
Comparing nondeterministic and
quasideterministic finite-state transducers built

from morphological dictionaries∗

Alicia Garrido-Alenda and Mikel L. Forcada

Departament de Llenguatges i Sistemes Informàtics

Universitat d’Alacant

E-03071 Alacant, Spain

SEPLN 2002, Valladolid

∗Funded by Caja de Ahorros del Mediterráneo, Universitat d’Alacant and
CICyT (project TIC2000-1599-C02-02).

1

Index

Lexical transformations in NLP systems

Aligned and unaligned dictionaries

Transducers: quasideterministic and nondeterministic

Building transducers from dictionaries

Comparing quasi- and non-deterministic transducers

Closing comments

2

Index

Lexical transformations in NLP systems

Aligned and unaligned dictionaries

Transducers: quasideterministic and nondeterministic

Building transducers from dictionaries

Comparing quasi- and non-deterministic transducers

Closing comments

2

Index

Lexical transformations in NLP systems

Aligned and unaligned dictionaries

Transducers: quasideterministic and nondeterministic

Building transducers from dictionaries

Comparing quasi- and non-deterministic transducers

Closing comments

2

Index

Lexical transformations in NLP systems

Aligned and unaligned dictionaries

Transducers: quasideterministic and nondeterministic

Building transducers from dictionaries

Comparing quasi- and non-deterministic transducers

Closing comments

2

Index

Lexical transformations in NLP systems

Aligned and unaligned dictionaries

Transducers: quasideterministic and nondeterministic

Building transducers from dictionaries

Comparing quasi- and non-deterministic transducers

Closing comments

2

Index

Lexical transformations in NLP systems

Aligned and unaligned dictionaries

Transducers: quasideterministic and nondeterministic

Building transducers from dictionaries

Comparing quasi- and non-deterministic transducers

Closing comments

2

Index

Lexical transformations in NLP systems

Aligned and unaligned dictionaries

Transducers: quasideterministic and nondeterministic

Building transducers from dictionaries

Comparing quasi- and non-deterministic transducers

Closing comments

2

Lexical transformations

Lexical transformations in NLP systems:

• Morphological analysis: surface form → lexical form(s) [lemma

+ PoS + inflection info.]

• Morphological generation: lexical form → surface form.

• Lexical transfer (in MT): source lexical form → target lexical

form.

Transformations usually specified in terms of (morphological,

bilingual) dictionaries.

3

Lexical transformations

Lexical transformations in NLP systems:

• Morphological analysis: surface form → lexical form(s) [lemma

+ PoS + inflection info.]

• Morphological generation: lexical form → surface form.

• Lexical transfer (in MT): source lexical form → target lexical

form.

Transformations usually specified in terms of (morphological,

bilingual) dictionaries.

3

Lexical transformations

Lexical transformations in NLP systems:

• Morphological analysis: surface form → lexical form(s) [lemma

+ PoS + inflection info.]

• Morphological generation: lexical form → surface form.

• Lexical transfer (in MT): source lexical form → target lexical

form.

Transformations usually specified in terms of (morphological,

bilingual) dictionaries.

3

Lexical transformations

Lexical transformations in NLP systems:

• Morphological analysis: surface form → lexical form(s) [lemma

+ PoS + inflection info.]

• Morphological generation: lexical form → surface form.

• Lexical transfer (in MT): source lexical form → target lexical

form.

Transformations usually specified in terms of (morphological,

bilingual) dictionaries.

3

Lexical transformations

Lexical transformations in NLP systems:

• Morphological analysis: surface form → lexical form(s) [lemma

+ PoS + inflection info.]

• Morphological generation: lexical form → surface form.

• Lexical transfer (in MT): source lexical form → target lexical

form.

Transformations usually specified in terms of (morphological,

bilingual) dictionaries.

3

Lexical transformations

Lexical transformations in NLP systems:

• Morphological analysis: surface form → lexical form(s) [lemma

+ PoS + inflection info.]

• Morphological generation: lexical form → surface form.

• Lexical transfer (in MT): source lexical form → target lexical

form.

Transformations usually specified in terms of (morphological,

bilingual) dictionaries.

3

Aligned and unaligned dictionaries

Unaligned dictionary: simple list of (input string, output string)
pairs.

(recordáis, recordar<vblex><pri><2><pl>)
(recuerdo, recordar<vblex><pri><1><sg>)

(recuerdo, recuerdo<n><m><sg>)

Aligned dictionary: list of sequences of (input substring, output
substring) pairs expressing linguistic regularities.

(re, re)(c, c)(o, o)(rd, rd)(áis, ar<vblex><2><pl>)
(re, re)(c, c)(ue, o)(rd, rd)(o, ar<vblex><1><sg>)

(re, re)(c, c)(ue, ue)(rd, rd)(o, o<n><m><sg>)

4

Aligned and unaligned dictionaries

Unaligned dictionary: simple list of (input string, output string)
pairs.

(recordáis, recordar<vblex><pri><2><pl>)
(recuerdo, recordar<vblex><pri><1><sg>)

(recuerdo, recuerdo<n><m><sg>)

Aligned dictionary: list of sequences of (input substring, output
substring) pairs expressing linguistic regularities.

(re, re)(c, c)(o, o)(rd, rd)(áis, ar<vblex><2><pl>)
(re, re)(c, c)(ue, o)(rd, rd)(o, ar<vblex><1><sg>)

(re, re)(c, c)(ue, ue)(rd, rd)(o, o<n><m><sg>)

4

Aligned and unaligned dictionaries

Unaligned dictionary: simple list of (input string, output string)
pairs.

(recordáis, recordar<vblex><pri><2><pl>)
(recuerdo, recordar<vblex><pri><1><sg>)

(recuerdo, recuerdo<n><m><sg>)

Aligned dictionary: list of sequences of (input substring, output
substring) pairs expressing linguistic regularities.

(re, re)(c, c)(o, o)(rd, rd)(áis, ar<vblex><2><pl>)
(re, re)(c, c)(ue, o)(rd, rd)(o, ar<vblex><1><sg>)

(re, re)(c, c)(ue, ue)(rd, rd)(o, o<n><m><sg>)

4

Aligned and unaligned dictionaries

Unaligned dictionary: simple list of (input string, output string)
pairs.

(recordáis, recordar<vblex><pri><2><pl>)
(recuerdo, recordar<vblex><pri><1><sg>)

(recuerdo, recuerdo<n><m><sg>)

Aligned dictionary: list of sequences of (input substring, output
substring) pairs expressing linguistic regularities.

(re, re)(c, c)(o, o)(rd, rd)(áis, ar<vblex><2><pl>)
(re, re)(c, c)(ue, o)(rd, rd)(o, ar<vblex><1><sg>)

(re, re)(c, c)(ue, ue)(rd, rd)(o, o<n><m><sg>)

4

Aligned and unaligned dictionaries

Unaligned dictionary: simple list of (input string, output string)
pairs.

