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verano para que yo acabara unos experimentos durante el verano pasado, Quique, que
se ha tenido que conformar con jugar un poco menos con su padre para que éste le
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F.3 Ejemplo de música polifónica y su árbol correspondiente . . . . . . . . . . 212

xiv



List of Tables

2.1 Interval classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Summary of melodic rules for a note ni. . . . . . . . . . . . . . . . . . . 27
2.3 Matrix of edit costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Best results for each method and corpus in terms of precision-at-|class|. . 129
4.2 Method selected setups count . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.3 Results for skyline COVERS corpus with monophonic methods. . . . . . 137
4.4 Results for COVERS corpus with polyphonic methods. . . . . . . . . . . 140
4.5 Example of different Borda count rankings . . . . . . . . . . . . . . . . . . 141
4.6 Preprocessing times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.7 Metric trees precision-at-|class|: all parameters, all corpora . . . . . . . . 148

E.1 Selected setups for method Metric trees . . . . . . . . . . . . . . . . . . . 183
E.2 Selected setups for method C-BRAHMS . . . . . . . . . . . . . . . . . . . 186
E.3 Selected setups for method PROMS . . . . . . . . . . . . . . . . . . . . . 186
E.4 Selected setups for method Uitdenboderg . . . . . . . . . . . . . . . . . . 186
E.5 Selected setups for method Strings . . . . . . . . . . . . . . . . . . . . . . 187
E.6 Selected setups for method Mongeau and Sankoff . . . . . . . . . . . . . . 188
E.7 Selected setups for method Trees . . . . . . . . . . . . . . . . . . . . . . . 188
E.8 Selected setups for method PROMS . . . . . . . . . . . . . . . . . . . . . 189
E.9 Selected setups for method C-BRAHMS . . . . . . . . . . . . . . . . . . . 189
E.10 COVER Skyline results of selected methods . . . . . . . . . . . . . . . . . 190
E.11 COVER results of selected methods . . . . . . . . . . . . . . . . . . . . . 193
E.12 MIREX ADR results for method Metric trees . . . . . . . . . . . . . . . . 195
E.13 MIREX ADR results for method PROMS . . . . . . . . . . . . . . . . . . 195
E.14 MIREX ADR results for method Uitdenboderg . . . . . . . . . . . . . . . 196
E.15 MIREX ADR results for method Strings . . . . . . . . . . . . . . . . . . . 196
E.16 MIREX ADR results for method Mongeau and Sankoff . . . . . . . . . . . 197
E.17 Global monophonic results . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
E.18 Global polyphonic results. . . . . . . . . . . . . . . . . . . . . . . . . . . 201

xv





1
Introduction

Nowadays, the availability of huge amount of music stored in digital format in public or
personal collections creates problems for their organization and for locating information
inside of them. Additionally, sometimes the name of the files in those collections or the
meta-data describing them are inaccurate or even non-existent. This is why the user
often needs to listen each file or visualize their score or other graphical representation,
what makes even more inefficient the use of those collections.

It arises the necessity of tools able to classify and allow the user to look for music
given its content. These tools belong to the pattern recognition domain in what is known
as Music Information Retrieval (MIR).

MIR includes all disciplines that manipulate musical related information to give
digital systems users answers to questions about the music itself or its organization,
either through its content in a variety of formats or from the meta-data that describes
it. Several classifications of those MIR tasks have been proposed so far from different
points of view (Downie, 2003; Futrelle and Downie, 2003; Orio, 2006; Reiss and Sandler,
2002; Taheri-Panah and MacFarlane, 2004; Typke et al., 2005a; Uitdenbogerd, 2002).
Roughly they can be grouped in the following categories:

• representation of music information and signals

• comparison and searching

• recommendation

• classification

• transcription from digital audio into musical scores

• musical information discovering from raw data

• user interfaces

• optical music recognition

• music social networks

• legal issues
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CHAPTER 1. INTRODUCTION

• ethnomusicology

Our work is framed in the MIR domain, specifically in the representation of music
information and its comparison. In this dissertation a new representation of music in
symbolic format by means of trees is proposed along with the methods to evaluate the
similarity between two songs using this representation.

