
Corpus-based stochastic finite-state predictive text
entry for reduced keyboards: application to Catalan

Mikel L. Forcada
Departament de Llenguatges i Sistemes Informàtics

Universitat d’Alacant,
E-03071 Alacant, Spain

http://www.dlsi.ua.es/~mlf/

Abstract Users of digital mobile
phones have access to an increas-
ing number of text-based services but
most of them can only use a very re-
duced keyword for text entry. Tradi-
tionally, this has been solved by means
of multiple tapping and delays or next-
character keys (e.g. 66(pause)666 for
no), which is slow (two taps per letter
on average), inconvenient, and prone
to error. Recently, some mobile termi-
nals offer dictionary-based predictive
text-entry schemes which, in almost
all cases, allow for one-tap-per-letter
text entry (e.g. 367 for for). This
paper shows how text corpora can be
used to build stochastic finite-state au-
tomata which may in turn be easily
used to implement predictive text en-
try for medium-sized languages such
as Catalan, not currently supported
by major predictive-text-entry compa-
nies.

1 Introduction

Users of digital mobile phones have access
to an increasing number of text-based ser-
vices: short messages (SMS), chat, inter-
net browsing via the wireless access pro-
tocol (WAP), etc., but most of them can
only use a very reduced keyword (about
a dozen keys) for text entry. Figure 1
sketches a typical mobile phone keyboard.
Traditionally, text entry has been solved
by means of multiple tapping (e.g. 222 for
‘c’) and 1-second delays or next-character
keys (e.g. 66(pause or next-character
key)666 for ‘no’), which is slow, incon-
venient, and prone to error. The aver-
age number of keypresses (taps) necessary
to write a message varies with language

but ranges around two.1 More recently,
medium- and high-end mobile phone ter-
minals offer dictionary-based predictive
text-entry systems which, in almost all
cases, allow for one-tap-per-letter text en-
try (e.g. 367 for ‘for’ with an English dic-
tionary). There are a number of compa-
nies licensing such systems to manufactur-
ers of mobile phones: Tegic Communica-
tions’ T9 (http://www.t9.com, see also
Kushler (1998)) and Zi Corporation’s eZi-
Text (http://www.zicorp.com).2 The
operation of these two systems is slightly
different: whereas T9 shows only the
most likely prefix (or whole word) for the
sequence keyed so far, eZiText tries to
provide a number of very likely comple-
tions to it which pop up and can be se-
lected using a special key. This paper
shows how the statistics in a text corpus
can be easily used to build a stochastic
finite-state automaton which may be eas-
ily used to implement predictive text entry
—with word completion— for medium-
sized languages such as Catalan (6 mil-
lion speakers), which are not currently
supported by major predictive text-entry
companies.3 Currently, predictive-text-
entry dictionaries and software are stored
as firmware in mobile phones, but recently
mobile phones are capable of using soft-

1Obviously, if no mistake is made.
2There are two additional fast text entry sys-

tem, Eatoni’s wordwise and letterwise (http:
//www.eatoni.com), but, to my knowledge, these
are not dictionary-based, but rather rely on letter
distributions.

3Eatoni do offer Catalan among other
medium-sized languages but their method is
based on letter statistics, not on dictionaries. The
use of text statistics to implement disambigua-
tion strategies for reduced keyboards is not new,
see Arnott and Javed (1992).

ware and data downloaded from the net-
work itself. Note that the actual technol-
ogy used by T9 ’s and eZiText ’s propri-
etary dictionary-based predictive text en-
try has not been disclosed and may differ
from the one described here, although it
is very unlikely to be very different.

This paper is organized as follows. Sec-
tion 2 describes the use of corpus-based
finite-state stochastic dictionaries; sec-
tion 3 describes how they may be ap-
plied to predictive text entry in a mobile
telephone, both from the user’s side and
from the system side. Section 4 describes
simulation experiments with a Catalan
corpus-based finite-state predictive-text-
entry system. Finally, concluding remarks
are given in section 5.