(recordáis, recordar<vblex><pri><2><pl>)
(recuerdo, recordar<vblex><pri><1><sg>)

(recuerdo, recuerdo<n><m><sg>)

Aligned dictionary: list of sequences of (input substring, output
substring) pairs expressing linguistic regularities.

(re, re)(c, c)(o, o)(rd, rd)(áis, ar<vblex><2><pl>)
(re, re)(c, c)(ue, o)(rd, rd)(o, ar<vblex><1><sg>)

(re, re)(c, c)(ue, ue)(rd, rd)(o, o<n><m><sg>)

4

Aligned and unaligned dictionaries

Unaligned dictionary: simple list of (input string, output string)
pairs.

(recordáis, recordar<vblex><pri><2><pl>)
(recuerdo, recordar<vblex><pri><1><sg>)

(recuerdo, recuerdo<n><m><sg>)

Aligned dictionary: list of sequences of (input substring, output
substring) pairs expressing linguistic regularities.

(re, re)(c, c)(o, o)(rd, rd)(áis, ar<vblex><2><pl>)
(re, re)(c, c)(ue, o)(rd, rd)(o, ar<vblex><1><sg>)

(re, re)(c, c)(ue, ue)(rd, rd)(o, o<n><m><sg>)

4

Aligned and unaligned dictionaries

Unaligned dictionary: simple list of (input string, output string)
pairs.

(recordáis, recordar<vblex><pri><2><pl>)
(recuerdo, recordar<vblex><pri><1><sg>)

(recuerdo, recuerdo<n><m><sg>)

Aligned dictionary: list of sequences of (input substring, output
substring) pairs expressing linguistic regularities.

(re, re)(c, c)(o, o)(rd, rd)(áis, ar<vblex><2><pl>)
(re, re)(c, c)(ue, o)(rd, rd)(o, ar<vblex><1><sg>)

(re, re)(c, c)(ue, ue)(rd, rd)(o, o<n><m><sg>)

4

Aligned and unaligned dictionaries

Unaligned dictionary: simple list of (input string, output string)
pairs.

(recordáis, recordar<vblex><pri><2><pl>)
(recuerdo, recordar<vblex><pri><1><sg>)

(recuerdo, recuerdo<n><m><sg>)

Aligned dictionary: list of sequences of (input substring, output
substring) pairs expressing linguistic regularities.

(re, re)(c, c)(o, o)(rd, rd)(áis, ar<vblex><2><pl>)
(re, re)(c, c)(ue, o)(rd, rd)(o, ar<vblex><1><sg>)

(re, re)(c, c)(ue, ue)(rd, rd)(o, o<n><m><sg>)

4

Aligned and unaligned dictionaries

Unaligned dictionary: simple list of (input string, output string)
pairs.

(recordáis, recordar<vblex><pri><2><pl>)
(recuerdo, recordar<vblex><pri><1><sg>)

(recuerdo, recuerdo<n><m><sg>)

Aligned dictionary: list of sequences of (input substring, output
substring) pairs expressing linguistic regularities.

(re, re)(c, c)(o, o)(rd, rd)(áis, ar<vblex><2><pl>)
(re, re)(c, c)(ue, o)(rd, rd)(o, ar<vblex><1><sg>)

(re, re)(c, c)(ue, ue)(rd, rd)(o, o<n><m><sg>)

4

Transducers: quasi- and non-deterministic/1

Many lexical transformations in Indoeuropean languages may be
performed sequentially using transducers:

• reading the input left to right;

• incrementally building:

– a prefix of the output (deterministic transducers), or

– a set of candidate prefixes of the output (nondeterministic
transducers).

Sequential processing possible because inputs sharing a prefix
correspond to outputs sharing a nontrivial prefix.

5

Transducers: quasi- and non-deterministic/1

Many lexical transformations in Indoeuropean languages may be
performed sequentially using transducers:

• reading the input left to right;

• incrementally building:

– a prefix of the output (deterministic transducers), or

– a set of candidate prefixes of the output (nondeterministic
transducers).

Sequential processing possible because inputs sharing a prefix
correspond to outputs sharing a nontrivial prefix.

5

Transducers: quasi- and non-deterministic/1

Many lexical transformations in Indoeuropean languages may be
performed sequentially using transducers:

• reading the input left to right;

• incrementally building:

– a prefix of the output (deterministic transducers), or

– a set of candidate prefixes of the output (nondeterministic
transducers).

Sequential processing possible because inputs sharing a prefix
correspond to outputs sharing a nontrivial prefix.

5

Transducers: quasi- and non-deterministic/1

Many lexical transformations in Indoeuropean languages may be
performed sequentially using transducers:

• reading the input left to right;

• incrementally building:

– a prefix of the output (deterministic transducers), or

– a set of candidate prefixes of the output (nondeterministic
transducers).

Sequential processing possible because inputs sharing a prefix
correspond to outputs sharing a nontrivial prefix.

5

Transducers: quasi- and non-deterministic/1

Many lexical transformations in Indoeuropean languages may be
performed sequentially using transducers:

• reading the input left to right;

• incrementally building:

– a prefix of the output (deterministic transducers), or

– a set of candidate prefixes of the output (nondeterministic
transducers).

Sequential processing possible because inputs sharing a prefix
correspond to outputs sharing a nontrivial prefix.

5

Transducers: quasi- and non-deterministic/1

Many lexical transformations in Indoeuropean languages may be
performed sequentially using transducers:

• reading the input left to right;

• incrementally building:

– a prefix of the output (deterministic transducers), or

– a set of candidate prefixes of the output (nondeterministic
transducers).

Sequential processing possible because inputs sharing a prefix
correspond to outputs sharing a nontrivial prefix.

5

Transducers: quasi- and non-deterministic/1

Many lexical transformations in Indoeuropean languages may be
performed sequentially using transducers:

• reading the input left to right;

• incrementally building:

– a prefix of the output (deterministic transducers), or

– a set of candidate prefixes of the output (nondeterministic
transducers).

Sequential processing possible because inputs sharing a prefix
correspond to outputs sharing a nontrivial prefix.

5

Transducers: quasi- and non-deterministic/2

Deterministic, incremental processing: deliver the longest com-

mon output prefix corresponding to all inputs sharing the current

input prefix.

In deterministic (“earliest p-subsequential” transducers):

• states represent sets of prefixes sharing a common output

behavior;

• a single state is reached for each state and input symbol;

• output is associated to state-to-state transitions: the longest

common output prefix is built incrementally.

Dictionary alignments ignored: “deterministic alignment”

6

Transducers: quasi- and non-deterministic/2

Deterministic, incremental processing: deliver the longest com-

mon output prefix corresponding to all inputs sharing the current

input prefix.

In deterministic (“earliest p-subsequential” transducers):

• states represent sets of prefixes sharing a common output

behavior;

• a single state is reached for each state and input symbol;

• output is associated to state-to-state transitions: the longest

common output prefix is built incrementally.