The use of those comparison methods solves the problem of classifying music by
its content, in particular finding duplicates or similar works and the search by musical
content. The applications range from the study and analysis tasks in musicology to the
detection of plagiarism, useful to protect copyrights in the music record industry. Some
of them are listed just below:

Digital libraries

One common problem in personal, academic, or other kind of digital libraries is the
presence of the same musical piece with slight differences such as distinct sample rates
in digital audio, or duplicate tracks in MIDI files that make them different in file size.
These little variations make impossible for tools that compare files at bit level like the
Unix diff to identify them as equal. Other usual problem is the existence of live versions
and covers of songs, that should be catalogued as such.

Song interrelation Some pieces refer to others including material from the latter in
so-called cites or allusions (Sadie, 2000). Known examples might be the inclusion of
some notes of the French national anthem into the Tchaikovsky’s 1812 Overture or the
allusions to Rossini’s William Tell Overture from the 15th Shostakovich’s symphony first
movement. On the other hand, the variation form (e.g., Bach’s Goldberg Variations),
or the mere development of a theme throughout the movements of a symphonic work
interrelate individual pieces as a part of a whole. For a digital library, it is very interesting
to be able to automatically construct a graph of interrelations to allow a hyper-medial
browsing of the musical database.

Search One of the most prominent applications of the music similarity computation
is the querying of a sequence of notes against a database of songs to obtain the pieces
that most resemble the query, allowing to look for a song whose name is unknown.
If the query is obtained by introducing a sequence of notes through a keyboard, by
singing or humming the discipline is named with the generic name Query-By-Melody
(QBM) (Doraisamy, 2004). In the case of humming, the discipline is named Query-By-
Humming (QBH) (Ghias et al., 1995). If the query is a song in digital audio format given
as an example, or it is obtained using Optical Music Recognition (OMR) (Bellini et al.,
2007; Choudhury et al., 2000) it is denoted as Query-By-Example (QBE) (Tzanetakis
and Cook, 1999).
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Plagiarism detection

Music copyright infringement cases use to be founded on expert opinions on the similarity
between the two works being litigated. In many cases one sequence of notes that is said
to be the object of the copy occurs in so many pieces that cannot be taken as original and
thus is not likely of being the subject of a plagiarism case. In order to allow lawyers to
have this information, musical databases must be available with tools that automatically
discover and measure the similarity between two works and the originality among the
rest (Cronin, 2002). It is then necessary for this kind of systems to have a precise
similarity measurement tool.

Composer Composers, in their creation process, elaborate some basic ideas that come
to their minds by inspiration or from other means like an automated random process.
The problem comes when this inspiration is not such, but it is a memory of another
known song. A similarity computation tool in a music database can inform the composer
that the idea is actually original, or at least, it is not found in the database.

Ethnomusicologists

Selfridge-Field (1998) poses the necessity of tools so that “music historians locate similar
tunes distinguished by modular substitutions (as in the transmission of early chant),
re-texting (as in masses that parody motets), consolidation of parts (as in lute or
keyboard transcriptions of chansons), and elaborations (as in divisions, diminutions,
and variations)”.

Motive extraction

For visualizing huge sets of works one cannot plot on-screen the whole score of each work,
nor play from start to end the pieces. Instead, one representative portion of each score
uses to be shown or played. This little portion of music is usually named as theme, and
most of the times is a repeated motive of the musical piece 1. The automatic calculation
of the motives requires a precise and flexible similarity measure to detect the possibly
altered repetitions of the main material. The automated motive extraction is also useful
to speed up some digital libraries tasks described above: it is faster to compare only the
main material of two songs than look into the complete pieces.

1In (Selfridge-Field, 1998) the following terms are stated:

theme Random portion of the work that enjoys the greatest melodic importance (e.g. Parsons (1975),
Barlow and Morgenstern (1978) catalogue.)

incipit Samples from start of a movement or a work (e.g. RISM (ris, 2005), LaRue (1988) symphony
catalogue). Used mainly for folk-songs and early repertories, where themes maybe coincident with
incipits.