2 Finite-state stochastic
dictionaries from corpora

The key ingredient in dictionary-based
predictive-text-entry systems may be
modelled as a stochastic finite-state ma-
chine; in particular, a trie with probabili-
ties corresponding to frequencies observed
for words and their prefixes in suitable
corpora. These machines may be made
more compact by merging those states
having similar continuation statistics, us-
ing techniques such as the ones developed
by Carrasco and Oncina (1994); this is
very important when one considers that
memory saving is at a premium in hand-
held devices, especially when updates or
data have to be downloaded through the
network at low rates. Results reported
here are those obtained without perform-
ing this compaction.

A finite-state stochastic dictionary is a
6-tuple

M = (Q,Σ, δ, p, qI , π), (1)

where Q = {q1, q2, . . . , q|Q|} is a set of fi-
nite states, Σ = {σ1, σ2, . . . , σ|Σ|} is the
alphabet of symbols used in words, δ :
Q × Σ → Q is the next-state function,
p : Q × Σ → [0, 1] assigns probability to
those transitions possible according to δ,
qI is the initial state, π : Q→ [0, 1] assigns
nonzero termination probability to those
states corresponding to whole words.

In particular, if W ∈ Σ∗ is the susbet
of words present, states represent all the
possible prefixes of words in W , that is,
Q = Pr(W) where Pr(W) = {z ∈ Σ∗ :
(∃x ∈ Σ∗ : zx ∈ W)}; the next-state
function δ is therefore trivially defined as
follows: δ(q, a) = qa for all q ∈ Q and
for all a ∈ Σ such that qa ∈ Q, and
undefined otherwise. When a corpus S
is used, the relative frequencies of words
fS : W → [0, 1] (after suitable removal
of hapax legomena or smoothing) may be
used to determine p and π as follows. The
values of p for all q ∈ Q and all a ∈ Σ are
estimated as

p(q, a) =
cS(qa)

cS(q)
(2)

where

cS(q) =
∑

z∈Σ∗:qz∈W

fS(qz) (3)

are the frequencies of prefixes. The val-
ues of the termination probabilities π are
estimated for all q ∈ Q as

π(q) =
fS(q)

cS(q)
∀q ∈ Q. (4)

Although it may be easily computed by
traversing the finite-state stochastic dic-
tionary, it may be convenient (if memory
is not scarce) to store with each state (pre-
fix) in Q the continuation or suffix that
turns it into the most likely whole word.4

If function C : Q→ Σ∗ assigns a continu-
ation string to all states in Q, the winning
continuation of a prefix q is given by

C(q) = argmaxz∈Σ∗ fS(qz). (5)

3 Using finite-state dictionaries
for predictive text entry

3.1 The keyboard

Let K be the alphabet of those keys K =
{1, 2, . . . , 9} onto which letters (or sym-
bols making up words) are mapped (see
fig. 1), and Σk ⊂ Σ the set of letters
mapped to key k ∈ K. Table 1 shows a
possible assignment of Catalan letters and
symbols to keys.

4Storing continuations has been the choice in
the simulations below.

1 2 3
’ - · ABC DEF
4 5 6

GHI JKL MNO
7 8 9

PQRS TUV WXYZ
* 0 #

next . space

Figure 1: A mobile phone keypad

Key symbols

1 · - ’
2 a b c à ç
3 d e f è é
4 g h i ı̈
5 j k l
6 m n o ó ò
7 p q r s
8 t u v ú ü
9 w x y z

Table 1: Assignment of Catalan letters and
symbols to keys. In key 1, the centered dot ‘.’
is used as part of the trigraph ‘l·l’ represent-
ing a double ‘l’ sound; apostrophes and hy-
phens are used to attach articles, prepositions
and object pronouns to words: l’autòmat,
Universitat d’Alacant, programar-lo.