Dictionary alignments ignored: “deterministic alignment”

6

Transducers: quasi- and non-deterministic/2

Deterministic, incremental processing: deliver the longest com-

mon output prefix corresponding to all inputs sharing the current

input prefix.

In deterministic (“earliest p-subsequential” transducers):

• states represent sets of prefixes sharing a common output

behavior;

• a single state is reached for each state and input symbol;

• output is associated to state-to-state transitions: the longest

common output prefix is built incrementally.

Dictionary alignments ignored: “deterministic alignment”

6

Transducers: quasi- and non-deterministic/2

Deterministic, incremental processing: deliver the longest com-

mon output prefix corresponding to all inputs sharing the current

input prefix.

In deterministic (“earliest p-subsequential” transducers):

• states represent sets of prefixes sharing a common output

behavior;

• a single state is reached for each state and input symbol;

• output is associated to state-to-state transitions: the longest

common output prefix is built incrementally.

Dictionary alignments ignored: “deterministic alignment”

6

Transducers: quasi- and non-deterministic/2

Deterministic, incremental processing: deliver the longest com-

mon output prefix corresponding to all inputs sharing the current

input prefix.

In deterministic (“earliest p-subsequential” transducers):

• states represent sets of prefixes sharing a common output

behavior;

• a single state is reached for each state and input symbol;

• output is associated to state-to-state transitions: the longest

common output prefix is built incrementally.

Dictionary alignments ignored: “deterministic alignment”

6

Transducers: quasi- and non-deterministic/2

Deterministic, incremental processing: deliver the longest com-

mon output prefix corresponding to all inputs sharing the current

input prefix.

In deterministic (“earliest p-subsequential” transducers):

• states represent sets of prefixes sharing a common output

behavior;

• a single state is reached for each state and input symbol;

• output is associated to state-to-state transitions: the longest

common output prefix is built incrementally.

Dictionary alignments ignored: “deterministic alignment”

6

Transducers: quasi- and non-deterministic/2

Deterministic, incremental processing: deliver the longest com-

mon output prefix corresponding to all inputs sharing the current

input prefix.

In deterministic (“earliest p-subsequential” transducers):

• states represent sets of prefixes sharing a common output

behavior;

• a single state is reached for each state and input symbol;

• output is associated to state-to-state transitions: the longest

common output prefix is built incrementally.

Dictionary alignments ignored: “deterministic alignment”

[Details]

6

Transducers: quasi- and non-deterministic/3

Full determinism impossible (hence the name quasideterministic)
due to one-to-many (many ≤ p) correspondences:

• only the longest common output prefix of all outputs (a
proper prefix) can be output at the end of the input

τ(recuerdo) = {recordar<vblex> . . . , recuerdo<n> . . .}
LCP(τ(recuerdo)) = rec

• (at most p) output suffixes have to be appended at accep-
tance states.

(rec)−1τ(recuerdo) = {ordar<vblex> . . . , uerdo<n> . . .}

7

Transducers: quasi- and non-deterministic/3

Full determinism impossible (hence the name quasideterministic)
due to one-to-many (many ≤ p) correspondences:

• only the longest common output prefix of all outputs (a
proper prefix) can be output at the end of the input

τ(recuerdo) = {recordar<vblex> . . . , recuerdo<n> . . .}
LCP(τ(recuerdo)) = rec

• (at most p) output suffixes have to be appended at accep-
tance states.

(rec)−1τ(recuerdo) = {ordar<vblex> . . . , uerdo<n> . . .}

7

Transducers: quasi- and non-deterministic/3

Full determinism impossible (hence the name quasideterministic)
due to one-to-many (many ≤ p) correspondences:

• only the longest common output prefix of all outputs (a
proper prefix) can be output at the end of the input

τ(recuerdo) = {recordar<vblex> . . . , recuerdo<n> . . .}
LCP(τ(recuerdo)) = rec

• (at most p) output suffixes have to be appended at accep-
tance states.

(rec)−1τ(recuerdo) = {ordar<vblex> . . . , uerdo<n> . . .}

7

Transducers: quasi- and non-deterministic/3

Full determinism impossible (hence the name quasideterministic)
due to one-to-many (many ≤ p) correspondences:

• only the longest common output prefix of all outputs (a
proper prefix) can be output at the end of the input

τ(recuerdo) = {recordar<vblex> . . . , recuerdo<n> . . .}
LCP(τ(recuerdo)) = rec

• (at most p) output suffixes have to be appended at accep-
tance states.

(rec)−1τ(recuerdo) = {ordar<vblex> . . . , uerdo<n> . . .}

7

Transducers: quasi- and non-deterministic/3

Full determinism impossible (hence the name quasideterministic)
due to one-to-many (many ≤ p) correspondences:

• only the longest common output prefix of all outputs (a
proper prefix) can be output at the end of the input

τ(recuerdo) = {recordar<vblex> . . . , recuerdo<n> . . .}
LCP(τ(recuerdo)) = rec

• (at most p) output suffixes have to be appended at accep-
tance states.

(rec)−1τ(recuerdo) = {ordar<vblex> . . . , uerdo<n> . . .}

7

Transducers: quasi- and non-deterministic/3

Full determinism impossible (hence the name quasideterministic)
due to one-to-many (many ≤ p) correspondences:

• only the longest common output prefix of all outputs (a
proper prefix) can be output at the end of the input

τ(recuerdo) = {recordar<vblex> . . . , recuerdo<n> . . .}
LCP(τ(recuerdo)) = rec

• (at most p) output suffixes have to be appended at accep-
tance states.

(rec)−1τ(recuerdo) = {ordar<vblex> . . . , uerdo<n> . . .}

7

Transducers: quasi- and non-deterministic/4

Disadvantages of quasideterministic transducers:

• Any linguistic knowledge encoded in dictionary alignments is

thrown away.

• For large dictionaries, irregularities may lead to very short

longest common output prefixes and very long output suf-

fixes.

• Adding a new dictionary entry may force a complete recon-

struction (longest common output prefixes may change)

8

Transducers: quasi- and non-deterministic/4

Disadvantages of quasideterministic transducers:

• Any linguistic knowledge encoded in dictionary alignments is

thrown away.

• For large dictionaries, irregularities may lead to very short

longest common output prefixes and very long output suf-

fixes.

• Adding a new dictionary entry may force a complete recon-

struction (longest common output prefixes may change)

8

Transducers: quasi- and non-deterministic/4

Disadvantages of quasideterministic transducers:

• Any linguistic knowledge encoded in dictionary alignments is

thrown away.

• For large dictionaries, irregularities may lead to very short

longest common output prefixes and very long output suf-

fixes.

• Adding a new dictionary entry may force a complete recon-

struction (longest common output prefixes may change)

8

Transducers: quasi- and non-deterministic/4

Disadvantages of quasideterministic transducers:

• Any linguistic knowledge encoded in dictionary alignments is

thrown away.