3



CHAPTER 1. INTRODUCTION

The MIR community uses to categorize musical data into digital audio, metadata,
printed music, and symbolic representations. The first one stands for all file formats that
store recordings with the actual sound information after its digitization (see Fig. 1.2) in
well known formats like wav, aiff, ogg, or mp3. Those files may contain any kind of sound,
from the noise of a car to music, thus, if one wants to use musicological assumptions this
musical information must be inferred from the raw data. The metadata has information
referent to the song like performer, composer, and title. As printed music we understand
any graphical representation of a musical score, sheet music that a person can read but
for the computer is only a picture. Finally the symbolic representations include scores
in digital formats that contain information about notes, clefs, staffs, etc. that must
be rendered by a notation application in order to generate sheet music. Besides, this
music format can be played either by a person (after being rendered) or by a machine.
Examples of these kind of score formats are MusicXML (Good and Actor, 2003), SCORE
(Selfridge-Field, 1997), kern (Huron, 2002), or GUIDO (Hoos et al., 1998). Music can
be also represented by the recording of an interpretation in symbolic format. In those
formats the operations that make music sound are recorded, like the onset and offset
of notes, its volume, or the pressure on a keyboard key. The most extended format
for this is the Standard MIDI files (SMF) (MID, 1996). See Figs. 1.3 and 1.4 for two
visualizations of the same music performance information recorded in MIDI files.
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Figure 1.1: Juego de versos para Psalmodia de tono 3o, 5 Vs, by Juan Bautista Cabanilles
(1644-1712), in common music notation

We are interested in the two symbolic representations, both the scores and the
symbolic representation of played music, because we want to investigate into musical
similarity using musical terms (notes, degrees, etc...), and symbolic data is the
representation that is closest to that kind of information. In the score, the actual notes
with possibly additional information can be found explicitly, whereas in digital audio
(Pertusa and Iñesta, 2008; Plumbley et al., 2002) or after the use of an OMR (Bellini
et al., 2007) they must be detected, possibly with mistakes. We want to leave aside
timbre to be able to manage only notes and structures. It is worth to remark that
transcription from audio and sheet music is being considerably improved and in the
future the extraction of the music elements needed from those media will be as accurate
as obtaining them from a symbolic source.

Nowadays, music similarity methods are coarsely divided into those that work with
monophonic music and those able to process polyphonic music, directly or by converting
it previously into monophonic.
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Figure 1.2: Raw audio corresponding to score in Fig. 1.1

Figure 1.3: Piano roll extracted corresponding to score in Fig. 1.1

The New Grove Dictionary of Music and Musicians (Sadie, 2000) defines the term
polyphony as: “A term used to designate various important categories in music: namely,
music in more than one part, music in many parts, and the style in which all or several
of the musical parts move to some extent independently. Polyphonos (many-voiced) and
polyphonia occur in ancient Greek without any connotations of musical technique. After
classical antiquity, forms of the adjective came into use in modern languages, designating
both non-musical phenomena such as birdcalls, human speech and multiple echoes, and
musical phenomena such as instrumental range and tonal variety, as well as the various
tunes playable on an automatic musical device”.

Thus, the term polyphony can be regarded from two different points of view: the
simultaneity of notes or the concurrent voices. From the first point of view, the difference
resides in the maximum number of notes played at a time, if this number is one, the work
is monophonic (see Fig. 1.5), being polyphonic otherwise (see Fig. 1.1). From the other
approach, the polyphony depends on the number of simultaneous voices, and not only in
the number of simultaneous notes (Meudic, 2003; Pickens, 2004). For example there are
numerous examples of several voices being produced simultaneously by one instrument
with an only a note played at a time, like the Sonatas and Partitas for solo violin by J.S.
Bach. Under this perspective, another kind of music can be introduced: the homophonic
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DivisionType: PPQ

Resolution: 1024 ticks per beat

-----------------------

Track 0:

