it reduces the error function.? This
type of training is called gradient descent; it is not guaranteed to find the very
best weights, but it is likely that good candidates will be found. The intensity of
these weight variations is regulated by a parameter called the learning rate; this
learning rate is usually higher in the first steps of the training algorithm, but its
magnitude is made progressively smaller as the weights get closer to their final
values. Note that training neural networks is quite laborious: many examples
are necessary and they need to be presented many times to learn. This is often
due to limitations of the training algorithms, however, rather than to the lack of
capacity of a specific neural network to represent the solution to a problem.

Once the weights are determined, training stops (see Section 7.2) and the neu-
ral network can be used to obtain the outputs for new inputs which are not in-
cluded among the examples used during training.

3.6 Generalisation in neural networks

Generalisation is a fundamental cognitive process for humans and animals. It
allows us to use what we learned in the past in new situations which can be
regarded as similar but not identical to the situation in which learning originally
took place. A person does not need to relearn how to drive when entering a new
street or driving a new car. Similarly, generalisation happens when an organism
which already responds to a certain stimulus in a particular way responds to
similar stimuli in similar ways. Generalisation is also key to language learning:
young children soon learn to say sentences they have never heard before.

Neural networks may ideally generalise in the context of machine translation
by producing similar outputs when fed with similar inputs, independently of
whether they were included in the training set or not. One feature of neural
networks is the smoothness of the computations, meaning that if the input values
are slightly changed, the result of the formulas will not vary significantly.

In a broad sense, in order to achieve generalisation, similar sentences should
get similar representations, and as sentence representations will be obtained
from word representations, we may conclude that representing similar words

2Some of you may recognise here the mathematical concept of derivative of a function.

149

Juan Antonio Pérez-Ortiz, Mikel L. Forcada & Felipe Sanchez-Martinez

with similar numbers is a precondition for generalisation in neural language pro-
cessing.

The next section will delve into how we can end up with a convenient list of
neural representations for the words in a sentence that benefits from the smooth-
ness of neural networks so that, after training, the system is able to generalise
properly to sentences it has not seen before.

4 Word embeddings as vector representation of words

In the previous section we noted that neurons are usually arranged in layers in
such a way that the output of the neurons of one layer becomes the input to the
neurons of the following one. Interestingly, the output of the set of neurons in a
given layer constitutes a representation of the information they are processing
at that stage.

In the field of natural language processing, and as indicated above, the infor-
mation processed by neural networks is made up of words, and their represen-
tations within the network are usually referred to as embeddings (Mikolov et al.
2013). What makes these embeddings really useful is that those words with simi-
lar meanings or that usually co-occur in the same contexts end up having similar
embeddings. In order to better understand this, take a piece of paper and draw
a square with sides of about 10 centimetres. Now, take the words in the follow-
ing list and put them all on the square by following a criterion that places words
which are closer in meaning nearer each other than words with less related mean-
ings. If this concept of meaning closeness seems imprecise to you, you may place
the words based on their frequency of co-occurrence in sentences or paragraphs.
The words are: restaurant, red, garden, fountain, flower, tomato, balloon, waiters,
knife, flowers, menu, cooked, chromosome and consistently. Do this before reading
on.

The restriction imposed by means of the criterion of word meaning proxim-
ity implies that you have not been able to freely distribute the words on the
square. Probably, you have decided to group words such as restaurant, menu and
waiters, on the one hand, and words such as garden, flower and fountain, on the
other hand. There are, however, some doubtful cases: red is clearly a neighbour
of tomato, but it should be close to flower as well; a compromise solution would
be to put it somewhere in between, a little bit closer to tomato than to flower if
we acknowledge that red is not as essential to flowers as it is to tomatoes.

You may have noticed some clusters in your design: an island representing the
semantic field of restaurants and related things, and another island around the

150

7 How neural machine translation works

idea of gardens and orchards. There are some outliers on the list, especially the
word consistently, which seems in principle disconnected from the rest of words,
forcing us to put it as far as possible from all of them. Chromosome is another
isolated word, but as flowers and waiters use chromosomes to carry their genetic
information, it may be put somewhere in the middle of the line between these
words but at the same time not very close to red. See Figure 4 for a possible
solution that may not match yours exactly.?