• For large dictionaries, irregularities may lead to very short

longest common output prefixes and very long output suf-

fixes.

• Adding a new dictionary entry may force a complete recon-

struction (longest common output prefixes may change)

8

Transducers: quasi- and non-deterministic/4

Disadvantages of quasideterministic transducers:

• Any linguistic knowledge encoded in dictionary alignments is

thrown away.

• For large dictionaries, irregularities may lead to very short

longest common output prefixes and very long output suf-

fixes.

• Adding a new dictionary entry may force a complete recon-

struction (longest common output prefixes may change)

8

Transducers: quasi- and non-deterministic/5

Nondeterministic transducers avoid this by maintaining several

output prefix candidates for each input:

• more than one state may be reached for each state and input

symbol;

• output is associated to state-to-state transitions so that a

set of output prefix candidates is built incrementally by main-

taining a set of alive state-output pairs during processing;

• output suffixes are no longer necessary.

9

Transducers: quasi- and non-deterministic/5

Nondeterministic transducers avoid this by maintaining several

output prefix candidates for each input:

• more than one state may be reached for each state and input

symbol;

• output is associated to state-to-state transitions so that a

set of output prefix candidates is built incrementally by main-

taining a set of alive state-output pairs during processing;

• output suffixes are no longer necessary.

9

Transducers: quasi- and non-deterministic/5

Nondeterministic transducers avoid this by maintaining several

output prefix candidates for each input:

• more than one state may be reached for each state and input

symbol;

• output is associated to state-to-state transitions so that a

set of output prefix candidates is built incrementally by main-

taining a set of alive state-output pairs during processing;

• output suffixes are no longer necessary.

9

Transducers: quasi- and non-deterministic/5

Nondeterministic transducers avoid this by maintaining several

output prefix candidates for each input:

• more than one state may be reached for each state and input

symbol;

• output is associated to state-to-state transitions so that a

set of output prefix candidates is built incrementally by main-

taining a set of alive state-output pairs during processing;

• output suffixes are no longer necessary.

9

Transducers: quasi- and non-deterministic/5

Nondeterministic transducers avoid this by maintaining several

output prefix candidates for each input:

• more than one state may be reached for each state and input

symbol;

• output is associated to state-to-state transitions so that a

set of output prefix candidates is built incrementally by main-

taining a set of alive state-output pairs during processing;

• output suffixes are no longer necessary.

9

Transducers: quasi- and non-deterministic/6

Advantages of nondeterministic transducers:

• May be very compact! (when linguists are good at finding

regularities to align inputs and outputs) (see later).

• When expressed as finite-state letter transducers (with tran-

sitions reading or writing at most one symbol), they may be

determinized and minimized similarly to finite automata.

• New entries may be added and removed without realignment

and maintaining minimality (Garrido et al., TMI-2002).

10

Transducers: quasi- and non-deterministic/6

Advantages of nondeterministic transducers:

• May be very compact! (when linguists are good at finding

regularities to align inputs and outputs) (see later).

• When expressed as finite-state letter transducers (with tran-

sitions reading or writing at most one symbol), they may be

determinized and minimized similarly to finite automata.

• New entries may be added and removed without realignment

and maintaining minimality (Garrido et al., TMI-2002).

10

Transducers: quasi- and non-deterministic/6

Advantages of nondeterministic transducers:

• May be very compact! (when linguists are good at finding

regularities to align inputs and outputs) (see later).

• When expressed as finite-state letter transducers (with tran-

sitions reading or writing at most one symbol), they may be

determinized and minimized similarly to finite automata.

• New entries may be added and removed without realignment

and maintaining minimality (Garrido et al., TMI-2002).

10

Transducers: quasi- and non-deterministic/6

Advantages of nondeterministic transducers:

• May be very compact! (when linguists are good at finding

regularities to align inputs and outputs) (see later).

• When expressed as finite-state letter transducers (with tran-

sitions reading or writing at most one symbol), they may be

determinized and minimized similarly to finite automata.

• New entries may be added and removed without realignment

and maintaining minimality (Garrido et al., TMI-2002).

10

Transducers: quasi- and non-deterministic/6

Advantages of nondeterministic transducers:

• May be very compact! (when linguists are good at finding

regularities to align inputs and outputs) (see later).

• When expressed as finite-state letter transducers (with tran-

sitions reading or writing at most one symbol), they may be

determinized and minimized similarly to finite automata.

• New entries may be added and removed without realignment

and maintaining minimality (Garrido et al., TMI-2002).

[Details]

10

Building transducers from dictionaries/1

Building quasideterministic transducers from unaligned dic-
tionaries [Details]

1. Build a trie for the input strings of the dictionary (each prefix
in the input vocabulary is a state)

2. Using the output strings, compute the longest common out-
put prefix (LCOP) for each prefix

3. Associate as output of each transition the suffix necessary to
get the arrival state LCOP from the departure state LCOP

4. Compute the remaining output suffixes necessary to com-
plete the output at each acceptance state from the LCOP
of that state

5. Minimize the resulting transducer

11

Building transducers from dictionaries/1

Building quasideterministic transducers from unaligned dic-
tionaries [Details]

1. Build a trie for the input strings of the dictionary (each prefix
in the input vocabulary is a state)

2. Using the output strings, compute the longest common out-
put prefix (LCOP) for each prefix

3. Associate as output of each transition the suffix necessary to
get the arrival state LCOP from the departure state LCOP

4. Compute the remaining output suffixes necessary to com-
plete the output at each acceptance state from the LCOP
of that state

5. Minimize the resulting transducer

11

Building transducers from dictionaries/1

Building quasideterministic transducers from unaligned dic-
tionaries [Details]

1. Build a trie for the input strings of the dictionary (each prefix
in the input vocabulary is a state)

2. Using the output strings, compute the longest common out-
put prefix (LCOP) for each prefix

3. Associate as output of each transition the suffix necessary to
get the arrival state LCOP from the departure state LCOP

4. Compute the remaining output suffixes necessary to com-
plete the output at each acceptance state from the LCOP
of that state

5. Minimize the resulting transducer

11

Building transducers from dictionaries/1

Building quasideterministic transducers from unaligned dic-
tionaries [Details]

1. Build a trie for the input strings of the dictionary (each prefix
in the input vocabulary is a state)

2. Using the output strings, compute the longest common out-
put prefix (LCOP) for each prefix

3. Associate as output of each transition the suffix necessary to
get the arrival state LCOP from the departure state LCOP

4. Compute the remaining output suffixes necessary to com-
plete the output at each acceptance state from the LCOP
of that state

5. Minimize the resulting transducer

11

Building transducers from dictionaries/1

Building quasideterministic transducers from unaligned dic-
tionaries [Details]

1. Build a trie for the input strings of the dictionary (each prefix
in the input vocabulary is a state)

2. Using the output strings, compute the longest common out-
put prefix (LCOP) for each prefix

3. Associate as output of each transition the suffix necessary to
get the arrival state LCOP from the departure state LCOP