-----------------------

tick 0: SMTPE Offset: 0:0:0.0.0

tick 0: Time Signature: 4/4

tick 0: Key Signature: G major

tick 0: Set Tempo: 120.0 bpm

tick 16384: End of Track

-----------------------

Track 1:

-----------------------

tick 0: Meta event: 51 75 69 63 6B 54 69 6D 65 20 31

tick 0: Sequence/Track Name: Organ

tick 0: [C0 13] chnl 1: program change 19

tick 0: [B0 07 65] chnl 1: control change 7 value: 101

tick 0: [B0 0A 40] chnl 1: control change 10 value: 64

tick 512: [90 47 40] chnl 1: note On B4 veloc.: 64

tick 1024: [80 47 00] chnl 1: note Off B4 veloc.: 0

tick 1024: [90 45 40] chnl 1: note On A4 veloc.: 64

tick 1536: [80 45 00] chnl 1: note Off A4 veloc.: 0

tick 1536: [90 47 40] chnl 1: note On B4 veloc.: 64

tick 2048: [80 47 00] chnl 1: note Off B4 veloc.: 0

tick 2048: [90 43 40] chnl 1: note On G4 veloc.: 64

tick 2560: [80 43 00] chnl 1: note Off G4 veloc.: 0

tick 2560: [90 40 40] chnl 1: note On E4 veloc.: 64

tick 2816: [80 40 00] chnl 1: note Off E4 veloc.: 0

tick 2816: [90 42 40] chnl 1: note On F#4 veloc.: 64

tick 3072: [80 42 00] chnl 1: note Off F#4 veloc.: 0

tick 3072: [90 43 40] chnl 1: note On G4 veloc.: 64

tick 3328: [80 43 00] chnl 1: note Off G4 veloc.: 0

tick 3328: [90 45 40] chnl 1: note On A4 veloc.: 64

tick 3584: [80 45 00] chnl 1: note Off A4 veloc.: 0

tick 3584: [90 47 40] chnl 1: note On B4 veloc.: 64

tick 3840: [80 47 00] chnl 1: note Off B4 veloc.: 0

tick 3840: [90 48 40] chnl 1: note On C5 veloc.: 64

tick 4096: [80 48 00] chnl 1: note Off C5 veloc.: 0

tick 4096: [90 4A 40] chnl 1: note On D5 veloc.: 64

tick 4608: [90 47 40] chnl 1: note On B4 veloc.: 64

tick 5120: [80 47 00] chnl 1: note Off B4 veloc.: 0

tick 5120: [90 45 40] chnl 1: note On A4 veloc.: 64

tick 5632: [80 45 00] chnl 1: note Off A4 veloc.: 0

tick 5632: [90 47 40] chnl 1: note On B4 veloc.: 64

tick 6144: [80 4A 00] chnl 1: note Off D5 veloc.: 0

tick 6144: [90 4F 40] chnl 1: note On G5 veloc.: 64

tick 6144: [80 47 00] chnl 1: note Off B4 veloc.: 0

tick 6144: [90 43 40] chnl 1: note On G4 veloc.: 64

tick 6656: [80 43 00] chnl 1: note Off G4 veloc.: 0

tick 6656: [90 40 40] chnl 1: note On E4 veloc.: 64

tick 6912: [80 40 00] chnl 1: note Off E4 veloc.: 0

tick 6912: [90 42 40] chnl 1: note On F#4 veloc.: 64

tick 7168: [80 42 00] chnl 1: note Off F#4 veloc.: 0

tick 7168: [90 43 40] chnl 1: note On G4 veloc.: 64

tick 7424: [80 43 00] chnl 1: note Off G4 veloc.: 0

tick 7424: [90 45 40] chnl 1: note On A4 veloc.: 64

tick 7680: [80 45 00] chnl 1: note Off A4 veloc.: 0

tick 7680: [90 47 40] chnl 1: note On B4 veloc.: 64

tick 7936: [80 47 00] chnl 1: note Off B4 veloc.: 0

tick 7936: [90 48 40] chnl 1: note On C5 veloc.: 64