In order to assign mathematical codes to the words in our list, let’s assign
coordinates to each word to reflect its position on the square. As we are in a
two-dimensional space, we need two coordinates for each word: the first coor-
dinate is a number that represents the distance to the left vertical side of the
square; the second coordinate is a number that represents the distance to the
bottom horizontal side of the square. The word restaurant could be assigned, for
example, the two numbers 0.25 and 1.1, and the word menu the numbers 0.6 and
1.3, close to restaurant as seen in Figure 4. These coordinate values can be rep-
resented using vector notation, which simply consists of writing the numbers as
a comma-separated list of values between brackets. The vectors corresponding
to restaurant and menu would therefore be [0.25, 1.1] and [0.6, 1.3], respectively.
Each of these vectors represents a possible word embedding for these two words.

Although it may not be completely obvious, considering embeddings made up
of two numbers instead of a single number boosts the possibilities of solving the
problem of placing words closer or farther apart as we have more freedom to sat-
isfy all the restrictions. In fact, moving from two dimensions to a higher number
of dimensions increases these possibilities even more. A five-dimensional repre-
sentation of a word could be, for example, [2.34,1.67,4.81,3.01,5.61]. NMT sys-
tems consider embeddings with hundreds of dimensions, and the input sentence
to be translated is represented by a collection of these vast word embeddings.

Word embeddings are learned using the very same algorithm used to learn the
weights of the neural network presented in Section 3.5. In fact, both the weights
and the embeddings are learned at the same time. Bearing in mind that the input
layer of a neural network involved in NMT usually consists of the embeddings
of the words in the input sentence, there is no need to limit ourselves to fixed
vectors. Instead, their values can be repeatedly updated during training in such
a way that the value of the error function is minimised.

5We have deliberately placed Figure 4 a few pages on, so that you do not see it before you
attempt the exercise.

151

Juan Antonio Pérez-Ortiz, Mikel L. Forcada & Felipe Sanchez-Martinez

4.1 Generalisation

As already discussed, for the network to be able to properly generalise, that is, to
be able to learn to translate and be capable of translating sentences never seen be-
fore, similar sentences should get similar representations. As sentence represen-
tations are obtained from word embeddings, we may conclude that representing
similar words with similar numbers is a precondition for generalisation in neu-
ral natural language processing. Following our example, words such as poured,
rained, pouring or raining should ideally share similar embeddings as all of them
are semantically similar; the codes for pouring and raining should also be closer
to words such as driving since the three of them are gerunds and may appear in
similar contexts; poured and rained should be neighbours as well because both
of them are past tenses. This is why we usually need many dimensions: we want
words to be close to each other in different ways or for different reasons, simul-
taneously.

4.2 Geometric properties of word embeddings

Word embeddings exhibit interesting properties that demonstrate that they rep-
resent semantic characteristics (or something related to semantics) of words. As
already explained, the embedding of a word consists of several real numbers, usu-
ally hundreds or thousands of them, and each of these numbers seems to capture
a certain aspect of the meaning of a word. For example, the word embedding
for Dublin should capture several semantic-related aspects of it: a city, the capi-
tal of Ireland, the place for the headquarters in Europe of several multinational
companies, etc.

Thanks to this specialisation of the different dimensions of the embeddings,
we can perform some arithmetic operations with the embeddings and obtain
meaningful results. These operations are simply additions and subtractions that
are straightforward to compute. Adding (or subtracting) two embeddings simply
consists of adding (or subtracting) the components of the vectors one by one;
for example, [1.24, 2.56, 5.23] +[0.12,1.12,0.01] = [1.36, 3.68, 5.24]. Below are two
examples of arithmetic operations with meaningful results performed on embed-
dings that NMT systems usually learn:

[king] — [man] + [woman] = [queen]
[Dublin] — [Ireland)] + [France] = [Paris]

where the square brackets refer to the embedding of a word, and with = we mean
that the resulting embedding after the operation is close to the embedding of the

152

7 How neural machine translation works

1.5

menu

knife
cooked
restaurant fountain
! tomato
red garden
flower
0.5 chromosome
cons\sfem‘l\/
0
0.5 1 1.5

Figure 4: Placement of words in a two-dimensional area in such a way
that related words are positioned close to each other, but far from
words they have less in common with.

word on the right-hand side of the example. This can be interpreted as indicating
that king is to man what queen is to woman, a male or female monarch; and Dublin
is to Ireland what Paris is to France, the capital of a country.