4. Compute the remaining output suffixes necessary to com-
plete the output at each acceptance state from the LCOP
of that state

5. Minimize the resulting transducer

11

Building transducers from dictionaries/1

Building quasideterministic transducers from unaligned dic-
tionaries [Details]

1. Build a trie for the input strings of the dictionary (each prefix
in the input vocabulary is a state)

2. Using the output strings, compute the longest common out-
put prefix (LCOP) for each prefix

3. Associate as output of each transition the suffix necessary to
get the arrival state LCOP from the departure state LCOP

4. Compute the remaining output suffixes necessary to com-
plete the output at each acceptance state from the LCOP
of that state

5. Minimize the resulting transducer

11

Building transducers from dictionaries/2

Building nondeterministic transducers from aligned dictio-

naries [Details]

1. Build a state path from the start state to an acceptance

state for each aligned pair in the dictionary (with transitions

reading or writing zero or one characters)

2. Determinize as a finite automaton using the input-output

pairs as the alphabet

3. Minimize in the same way

12

Building transducers from dictionaries/2

Building nondeterministic transducers from aligned dictio-

naries [Details]

1. Build a state path from the start state to an acceptance

state for each aligned pair in the dictionary (with transitions

reading or writing zero or one characters)

2. Determinize as a finite automaton using the input-output

pairs as the alphabet

3. Minimize in the same way

12

Building transducers from dictionaries/2

Building nondeterministic transducers from aligned dictio-

naries [Details]

1. Build a state path from the start state to an acceptance

state for each aligned pair in the dictionary (with transitions

reading or writing zero or one characters)

2. Determinize as a finite automaton using the input-output

pairs as the alphabet

3. Minimize in the same way

12

Building transducers from dictionaries/2

Building nondeterministic transducers from aligned dictio-

naries [Details]

1. Build a state path from the start state to an acceptance

state for each aligned pair in the dictionary (with transitions

reading or writing zero or one characters)

2. Determinize as a finite automaton using the input-output

pairs as the alphabet

3. Minimize in the same way

12

Comparing quasi- and non-deterministic trans-
ducers/1 [Details]

• Build both kinds of transducers from a set of representative
dictionaries

• Convert quasideterministic transducers also into finite-state
letter transducers

– unfolding transitions with outputs longer than 1
– creating letter-by-letter state paths for output suffixes at

acceptance states

• Determinize and minimize the resulting letter transducers

• Compare (unfair without conversion: LTs are more “rudi-
mentary”)

13

Comparing quasi- and non-deterministic trans-
ducers/1 [Details]

• Build both kinds of transducers from a set of representative
dictionaries

• Convert quasideterministic transducers also into finite-state
letter transducers

– unfolding transitions with outputs longer than 1
– creating letter-by-letter state paths for output suffixes at

acceptance states

• Determinize and minimize the resulting letter transducers

• Compare (unfair without conversion: LTs are more “rudi-
mentary”)

13

Comparing quasi- and non-deterministic trans-
ducers/1 [Details]

• Build both kinds of transducers from a set of representative
dictionaries

• Convert quasideterministic transducers also into finite-state
letter transducers

– unfolding transitions with outputs longer than 1
– creating letter-by-letter state paths for output suffixes at

acceptance states

• Determinize and minimize the resulting letter transducers

• Compare (unfair without conversion: LTs are more “rudi-
mentary”)

13

Comparing quasi- and non-deterministic trans-
ducers/1 [Details]

• Build both kinds of transducers from a set of representative
dictionaries

• Convert quasideterministic transducers also into finite-state
letter transducers

– unfolding transitions with outputs longer than 1
– creating letter-by-letter state paths for output suffixes at

acceptance states

• Determinize and minimize the resulting letter transducers

• Compare (unfair without conversion: LTs are more “rudi-
mentary”)

13

Comparing quasi- and non-deterministic trans-
ducers/1 [Details]

• Build both kinds of transducers from a set of representative
dictionaries

• Convert quasideterministic transducers also into finite-state
letter transducers

– unfolding transitions with outputs longer than 1
– creating letter-by-letter state paths for output suffixes at

acceptance states

• Determinize and minimize the resulting letter transducers

• Compare (unfair without conversion: LTs are more “rudi-
mentary”)

13

Comparing quasi- and non-deterministic trans-
ducers/1 [Details]

• Build both kinds of transducers from a set of representative
dictionaries

• Convert quasideterministic transducers also into finite-state
letter transducers

– unfolding transitions with outputs longer than 1
– creating letter-by-letter state paths for output suffixes at

acceptance states

• Determinize and minimize the resulting letter transducers

• Compare (unfair without conversion: LTs are more “rudi-
mentary”)

13

Comparing quasi- and non-deterministic trans-
ducers/1 [Details]

• Build both kinds of transducers from a set of representative
dictionaries

• Convert quasideterministic transducers also into finite-state
letter transducers

– unfolding transitions with outputs longer than 1
– creating letter-by-letter state paths for output suffixes at

acceptance states

• Determinize and minimize the resulting letter transducers

• Compare (unfair without conversion: LTs are more “rudi-
mentary”)

13

Comparing quasi- and non-deterministic trans-
ducers/2

Results:

• Without conversion, both kinds of transducers have roughly

the same number of states (comparison unfair to LT)

• After conversion, nondeterministic transducers are consis-

tently 2.5 times more compact than quasideterministic trans-

ducers

• Observed nondeterminism (average number of ASOPs) is

of the order of corpus-computed ambiguity in dictionaries:

quasidet., 1.3; nondet., 1.5–1.9 (slightly worse)

14

Comparing quasi- and non-deterministic trans-
ducers/2

Results:

• Without conversion, both kinds of transducers have roughly

the same number of states (comparison unfair to LT)

• After conversion, nondeterministic transducers are consis-

tently 2.5 times more compact than quasideterministic trans-

ducers

• Observed nondeterminism (average number of ASOPs) is

of the order of corpus-computed ambiguity in dictionaries:

quasidet., 1.3; nondet., 1.5–1.9 (slightly worse)

14

Comparing quasi- and non-deterministic trans-
ducers/2

Results:

• Without conversion, both kinds of transducers have roughly

the same number of states (comparison unfair to LT)

• After conversion, nondeterministic transducers are consis-

tently 2.5 times more compact than quasideterministic trans-

ducers

• Observed nondeterminism (average number of ASOPs) is

of the order of corpus-computed ambiguity in dictionaries:

quasidet., 1.3; nondet., 1.5–1.9 (slightly worse)

14

Comparing quasi- and non-deterministic trans-
ducers/2

Results:

• Without conversion, both kinds of transducers have roughly

the same number of states (comparison unfair to LT)

• After conversion, nondeterministic transducers are consis-

tently 2.5 times more compact than quasideterministic trans-

ducers

• Observed nondeterminism (average number of ASOPs) is

of the order of corpus-computed ambiguity in dictionaries:

quasidet., 1.3; nondet., 1.5–1.9 (slightly worse)