tick 8192: [80 4F 00] chnl 1: note Off G5 veloc.: 0

tick 8192: [80 48 00] chnl 1: note Off C5 veloc.: 0

tick 8192: [90 4D 40] chnl 1: note On F5 veloc.: 64

tick 8192: [90 4A 40] chnl 1: note On D5 veloc.: 64

tick 8704: [80 4D 00] chnl 1: note Off F5 veloc.: 0

tick 8704: [90 4F 40] chnl 1: note On G5 veloc.: 64

tick 8960: [80 4F 00] chnl 1: note Off G5 veloc.: 0

tick 8960: [90 4D 40] chnl 1: note On F5 veloc.: 64

tick 9216: [80 4D 00] chnl 1: note Off F5 veloc.: 0

tick 9216: [90 4C 40] chnl 1: note On E5 veloc.: 64

tick 9216: [80 4A 00] chnl 1: note Off D5 veloc.: 0

tick 9216: [90 48 40] chnl 1: note On C5 veloc.: 64

tick 9728: [80 4C 00] chnl 1: note Off E5 veloc.: 0

tick 9728: [90 4D 40] chnl 1: note On F5 veloc.: 64

tick 9984: [80 4D 00] chnl 1: note Off F5 veloc.: 0

tick 9984: [90 4C 40] chnl 1: note On E5 veloc.: 64

tick 10240: [80 4C 00] chnl 1: note Off E5 veloc.: 0

tick 10240: [90 4A 40] chnl 1: note On D5 veloc.: 64

tick 10240: [80 48 00] chnl 1: note Off C5 veloc.: 0

tick 10240: [90 47 40] chnl 1: note On B4 veloc.: 64

tick 10752: [80 4A 00] chnl 1: note Off D5 veloc.: 0

tick 10752: [90 4C 40] chnl 1: note On E5 veloc.: 64

tick 11008: [80 4C 00] chnl 1: note Off E5 veloc.: 0

tick 11008: [90 4A 40] chnl 1: note On D5 veloc.: 64

tick 11264: [80 4A 00] chnl 1: note Off D5 veloc.: 0

tick 11264: [90 48 40] chnl 1: note On C5 veloc.: 64

tick 11264: [80 47 00] chnl 1: note Off B4 veloc.: 0

tick 11264: [90 45 40] chnl 1: note On A4 veloc.: 64

tick 11776: [80 48 00] chnl 1: note Off C5 veloc.: 0

tick 11776: [90 4A 40] chnl 1: note On D5 veloc.: 64

tick 12032: [80 4A 00] chnl 1: note Off D5 veloc.: 0

tick 12032: [90 48 40] chnl 1: note On C5 veloc.: 64

tick 12288: [80 48 00] chnl 1: note Off C5 veloc.: 0

tick 12288: [80 45 00] chnl 1: note Off A4 veloc.: 0

tick 12288: [90 47 40] chnl 1: note On B4 veloc.: 64

tick 12288: [90 44 40] chnl 1: note On G#4 veloc.: 64

tick 14336: [80 47 00] chnl 1: note Off B4 veloc.: 0

tick 14336: [80 44 00] chnl 1: note Off G#4 veloc.: 0

tick 16384: End of Track

Figure 1.4: Text dump of a MIDI file corresponding to score in Fig. 1.1

music, where the song is composed of several monophonic voices that move together in
parallel (see Fig. 1.6). For our task another polyphonic texture may be considered as
singular: that conformed by a melody voice with one or more accompaniment voices.

During this dissertation, the first classification will be used since the automatic voice
extraction from raw data is currently an open problem (Rafailidis et al., 2008). In any
case, the representation and methods we propose are able to work with both monophonic
and polyphonic music.