5 Contextual word embeddings through attention

Words do not always have the same meaning in every sentence. The embedding
of the word letter, for example, should not be the same when the word refers to
a character of an alphabet or when it refers to a document addressed to another
person. In fact, it may even be interesting for an NMT system to represent the
word with different embeddings depending on whether it refers to a love letter
or a complaint letter. The embeddings we introduced before are non-contextual:
they were computed by considering words that usually co-occur in sentences but
without taking into consideration the different meanings words may have.

In the NMT arena, attention plays an important role as it allows the neural
network to compute contextual word embeddings, that is, vector representations
of the words in a sentence computed in such a way that the representation ob-
tained for a word is adapted to its meaning in each particular sentence. Attention
is, once again, a concept which is implemented by means of mathematical oper-
ations conveniently learned by a training algorithm. In our context, attention is

153

Juan Antonio Pérez-Ortiz, Mikel L. Forcada & Felipe Sanchez-Martinez

similar, to the situation in which we pay attention to something or someone in
our everyday lives.

By conveniently using attention to concentrate on some words in the sentence,
the embedding vector corresponding to the word season, for example, will differ
between the sentences in examples 1 and 2 below:

1. The first episode will pick up right where the previous season left off.

2. Summer is the hottest season of the whole year.

In principle, it may sound as if the purpose of contextual word embeddings is
that the different meanings of a word get different representations, but, while this
will be usually true, the idea goes beyond this. The contextual word embeddings
for season in the sentences “Winter is the coldest season of the year in polar and
temperate zones”, “Summer is the hottest season of the whole year” and even
“Of the whole year, summer is the hottest season” will all be different, although
presumably closer to each other than the representation of season in “The first
episode will pick up right where the previous season left off”. These divergences
result from the fact that the words in the sentences or the order in which they
are placed differ. Remarkably, the two instances of the in each of our examples
will get two different contextual vectors because the context of each instance is
also different.

How are contextual embeddings mathematically computed through attention?
Given the sentence in example 2 above ("Summer is the hottest season of the
whole year”), the procedure starts by obtaining the non-contextual word embed-
dings that were introduced in Section 4. As the sentence has nine words, the
result is a collection of nine vectors which are the ingredients for the next step.
Now, in order to compute the contextual word embedding for the word season in
the sentence, an attention vector is mathematically produced by the neural net-
work. This attention vector will have nine percentages representing the degree
of attention that needs to be paid to each of the words in the sentence in order to
obtain the representation of the word season. The element at a certain position
in the vector corresponds to the attention to the word at that position in the sen-
tence. For example, an attention vector [25%, 8%, 10%, 15%, 25%, 8%, 2%, 0%, 7%|
would indicate that in order to compute a contextual vector representation of
the word season in the running sentence, the word embeddings for summer and
season will be equally highly relevant (together, they receive fifty percent of the
total attention), which makes sense as they are semantically connected to the
concept of a meteorological season. Notice that the preceding determiner gets

154

7 How neural machine translation works

some attention too (10%), which may be explained by the fact that it helps to
label season as a noun. The contribution of the verb (8%) to the contextual em-
bedding may also be described in terms of its contribution to marking the number
of season as singular. Note that the percentages always add up to 100%.

Determining how the attention vector is used in order to obtain a new em-
bedding that combines the original non-contextual embeddings to get a new em-
bedding is beyond the scope of this chapter. Suffice to say that the procedure
involves a specific sequence of mathematical operations and that the resulting
embedding will be located somewhere in between the original embeddings.

Following our running example, nine different attention vectors will be com-
puted for this sentence (one for each word) and then applied to the original non-
contextual embeddings in order to obtain a collection of nine new embeddings,
each one corresponding to a different word in the sentence. These new embed-
dings may be considered as contextual embeddings as they are influenced to
different degrees by the rest of the words in the sentence.