14

Concluding remarks

For lexical transformations, nondeterministic transducers are a

viable alternative to quasideterministic transducers:

• they are compact

• their nondeterminism is limited

• they are easily maintained

Nondeterministic letter transducers are in use in www.interNOSTRUM.com

(a Spanish–Catalan MT system)

15

Concluding remarks

For lexical transformations, nondeterministic transducers are a

viable alternative to quasideterministic transducers:

• they are compact

• their nondeterminism is limited

• they are easily maintained

Nondeterministic letter transducers are in use in www.interNOSTRUM.com

(a Spanish–Catalan MT system)

15

Concluding remarks

For lexical transformations, nondeterministic transducers are a

viable alternative to quasideterministic transducers:

• they are compact

• their nondeterminism is limited

• they are easily maintained

Nondeterministic letter transducers are in use in www.interNOSTRUM.com

(a Spanish–Catalan MT system)

15

Concluding remarks

For lexical transformations, nondeterministic transducers are a

viable alternative to quasideterministic transducers:

• they are compact

• their nondeterminism is limited

• they are easily maintained

Nondeterministic letter transducers are in use in www.interNOSTRUM.com

(a Spanish–Catalan MT system)

15

Concluding remarks

For lexical transformations, nondeterministic transducers are a

viable alternative to quasideterministic transducers:

• they are compact

• their nondeterminism is limited

• they are easily maintained

Nondeterministic letter transducers are in use in www.interNOSTRUM.com

(a Spanish–Catalan MT system)

15

Concluding remarks

For lexical transformations, nondeterministic transducers are a

viable alternative to quasideterministic transducers:

• they are compact

• their nondeterminism is limited

• they are easily maintained

Nondeterministic letter transducers are in use in www.interNOSTRUM.com

(a Spanish–Catalan MT system)

15

G R A C I A S

16

Finite-state letter transducers/1

A (nondeterministic) finite-state letter transducer is

T = (Q,L, δ, qI , F),

• Q: finite set of states

• L = (Σ∪{θ})× (Γ∪{θ}): label alphabet (Σ: input alphabet,

Γ: output alphabet, θ: “empty symbol”)

• δ : Q× L→ 2Q: transition function

• qI ∈ Q: initial state

• F ⊆ Q: acceptance states

17

Finite-state letter transducers/1

A (nondeterministic) finite-state letter transducer is

T = (Q,L, δ, qI , F),

• Q: finite set of states

• L = (Σ∪{θ})× (Γ∪{θ}): label alphabet (Σ: input alphabet,

Γ: output alphabet, θ: “empty symbol”)

• δ : Q× L→ 2Q: transition function

• qI ∈ Q: initial state

• F ⊆ Q: acceptance states

17

Finite-state letter transducers/1

A (nondeterministic) finite-state letter transducer is

T = (Q,L, δ, qI , F),

• Q: finite set of states

• L = (Σ∪{θ})× (Γ∪{θ}): label alphabet (Σ: input alphabet,

Γ: output alphabet, θ: “empty symbol”)

• δ : Q× L→ 2Q: transition function

• qI ∈ Q: initial state

• F ⊆ Q: acceptance states

17

Finite-state letter transducers/1

A (nondeterministic) finite-state letter transducer is

T = (Q,L, δ, qI , F),

• Q: finite set of states

• L = (Σ∪{θ})× (Γ∪{θ}): label alphabet (Σ: input alphabet,

Γ: output alphabet, θ: “empty symbol”)

• δ : Q× L→ 2Q: transition function

• qI ∈ Q: initial state

• F ⊆ Q: acceptance states

17

Finite-state letter transducers/1

A (nondeterministic) finite-state letter transducer is

T = (Q,L, δ, qI , F),

• Q: finite set of states

• L = (Σ∪{θ})× (Γ∪{θ}): label alphabet (Σ: input alphabet,

Γ: output alphabet, θ: “empty symbol”)

• δ : Q× L→ 2Q: transition function

• qI ∈ Q: initial state

• F ⊆ Q: acceptance states

17

Finite-state letter transducers/1

A (nondeterministic) finite-state letter transducer is

T = (Q,L, δ, qI , F),

• Q: finite set of states

• L = (Σ∪{θ})× (Γ∪{θ}): label alphabet (Σ: input alphabet,

Γ: output alphabet, θ: “empty symbol”)

• δ : Q× L→ 2Q: transition function

• qI ∈ Q: initial state

• F ⊆ Q: acceptance states

17

Finite-state letter transducers/1

A (nondeterministic) finite-state letter transducer is

T = (Q,L, δ, qI , F),

• Q: finite set of states

• L = (Σ∪{θ})× (Γ∪{θ}): label alphabet (Σ: input alphabet,
Γ: output alphabet, θ: “empty symbol”)

• δ : Q× L→ 2Q: transition function

• qI ∈ Q: initial state

• F ⊆ Q: acceptance states

[back]

17

Finite-state letter transducers/2

State-to-state arrows have input–output labels (σ, γ):

• Input σ can be an input symbol from Σ or nothing (θ)

• Output γ can be an output symbol from Γ or nothing (θ)

Clearly, (θ, θ) arrows do nothing may be avoided.

18

Finite-state letter transducers/2

State-to-state arrows have input–output labels (σ, γ):

• Input σ can be an input symbol from Σ or nothing (θ)

• Output γ can be an output symbol from Γ or nothing (θ)

Clearly, (θ, θ) arrows do nothing may be avoided.

18

Finite-state letter transducers/2

State-to-state arrows have input–output labels (σ, γ):

• Input σ can be an input symbol from Σ or nothing (θ)

• Output γ can be an output symbol from Γ or nothing (θ)

Clearly, (θ, θ) arrows do nothing may be avoided.

18

Finite-state letter transducers/2

State-to-state arrows have input–output labels (σ, γ):

• Input σ can be an input symbol from Σ or nothing (θ)

• Output γ can be an output symbol from Γ or nothing (θ)

Clearly, (θ, θ) arrows do nothing may be avoided.

18

Finite-state letter transducers/2

State-to-state arrows have input–output labels (σ, γ):

• Input σ can be an input symbol from Σ or nothing (θ)

• Output γ can be an output symbol from Γ or nothing (θ)

Clearly, (θ, θ) arrows do nothing may be avoided.

[back]

18

Finite-state letter transducers/3

Using FSLT: keep a set of alive state–output pairs (SASOP),

updated after reading each input symbol from w = σ[1]σ[2] . . . σ[|w|].

t = 0, initial SASOP: V[0] = {(q, z) : q ∈ δ∗(qI , (ε, z))}, where δ∗

is the extension of δ to input–output string pairs

t→ t+ 1 (after reading σ[t]):

V[t] = {(q, zγ) : q ∈ δ∗(q′, (σ[t], γ)) ∧ (q′, z) ∈ V[t−1]}

t = |w| (at the end of w): τ(w) = {z : (q, z) ∈ V[|w|] ∧ q ∈ F}.