3.2 User interface

From the user’s side, the system works as
follows. Assume that the user wants to
key in the word “barcelona”.5 The user
may blindly —that is, by looking at the
keyboard, not at the screen— key in the
sequence of keys containing these letters,
227235662, then check whether the screen
shows barcelona as desired, and validate
it by pressing the space (#) key (this is
similar to the modus operandi of T9). If
the word on the screen is not the one de-
sired, the user can press the NEXT (*) key
repeatedly until the desired word shows
on the screen. For example, if the user
wants the word cara, and types 2272, the

5In this paper, the introduction of uppercase
letters will not be considered; this feature can eas-
ily be implemented. T9 uses repeated strokes on
the space key # to select all lowercase, all upper-
case, or first letter uppercase and the rest lower-
case.

system may show barc-, the most likely
prefix (with the hyphen indicating that it
does not correspond to a whole word); af-
ter pressing * three times, cara will be
shown on the screen so that pressing # will
validate it. But a “word completion” fea-
ture similar to that found in eZiText will
also be supported. It will be activated by
using an additional key (a typical choice
would be a function key such as the right-
arrow cursor key). When the user has
keyed in 2272, the system shows barc-
and the most likely completion somewhere
else in the screen (barcelona); if this com-
pletion is the one desired, the user can
simply hit a suitable completion key to
validate the whole word, which has taken
only 5 keystrokes to produce. However,
the user has to check the screen for sug-
gested completions, which requires sub-
stantial additional attention.

There are two special situations that
may happen with words not found in the
dictionary. One is when the user intro-
duces a sequence of keys for which no valid
prefix can be found in the dictionary; in
this case, a beep will be heard and the sys-
tem may fall back to “traditional” multi-
tap keying. The other situation is when
the user keys in the whole sequence, hears
no beep, but does not find the word af-
ter repeatedly hitting the NEXT key, *;
in that case, hitting the delete key will
erase the whole word —T9 erases only the
last letter— and the system will enter the
traditional mode for that particular word
(this can be improved to save some work
but does not happen very often).

3.3 Computational issues

From the system’s side, the computation
is easy: for each key sequence, a list of
candidate prefixes is easily built. The con-
struction may be defined recursively as fol-
lows. Let K∗ be the set of all finite-length
sequences of keypresses from K. Let us
denote the function computing the list of
candidate prefixes for a key sequence as
cand : K∗ → 2Q, so that the set of can-
didate prefixes for sequence v ∈ K∗ is
cand(v). Clearly,

cand(ε) = {ε} (6)

where ε stands for the empty string, and

cand(vk) = {xσ ∈ Q : x ∈ cand(v), σ ∈ Σk}.
(7)

If cand(vk) = ∅ for a given keypress se-
quence v, a beep is produced and the sys-
tem stores the list cand(v), so that one of
the prefixes may be selected and continued
using the traditional (multi-tap) method.
Candidate prefixes are sorted according to
their probability, so that the most proba-
ble candidate is shown first and the key
* may be used to select the second most
probable, the third, etc. Probability is
also recursively computed for each candi-
date prefix as follows:

P (ε) = 1, (8)

P (qσ) = P (q)p(q, σ). (9)

If the current prefix q is not a complete
word (that is, π(q) = 0), it is shown
with a dangling hyphen. No bias in fa-
vor of showing complete forms if present
has been used (Tegic’s T9 seems to do so).