5.1 Many attention layers, better than one

Previously, in Section 3.3 of this chapter, we discussed the benefits of succes-
sively refining neural computations by exploiting models with different layers.
Consequently, it will come as no great surprise that in order to obtain more pre-
cise representations, the contextual embeddings just obtained may be combined
with new attention vectors to obtain yet another new embedding for each word.
As a real-life example, Turing Natural Language Generation (T-NLG), another
of the largest language models published in 2020, has 78 attention layers that
successively polish embeddings of 4,256 dimensions.* Recall that these represen-
tations, which are learned by applying many consecutive layers, are known as
deep representations.

5.2 Many heads, better than one

There is no reason to restrict ourselves to a single attention vector for each word
in each layer. For example, given the sentence “My grandpa baked bread in his
oven daily”, it could be interesting to have an embedding for oven which has
the flavour of grandpa to reflect that this oven belongs to an older person, and a
different embedding for oven with the flavour of bread to reflect what has been

*“Turing-NLG: A 17-billion-parameter language model by Microsoft”, 2020. Retrieved
from https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-
language-model-by-microsoft/

155

https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

Juan Antonio Pérez-Ortiz, Mikel L. Forcada & Felipe Sanchez-Martinez

cooked in it. A single attention vector would have to mix both flavours in a sin-
gle embedding containing too much heterogeneous information that could affect
negatively the search for a translation for the word represented by the embed-
ding. For this reason, some NMT systems obtain different attentions for each
word in each layer and use them to compute a number of different embeddings
for each word. Each of these embeddings is said to be computed by a different
head. T-NLG has 28 attention heads in each layer. Therefore, its last layer pro-
duces 28 different 4,256-dimensional embeddings for each word.

5.3 Contextual word embeddings in natural language processing

Embeddings are the cornerstone of NMT but they have also proved to be useful
in many other natural language processing applications such as sentiment analy-
sis and automatic summarisation. As an illustration, systems that automatically
classify as positive or negative the sentences in a text containing a product re-
view may work by first computing a collection of deep contextual embeddings
for each word in the sentence and then feeding these embeddings to a much
simpler neural network that will compute a number between 0 and 1 indicating
the degree of positiveness of the sentence (for example, 0.95 will indicate a de-
cidedly positive sentence, 0.2 a negative sentence, and 0.51 a neutral sentence).
These systems are usually trained with a corpus of sentences manually tagged
by humans. The part of the model that computes the embeddings is not neces-
sarily trained for a particular corpus as pre-trained models already trained with
millions of sentences are freely available for many languages.

6 Neural machine translation, at last

At this point, you are hopefully in a good position to understand how NMT
works, even if we describe its fundamentals in only a few sentences as we do
next. We will focus on two architectures: those of so-called transformer and re-
current neural networks.

6.1 Transformer: Attention-based encoder—decoder

Put simply, a transformer NMT system is composed of a module that computes
contextual word embeddings for each word in the source input sentence and a
second module which successively predicts each word in the target sentence. The
former module is called an encoder and the latter module is known as a decoder.
For predicting the words in the target language, the decoder pays attention to

156

7 How neural machine translation works

15%.)85%
000000 0000860 000000 000000
(sstarty) [The)

Figure 5: The encoder of a transformer-based neural machine transla-
tion system. The symbol start is usually prefixed to explicitly mark the
beginning of the sentence. The diagram also shows that first-layer em-
beddings for brown and fox contribute to different degrees to obtain
the embedding for fox in the second layer; similarly, the embedding
for brown in the last layer integrates information from all the embed-
dings in the second layer using different degrees of attention.

the embeddings of all the words in the source sentence as well as to the embed-
dings of the target words already generated. The whole architecture is called a
transformer (Vaswani et al. 2017). Figure 5 shows an example of a three-layered
encoder and the degrees of attention considered in order to compute an embed-
ding in the second layer and in the third one. Figure 6 depicts this encoder in an
extended diagram that also includes the decoder so that it represents the whole
transformer architecture.

A parallel corpus is used by the learning algorithm to obtain a set of weights,
embeddings and attention vectors for the transformer such that the training data
can be reproduced up to a certain degree and the system is able to generalise
beyond the sentences in the training set.