19

Finite-state letter transducers/3

Using FSLT: keep a set of alive state–output pairs (SASOP),

updated after reading each input symbol from w = σ[1]σ[2] . . . σ[|w|].

t = 0, initial SASOP: V[0] = {(q, z) : q ∈ δ∗(qI , (ε, z))}, where δ∗

is the extension of δ to input–output string pairs

t→ t+ 1 (after reading σ[t]):

V[t] = {(q, zγ) : q ∈ δ∗(q′, (σ[t], γ)) ∧ (q′, z) ∈ V[t−1]}

t = |w| (at the end of w): τ(w) = {z : (q, z) ∈ V[|w|] ∧ q ∈ F}.

19

Finite-state letter transducers/3

Using FSLT: keep a set of alive state–output pairs (SASOP),

updated after reading each input symbol from w = σ[1]σ[2] . . . σ[|w|].

t = 0, initial SASOP: V[0] = {(q, z) : q ∈ δ∗(qI , (ε, z))}, where δ∗

is the extension of δ to input–output string pairs

t→ t+ 1 (after reading σ[t]):

V[t] = {(q, zγ) : q ∈ δ∗(q′, (σ[t], γ)) ∧ (q′, z) ∈ V[t−1]}

t = |w| (at the end of w): τ(w) = {z : (q, z) ∈ V[|w|] ∧ q ∈ F}.

19

Finite-state letter transducers/3

Using FSLT: keep a set of alive state–output pairs (SASOP),

updated after reading each input symbol from w = σ[1]σ[2] . . . σ[|w|].

t = 0, initial SASOP: V[0] = {(q, z) : q ∈ δ∗(qI , (ε, z))}, where δ∗

is the extension of δ to input–output string pairs

t→ t+ 1 (after reading σ[t]):

V[t] = {(q, zγ) : q ∈ δ∗(q′, (σ[t], γ)) ∧ (q′, z) ∈ V[t−1]}

t = |w| (at the end of w): τ(w) = {z : (q, z) ∈ V[|w|] ∧ q ∈ F}.

19

Finite-state letter transducers/3

Using FSLT: keep a set of alive state–output pairs (SASOP),
updated after reading each input symbol from w = σ[1]σ[2] . . . σ[|w|].

t = 0, initial SASOP: V[0] = {(q, z) : q ∈ δ∗(qI , (ε, z))}, where δ∗

is the extension of δ to input–output string pairs

t→ t+ 1 (after reading σ[t]):

V[t] = {(q, zγ) : q ∈ δ∗(q′, (σ[t], γ)) ∧ (q′, z) ∈ V[t−1]}

t = |w| (at the end of w): τ(w) = {z : (q, z) ∈ V[|w|] ∧ q ∈ F}.

[back]

19

Longest common output prefix

The longest common output prefix for input w is

LCOP(w) = LCP(τ(ww−1E))

where

• E ⊂ Σ∗ is the vocabulary of inputs,

• τ : E → 2Γ∗ is the transformation function, and

• ww−1E = {x ∈ E : w ∈ Pr(x)}.

[back]

20

Building quasideterministic transducers: details/1

Build a p-subsequential transducer T = (Q,Σ,Γ, δ, λ, qI , ψ):

• With a trie structure: Q = Pr(E) ∪ {⊥} (⊥ is the absorption
state), qI = ε, and

δ(x, σ) =

{
xσ if x, xσ ∈ Pr(E)
⊥ otherwise

• With transition outputs λ(x, σ) = (LCOP(x))−1LCOP(xσ)
for x, xσ ∈ Pr(E), and undefined otherwise.

• With output suffix sets ψ(w) = (LCOP(w))−1τ(w).

[back]

21

Building quasideterministic transducers: details/1

Build a p-subsequential transducer T = (Q,Σ,Γ, δ, λ, qI , ψ):

• With a trie structure: Q = Pr(E) ∪ {⊥} (⊥ is the absorption
state), qI = ε, and

δ(x, σ) =

{
xσ if x, xσ ∈ Pr(E)
⊥ otherwise

• With transition outputs λ(x, σ) = (LCOP(x))−1LCOP(xσ)
for x, xσ ∈ Pr(E), and undefined otherwise.

• With output suffix sets ψ(w) = (LCOP(w))−1τ(w).

[back]

21

Building quasideterministic transducers: details/1

Build a p-subsequential transducer T = (Q,Σ,Γ, δ, λ, qI , ψ):

• With a trie structure: Q = Pr(E) ∪ {⊥} (⊥ is the absorption
state), qI = ε, and

δ(x, σ) =

{
xσ if x, xσ ∈ Pr(E)
⊥ otherwise

• With transition outputs λ(x, σ) = (LCOP(x))−1LCOP(xσ)
for x, xσ ∈ Pr(E), and undefined otherwise.

• With output suffix sets ψ(w) = (LCOP(w))−1τ(w).

[back]

21

Building quasideterministic transducers: details/1

Build a p-subsequential transducer T = (Q,Σ,Γ, δ, λ, qI , ψ):

• With a trie structure: Q = Pr(E) ∪ {⊥} (⊥ is the absorption
state), qI = ε, and

δ(x, σ) =

{
xσ if x, xσ ∈ Pr(E)
⊥ otherwise

• With transition outputs λ(x, σ) = (LCOP(x))−1LCOP(xσ)
for x, xσ ∈ Pr(E), and undefined otherwise.

• With output suffix sets ψ(w) = (LCOP(w))−1τ(w).

[back]

21

Building quasideterministic transducers: details/1

Build a p-subsequential transducer T = (Q,Σ,Γ, δ, λ, qI , ψ):

• With a trie structure: Q = Pr(E) ∪ {⊥} (⊥ is the absorption
state), qI = ε, and

δ(x, σ) =

{
xσ if x, xσ ∈ Pr(E)
⊥ otherwise

• With transition outputs λ(x, σ) = (LCOP(x))−1LCOP(xσ)
for x, xσ ∈ Pr(E), and undefined otherwise.

• With output suffix sets ψ(w) = (LCOP(w))−1τ(w).

[back]

21

Building quasideterministic transducers: details/1

Build a p-subsequential transducer T = (Q,Σ,Γ, δ, λ, qI , ψ):

• With a trie structure: Q = Pr(E) ∪ {⊥} (⊥ is the absorption
state), qI = ε, and

δ(x, σ) =

{
xσ if x, xσ ∈ Pr(E)
⊥ otherwise

• With transition outputs λ(x, σ) = (LCOP(x))−1LCOP(xσ)
for x, xσ ∈ Pr(E), and undefined otherwise.

• With output suffix sets ψ(w) = (LCOP(w))−1τ(w).

[back]

21

Building quasideterministic transducers: details/2

The resulting transducer is minimized using the equivalence class

algorithm (which iteratively refines a partition of Q).