4 Experiments

4.1 The corpus

As in the work of Dunlop and Crossan
(1999) and Dunlop and Crossan (2000), a
text corpus of about 900, 000 words cor-
responding to November 2000 issues of
the daily newspaper Avui (http://www.
avui.es) was used; after removing the
hapax legomena, about 25000 words and
68000 different prefixes were collected.
When a key sequence is entered, it may
correspond to one or more words in the
dictionary, because of the ambiguity of the
keypad: statistics observed are shown in
table 2, which shows the occurrence in the
corpus of words whose key sequences cor-
respond to a single word, to two words,
etc. As may be seen, more than half of
the words collected are uniquely defined
by a key sequence. However, the fraction
of words in the corpus that are correctly
reproduced by selecting the most frequent
word associated to the corresponding key-
pad sequence raises to 86.0%.6

6Choosing at random any of the words asso-
ciated to an ambiguous keypad sequence would

Ambiguity degree frequency

1 51.5%
2 13.6%
3 24.5%
4 6.1%
> 4 5.0%

Table 2: Corpus frequencies for words ver-
sus ambiguity degree of their key sequences
(the ambiguity degree of a key sequence is the
number of different words that map to that
sequence).

As in Dunlop and Crossan’s work, the
choice of corpus biases the dictionary; for
example, the names of prominent present-
day Catalan politicians are all in the dic-
tionary. It has to be noted also that
in these experiments only those Catalan
multi-word forms containing apostrophes
or hyphens that were actually found in
the texts were included in the dictionary,
with no attempt whatsoever to generalize
(which would be needed in a real applica-
tion).7

4.2 Evaluation of text-entry
methods

A comparative evaluation of the relative
advantages of different text-entry meth-
ods cannot be complete unless one takes
in consideration various ergonomical and
biomechanical aspects of text entry and
the cognitive issues arising (see Dunlop
and Crossan (2000)). These are very hard
to evaluate unless a physical phone-like in-
terface is built and experiments are con-
ducted with a group of users. Therefore,
it has been decided to evaluate only the
number of keystrokes necessary to produce
each word with each possible text-entry
method, and to average this number over
electronically available texts.

With the current method, there is more
than one way to obtain a given word, be-
cause the user may not become aware that
the continuation suggested on the screen
is the one desired, and may go on keying a

have given 51.5% + 13.6%/2 + 24.5%/3 + . . . =
68.7%.

7For example, one finds d’estat and l’estat, but
finds d’amic and not l’amic; one finds fer-los i
dir-los but finds fer-les and not dir-les (all correct
Catalan forms).

longer prefix of the word until the user re-
alizes that the complete key can be used.
It will be assumed that the user is always
looking at the screen and takes advantage
of the suggested continuation (if applica-
ble) as soon as possible (the effect of word
completion will be separately evaluated).
On the other hand, it will be assumed that
the user only presses the * key after hav-
ing keyed a whole word when the desired
result is not on the screen, but never dur-
ing the process. The rest of the details are
as in section 3.2.

Three different text-entry methods have
been tested: the traditional multitap
method, the predictive text-entry method
without word continuation and the predic-
tive text-entry method with word contin-
uation. They have been tested on three
texts: the corpus used to build the dictio-
nary (training text), another text from the
same newspaper containing 41,000 words,
and the following synthetic text contain-
ing sentences written “in the style of mes-
sages one would send by mobile phone”
(Dunlop and Crossan 2000)8:

Ens pots anar a buscar a l’aeroport?
La meua gossa es diu Xila.
Hola, com va la cosa?
Ei, sóc al bar, on ets tu ara?
Al súper. Que et fa falta res?
He perdut el tren; agafaré el següent.

The results are shown in table 3. Three
conclusions are clear:

• predictive text entry clearly reduces
the number of keystrokes per letter;

• word completion reduces it even fur-
ther;

• keystroke savings are smaller, but
still very distinct, when the texts are
not of the same kind as the corpora
used to build the probabilistic finite-
state dictionary.

It may be argued that a corpus of real
text messages would be the best corpus
to build a probabilistic dictionary, but a
number of problems make it clear that the
solution is not so straightforward:

8The sentences are actually a free translation
of those in Dunlop and Crossan (2000). This test
set is very short and is only used to get an indi-
cation of out-of-corpus performance.