For example, assume that a transformer with one single head per layer is used
to translate the sentence “My grandpa baked bread in his oven daily” into Span-
ish. The encoder first produces a collection of eight embedding vectors. The de-
coder then computes an 8-dimensional attention vector such as [60%, 10%, 0%, 0%,

157

Juan Antonio Pérez-Ortiz, Mikel L. Forcada & Felipe Sanchez-Martinez

-

[TTITT] [TTTTT] [TTTTT]

Figure 6: A complete transformer-based neural machine translation
system translating a sentence. An enlarged version of the encoder can
be seen in Figure 5. Note how the prediction of zorro is obtained by
paying attention to the embeddings of the previous target words but
also to the embeddings corresponding to some of the input words com-
ing from the last layer of the encoder.

0%, 30%, 0%, 0%] and uses it to obtain a flavour of the source sentence that allows
it to obtain an embedding for the first word in the target sentence. Let us assume
that the system correctly generates the Spanish word mi. The decoder will then
compute a 9-dimensional attention vector such as [50%, 10%, 0%, 0%, 0%, 20%, 0%,
0%, 20%)] (the last percentage corresponds to the attention paid to the first word
in the target sentence) and use it to obtain an embedding for the second word in
the target sentence. The procedure will continue until the decoder generates a
special token that marks the end of the sentence.

The output of the decoder at each step is not exactly an estimation of the
embedding of the next word. Actually, an additional layer is added at the end of
the decoder to compute a vector of probabilities or likelihoods for each word in
the target-language vocabulary. Section 7.3 will discuss how these probabilities
can be used in order to obtain the sequence of words that result in the target-
language sentence.

6.2 Recurrent architectures

The transformer, as presented in the previous section, is the model used in most
current commercial NMT systems, but alternative neural models exist. Another
top model is the recurrent encoder-decoder model (Bahdanau et al. 2015). Simi-
larly to transformer-based models, there is an encoder that produces a collection

158

7 How neural machine translation works

f f f f

(coceees) (coceees) (coceeee) (oceeses)

@) (e)

Figure 7: Left-to-right submodel of the encoder of a recurrent neural
machine translation system, just after processed “<start> The brown”
and when about to processs “fox”.

of embeddings for the words in the input sentence and a decoder that uses atten-
tion to compute embeddings for each target word by integrating the information
from the input words and the already generated target words. The encoder and
decoder in the recurrent model, however, compute the contextual word embed-
dings in a local manner in such a way that the embeddings for the fifth encoded
word, for example, are based on the embeddings of the four first words, on the
one hand, and the embeddings of the next words, on the other hand. This is
achieved by traversing the input sentence from left to right and from right to
left; see Figure 7 for a diagram of this model showing only left-to-right process-
ing.

It is worth noting that the mathematical model used imposes some restric-
tions on the relevance given to the words around the word for which the con-
textual word embeddings are computed (in our example the fifth one), resulting
in a mechanism that specially focuses on the nearest words and tends to ignore
the representations of distant words. Similarly to the transformer, a final layer
at the end of the decoder computes a vector that gives the probability of each
target-language word being the word at the corresponding position in the output
sentence. Forcada (2017) describes in more detail the recurrent encoder—decoder
model and also discusses the kind of outputs that NMT produces.

159

Juan Antonio Pérez-Ortiz, Mikel L. Forcada & Felipe Sanchez-Martinez

7 Additional settings

7.1 Words and sub-words

According to what has been presented in this chapter, independently of whether
a transformer or a recurrent model is used, an embedding is obtained for each
word after training. Does this mean that we end up having an embedding for ev-
ery possible word in the language? Not really. Languages, specially those which
are highly inflected or agglutinative, may easily have hundreds of thousands or
even millions of different word forms. In order to understand why this poses a
challenge for NMT systems you should know that the number of word embed-
dings (which is referred as the vocabulary) conditions the number of weights in
the neural network and that large neural networks often struggle to generalise
to unseen data. The size of the vocabulary could be reduced by considering only
those word forms present in the training corpus but this usually still implies con-
sidering a substantial number of words and raises a new issue: when training is
finished and the NMT system undertakes the translation of new sentences con-
taining words not in the training set, these unseen words will make the model
perform clumsily and lose accuracy as every unknown word is assigned a single
non-contextual embedding reserved for this situation.