Two different states q and r are not equivalent if

• ψ(q) 6= ψ(r)

• for some σ, δ(q, σ) not in the same class as δ(r, σ)

• for some σ, λ(q, σ) 6= λ(r, σ).

[back]

22

Building nondeterministic transducers: details/1

For each dictionary entry (a1, b1)(a2, b2) . . . (aN , bN) . . .

. . . build a path qI
(a1,b1)→ s1

(a2,b2)→ s2 . . .
(aN ,bN)→ qF . . .

. . . from initial state qI to acceptance state qF .

For example, (haces, haz<n><m><pl>). . .

. . . may be aligned as (h, h)(a, a)(c, z)(θ, <n>)(θ, <m>)(e, θ)(s, <pl>).

23

Building nondeterministic transducers: details/1

For each dictionary entry (a1, b1)(a2, b2) . . . (aN , bN) . . .

. . . build a path qI
(a1,b1)→ s1

(a2,b2)→ s2 . . .
(aN ,bN)→ qF . . .

. . . from initial state qI to acceptance state qF .

For example, (haces, haz<n><m><pl>). . .

. . . may be aligned as (h, h)(a, a)(c, z)(θ, <n>)(θ, <m>)(e, θ)(s, <pl>).

23

Building nondeterministic transducers: details/1

For each dictionary entry (a1, b1)(a2, b2) . . . (aN , bN) . . .

. . . build a path qI
(a1,b1)→ s1

(a2,b2)→ s2 . . .
(aN ,bN)→ qF . . .

. . . from initial state qI to acceptance state qF .

For example, (haces, haz<n><m><pl>). . .

. . . may be aligned as (h, h)(a, a)(c, z)(θ, <n>)(θ, <m>)(e, θ)(s, <pl>).

23

Building nondeterministic transducers: details/1

For each dictionary entry (a1, b1)(a2, b2) . . . (aN , bN) . . .

. . . build a path qI
(a1,b1)→ s1

(a2,b2)→ s2 . . .
(aN ,bN)→ qF . . .

. . . from initial state qI to acceptance state qF .

For example, (haces, haz<n><m><pl>). . .

. . . may be aligned as (h, h)(a, a)(c, z)(θ, <n>)(θ, <m>)(e, θ)(s, <pl>).

23

Building nondeterministic transducers: details/1

For each dictionary entry (a1, b1)(a2, b2) . . . (aN , bN) . . .

. . . build a path qI
(a1,b1)→ s1

(a2,b2)→ s2 . . .
(aN ,bN)→ qF . . .

. . . from initial state qI to acceptance state qF .

For example, (haces, haz<n><m><pl>). . .

. . . may be aligned as (h, h)(a, a)(c, z)(θ, <n>)(θ, <m>)(e, θ)(s, <pl>).

23

Building nondeterministic transducers: details/1

For each dictionary entry (a1, b1)(a2, b2) . . . (aN , bN) . . .

. . . build a path qI
(a1,b1)→ s1

(a2,b2)→ s2 . . .
(aN ,bN)→ qF . . .

. . . from initial state qI to acceptance state qF .

For example, (haces, haz<n><m><pl>). . .

. . . may be aligned as (h, h)(a, a)(c, z)(θ, <n>)(θ, <m>)(e, θ)(s, <pl>).

[back]

23

Building nondeterministic transducers: details/2

qI qF
h:h a:a c:z θ:<n> θ:<m> e:θ s:<pl>

The resulting transducer is determinized and minimized.

24

Building nondeterministic transducers: details/2

qI qF
h:h a:a c:z θ:<n> θ:<m> e:θ s:<pl>

The resulting transducer is determinized and minimized.

[back]

24

Converting into letter transducers: details

• Transitions q
(σ,γ1γ2...γn)−→ q′ with n > 1 . . .

. . . are unfolded into state paths q
(σ,γ1)−→ s1

(θ,γ2)−→ s2 . . .
(θ,γn)−→ q′

• For each state q and for each tail γ1γ2 . . . γn ∈ ψ(q), . . .

ldots build an inputless state path q
(θ,γ1)−→ s1

(θ,γ2)−→ s2 . . .
(θ,γn)−→

qF (the only source of input nondeterminism).

25

Converting into letter transducers: details

• Transitions q
(σ,γ1γ2...γn)−→ q′ with n > 1 . . .

. . . are unfolded into state paths q
(σ,γ1)−→ s1

(θ,γ2)−→ s2 . . .
(θ,γn)−→ q′

• For each state q and for each tail γ1γ2 . . . γn ∈ ψ(q), . . .

ldots build an inputless state path q
(θ,γ1)−→ s1

(θ,γ2)−→ s2 . . .
(θ,γn)−→

qF (the only source of input nondeterminism).

25

Converting into letter transducers: details

• Transitions q
(σ,γ1γ2...γn)−→ q′ with n > 1 . . .

. . . are unfolded into state paths q
(σ,γ1)−→ s1

(θ,γ2)−→ s2 . . .
(θ,γn)−→ q′

• For each state q and for each tail γ1γ2 . . . γn ∈ ψ(q), . . .

ldots build an inputless state path q
(θ,γ1)−→ s1

(θ,γ2)−→ s2 . . .
(θ,γn)−→

qF (the only source of input nondeterminism).

25

Converting into letter transducers: details

• Transitions q
(σ,γ1γ2...γn)−→ q′ with n > 1 . . .

. . . are unfolded into state paths q
(σ,γ1)−→ s1

(θ,γ2)−→ s2 . . .
(θ,γn)−→ q′

• For each state q and for each tail γ1γ2 . . . γn ∈ ψ(q), . . .

ldots build an inputless state path q
(θ,γ1)−→ s1

(θ,γ2)−→ s2 . . .
(θ,γn)−→

qF (the only source of input nondeterminism).

25

Converting into letter transducers: details

• Transitions q
(σ,γ1γ2...γn)−→ q′ with n > 1 . . .

. . . are unfolded into state paths q
(σ,γ1)−→ s1

(θ,γ2)−→ s2 . . .
(θ,γn)−→ q′

• For each state q and for each tail γ1γ2 . . . γn ∈ ψ(q), . . .

ldots build an inputless state path q
(θ,γ1)−→ s1

(θ,γ2)−→ s2 . . .
(θ,γn)−→

qF (the only source of input nondeterminism).

25

Converting into letter transducers: details

• Transitions q
(σ,γ1γ2...γn)−→ q′ with n > 1 . . .

. . . are unfolded into state paths q
(σ,γ1)−→ s1

(θ,γ2)−→ s2 . . .
(θ,γn)−→ q′

• For each state q and for each tail γ1γ2 . . . γn ∈ ψ(q), . . .

ldots build an inputless state path q
(θ,γ1)−→ s1

(θ,γ2)−→ s2 . . .
(θ,γn)−→

qF (the only source of input nondeterminism).

[back]

25