• It is sometimes difficult to identify re-
liably the language of messages, es-
pecially when very similar languages
(such as Spanish and Catalan) coex-
ist, because messages are very short.
In addition, many adult Catalan
speakers have not been taught Cata-
lan in school,9 therefore do not mas-
ter the spelling of standard Catalan,
and may resort to using Spanish or
hybrid ortographical rules to spell the
words, which aggravates the problem
of language identification.

• A large fraction of messaging traffic
contain many abbreviations (some of
them comprehensible only to small
groups of users), which are used to al-
leviate the burden of the traditional
(multitap) text-entry method; the
impressive success of mobile phones
among teenagers who use them for
messaging much more often than
grown-ups may aggravate this. How
can one select those abbreviations
that should be added to dictionar-
ies?10

A local, partial solution to these problems
would be having a stochastic finite-state
dictionary that is updated by recomputing
frequencies for known words and adding
words each time the system enters the tra-
ditional mode for a particular unknown
word11

5 Concluding remarks

A method to use text corpora to im-
plement predictive text entry for mobile
phone keyboards and for medium-sized
languages (such as Catalan) has been pre-
sented. The method straightforwardly
builds a probabilistic finite automaton
representing the dictionary and the fre-
quencies of words and their prefixes and

9Teaching of Catalan in schools resumed in the
mid-seventies after four decades of Spanish-only
teaching.

10Tegic’s Spanish T9 dictionaries already con-
tain many common-use technological abbrevia-
tions (such as FTP or HTTP).

11Some word processors such as Sun Microsys-
tems’ StarOffice have a contextual word comple-
tion feature.

Text keystrokes per letter

traditional new, no compl. new, with compl.

Training text 2.019 1.083 (53.6%) 0.898 (44.5%)
More news 2.018 1.116 (55.3%) 0.940 (46.6%)
Synthetic message 1.938 1.347 (69.5%) 1.256 (64.8%)

Table 3: Average number of keystrokes per letter for different texts and different text-entry
methods. The percentages in the predictive text-entry methods are relative to the traditional
method.

then uses it to almost half the number
of keypresses per letter necessary to enter
text with respect to the traditional (multi-
tap) method, even when texts entered are
different to those used in training.

A number of extensions to this work are
envisioned: the use of existing complete
Catalan dictionaries containing forms not
found in training corpora; a more general
treatment of apostrophes and hyphens,
and a real user study using an interface
as close as possible to that of a real mo-
bile phone.

Acknowledgements: Support from
the Spanish Comisión Interministerial
de Ciencia y Tecnoloǵıa through grants
TIC97-0941 and TIC2000-1599-C02-02
is acknowledged. I also thank Rafael C.
Carrasco for valuable comments.

References

Arnott, J. and Javed, M. (1992). Prob-
abilistic character disambiguation for
reduced keyboards using small text
samples. Augmentative and Alterna-
tive Communication (ISSN 0743-4618),
8:215–223.

Carrasco, R. C. and Oncina, J. (1994).
Learning stochastic regular grammars
by means of a state merging method.
In Carrasco, R. and Oncina, J., editors,
Grammatical Inference and Applica-
tions, pages 139–152. Springer-Verlag.
Proceedings of the Second International
Colloquium on Grammatical Inference,
Alicante, Spain, September 1994.

Dunlop, M. and Crossan, A. (1999). Dic-
tionary based text entry method for mo-
bile phones. In Proc. 2nd Workshop on
Human Computer Interaction with mo-
bile devices.

Dunlop, M. D. and Crossan, A. (2000).
Predictive text entry methods for mo-
bile phones. Personal Technologies,
4(2):134–143.

Kushler, C. (1998). AAC [augmenta-
tive and alternative communication] us-
ing a reduced keyboard. In CSUN
1998 Conference Proceedings. (avail-
able at http://www.dinf.org/csun_
98/csun98_140.htm).