The solution engineers came up with is to split words into so-called sub-word
units. Ideally, these units should make linguistic sense and carry some compo-
nents of meaning; for instance, splitting demystifying as de- + -myst- + -ify- +
-ing surely makes more linguistic sense (and is therefore likely to be more help-
ful when it comes to performing machine translation) than splitting it as dem-
+ -ystif- + -yi- + -ng. But performing a linguistically sound splitting requires the
existence of a set of splitting rules and procedures for the language in question,
a resource that may not be available for many languages.

A commonly-used workaround is to automatically learn splitting rules by in-
specting large texts, such as one containing all the source or all the target sen-
tences in the training set. A popular approach?® is called byte-pair encoding (BPE)
(Sennrich et al. 2016), and starts with letter-sized units which are joined into
two-letter, three-letter, etc. units when they appear frequently in the corpus.®
Byte-pair encoding would probably identify a frequent -ing suffix in many verb

SThere are more advanced methods such as SentencePiece (Kudo & Richardson 2018), which
treats the whole text as a sequence of characters and performs word division (tokenization)
and sub-word division in one fell swoop.

*Byte-pair encoding was originally a text compression algorithm: frequent letter (byte) se-
quences would be stored once and replaced by short codes to reduce the total storage needed.

160

7 How neural machine translation works

forms (marching, considering) and chop it off, even for unseen forms (such as bart-
simpsoning); -ing would then be turned into a contextual embedding carrying its
atomic meaning.

7.2 Stopping criteria and metrics

As mentioned in section 3.5, in addition to a large training corpus, a small de-
velopment corpus is usually held out and not used for training. The purpose of
this corpus is to monitor the performance of the NMT system while it is being
trained, to decide, for instance, when training should stop. Training tries to min-
imise an error function (or, in NMT, actually maximise the probability of the
target sentences in the training corpus). One possible problem that may occur is
that training too deep on the training corpus hurts generalisation as the neural
network ends up memorising the example translations too much. This is where
the development corpus comes into play: after a certain number of iterations or
steps of the training algorithm, the source sentences in the development corpus
are translated with the neural network and the output is automatically compared
to the desired target sentences in the corpus using simple approximate automatic
evaluation metrics (see Rossi & Carré 2022 [this volume]), the most common of
which is BLEU (Papineni et al. 2002). BLEU measures how many one-word, two-
word, three-word and four-word sequences in the output are found in the refer-
ence, and computes a score that varies from 0 (no match) to 100% (all stretches
found). If, during training, BLEU on the development set starts to signal a degra-
dation of performance, training may be stopped, or the current set of weights
may be stored and training then continued for a while to see if BLEU improves
again. Of course, there are many other automatic evaluation metrics which can
take the place of BLEU in this process.

7.3 Beam search

The decoder in NMT systems produces the output sentence sequentially, one
target word at a time, as explained in Sections 6.1 and 6.2. At each time step,
the neural network produces a probability or likelihood (a value between 0 and
100%) for every single word in the target vocabulary. One way of using this in-
formation is to pick the most likely target word and output it, ignoring other
possibilities. It is worthwhile noting that, in doing so, we are completely deter-
mining the ensuing steps taken by the NMT system as the current prediction is
given as input to the decoder in the next step (see, for example, the word zorro
in Figure 6). One possible way to explore more possibilities is to consider, for

161

Juan Antonio Pérez-Ortiz, Mikel L. Forcada & Felipe Sanchez-Martinez

instance, the three most likely words, and clone the system into three systems,
each of which would be determined respectively by each of the three choices, and
see how they fare. But one cannot do this indefinitely, as one would triplicate the
number of systems translating the sentence at each step, and their number would
grow exponentially. To avoid that, only a certain number of systems are allowed
to survive, namely those obtaining the best value in an approximate calculation
of the probability of the full sentence that would be produced. This is usually
called beam search and is a common approximation in other probabilistic models
of human language processing such as speech recognition.

8 Conclusions

To train an NMT system, one needs thousands or even millions of examples of
source sentence—target sentence pairs. For many language pairs, many domains
and many text genres, such resources do not exist, which constrains many spe-
cific applications, but for well-resourced languages, general-purpose NMT is a
reality and is very widely used, not only by translators. Moreover, scientific ad-
vances in approaches such as multilingual models or unsupervised NMT have
recently started to produce promising results in low-resource scenarios.’

This chapter has introduced - and provided technical details of — the key ele-
ments in NMT systems, and explored how they interact in the two currently most
popular architectures, namely transformer-based and recurrent neural networks.
Research activity in the area is so intense at the time of writing that proposals
for new models arise almost every month. Transformers are currently the para-
digm of choice if enough parallel corpora are available for training, because they
require shorter training times and allow subtle quality improvements in compar-
ison to recurrent neural networks, but the picture may change dramatically at
any time.

’A multilingual model is a single neural network that is trained to translate between many dif-
ferent language pairs so that knowledge from well-resourced languages may be transferred to
low-resourced ones. Interestingly, multilingual models bring the possibility of zero-shot trans-
lation (Ko et al. 2021) in which a system may be able to translate with reasonable quality, for
example, between Spanish and Upper Sorbian using a multilingual model trained on German-
Upper Sorbian and Spanish-German corpora, even when no Spanish-Upper Sorbian parallel
corpus is available. Unsupervised NMT goes a step further by learning NMT systems from
monolingual corpora only.

162

7 How neural machine translation works

References

Bahdanau, Dzmitry, Kyunghyun Cho & Yoshua Bengio. 2015. Neural machine
translation by jointly learning to align and translate. In Yoshua Bengio & Yann
LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015. .

Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Dario Amodei, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever & Dario Amodei. 2020. Lan-
guage models are few-shot learners. CoRR abs/2005.14165. https://arxiv.org/
abs/2005.14165.

Forcada, Mikel. 2017. Making sense of neural machine translation. Translation
Spaces 6(2). 291-309.

Goodfellow, Ian, Yoshua Bengio & Aaron Courville. 2016. Deep learning. Cam-
bridge, MA: MIT Press.

Hornik, Kurt. 1991. Approximation capabilities of multilayer feedforward net-
works. Neural Networks 4(2). 251-257.

Ko, Wei-Jen, Ahmed El-Kishky, Adithya Renduchintala, Vishrav Chaudhary, Na-
man Goyal, Francisco Guzman, Pascale Fung, Philipp Koehn & Mona Diab.
2021. Adapting high-resource NMT models to translate low-resource related
languages without parallel data. In Proceedings of the 59th annual meeting of
the Association for Computational Linguistics and the 11th International joint
Conference on Natural Language Processing, 802—812.

Kudo, Taku & John Richardson. 2018. SentencePiece: A simple and language in-
dependent subword tokenizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, 66—71. Brussels, Belgium: Association for
Computational Linguistics.

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg Corrado & Jeffrey Dean. 2013.
Distributed representations of words and phrases and their compositionality.
In Advances in Neural Information Processing Systems 30, 3111-3119.

Papineni, Kishore, Salim Roukos, Todd Ward & Wei-Jing Zhu. 2002. BLEU: A
method for automatic evaluation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics, 311-318.

163

https://doi.org/10.48550/arXiv.1409.0473
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165

Juan Antonio Pérez-Ortiz, Mikel L. Forcada & Felipe Sanchez-Martinez

Philadelphia, Pennsylvania, USA: Association for Computational Linguistics.

Rossi, Caroline & Alice Carré. 2022. How to choose a suitable neural machine
translation solution: Evaluation of MT quality. In Dorothy Kenny (ed.), Ma-
chine translation for everyone: Empowering users in the age of artificial intelli-
gence, 51-79. Berlin: Language Science Press.

Sennrich, Rico, Barry Haddow & Alexandra Birch. 2016. Neural Machine trans-
lation of rare words with subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics, 1715-1725. Berlin: As-
sociation for Computational Linguistics.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan
N Gomez, Lukasz Kaiser & Illia Polosukhin. 2017. Attention is all you need. In
Advances in Neural Information Processing Systems 30, 5998-6008.

164

https://doi.org/10.3115/1073083.1073135
https://doi.org/10.5281/zenodo.6759978