The term music similarity is ambiguous or at least it can be judged from different
points of view (Barthelemy and Bonardi, 2001; Byrd and Crawford, 2002; Hofmann-
Engl, 2001; Novello et al., 2006; Selfridge-Field, 1998). It may refer to the resemblance
between the melodic line of two musical fragments (Fig. 1.7), the similarity of their
rhythmic patterns (Fig. 1.8), or even their harmonic coincidence (Fig. 1.9).
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Figure 1.5: Monophonic melody. Beginning of Mozart’s k331 Theme, Var VI

Figure 1.6: Homophonic excerpt

In order to disambiguate this concept for the span of this dissertation, we will consider
as ground-truth that the most similar songs are different interpretations of the same song
or those produced by the variation compositional form. This statement implies that the
similarity is measured upon a trade-off between the melodic, rhythmic, and even the
harmonic dimension of songs.

Figure 1.7: Manual transcriptions of excerpts of the two songs Les Feuilles Mortes
(autumn leaves) and La Maritza. All the notes of the melody from Les Feuilles Mortes
are also present in the Maritza’s (red notes). The inserted black notes in La Maritza
can be considered as ornaments (from (Robine et al., 2007b)).

In the literature (Barthelemy and Bonardi, 2001; Grachten et al., 2004; Rolland,
1998; Selfridge-Field, 1998) it has been widely accepted that the encoding of the music
strongly influences the capability and quality of the comparison methods. Traditionally
in MIR symbolic music has been represented by means of sets of tuple strings, where each

7
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Figure 1.8: Excerpt of the Beethoven’s Symphony No. 5 - Opus 67 ( 1st Movement ).
The rhythmic cell of the first two bars played at unison holds the main theme of the
work.

tuple, in diverse ways, usually contains information on pitch, duration and onset time.
Both the retrieval and the comparison have been mostly tackled with structural pattern
matching techniques in strings. There are some other approaches, like the geometric
one, which transforms the melody into a plot obtained tracing a line between the
successive notes in the staves. This way, the melody comparison problem is converted
into a geometric one. Other methods have been introduced in the last years like the
representation by means of graphs or the comparison using statistical measures.

In this dissertation, we use a non-linear representation of melody: by means of trees
that express the metric and rhythm of music in a natural way. The approach to tree
construction is based on the fact that the different music notation figures are designed on
a logarithmic scale: a whole note lasts twice a half note, whose length is the double of a
quarter note, etc. This representation provides us with a richness of possibilities that the
strings and geometric methods never will: implicit description of rhythm, more musical
meaning and automatic emphasizing of relevant notes, for example. Furthermore, trees
open a new representation power that allows to merge in the same single data structure
all dimensions of music involved in musical similarity: pitch, rhythm, and harmony.

Outline of thesis

This manuscript is organized as follows:

• First, a background on music symbolic encoding methods and similarity computa-
tion systems available in the literature.

• Next, the current state of the art on successful uses of trees for music other than
comparison.

• After that, our proposed method to encode and compare music.

8



• The details about the experiments performed and their results.

• Future works, and some aspects related to this dissertation that have been tackled
by the author in other publications but have not been included in this thesis.

• Finally, an appendix that complements some of the previous chapters can be found
at the end of this volume.
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(c) Variation 11

Figure 1.9: Sample variation excerpts, from the Mozart ‘Twinkle, Twinkle, Little
Star’ composition. The similarity can be found through an harmonic analysis of the
fragment (Pickens and Crawford, 2002).
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2
Background

Musical works can be compared from different perspectives of description and represen-
tation. One may compare just song names using string comparison techniques. More
detailed metadata (Pérez-Garćıa et al., 2009) can be also used as high level descriptors
like author name, meter and key changes, or instrumentation. Finally, the music content
itself can be used to check the similarity between songs. This thesis is focused on this
later case, the comparison using just the musical content represented in a symbolic way.

Depending on the application domain, musical content is said to contain different
attributes. In the psychoacoustics domain, Levitin (1999) uses pitch, rhythm, tempo,
contour, timbre, loudness, and spatial location. In the MIR domain, Downie (1999)
considers seven facets: pitch, temporal, harmonic, timbral, editorial, textural, and
bibliographic. Other authors also include more elaborated features like thematic
information obtained from the raw data (Hsu et al., 1998). For comparison based on
musical content, the most used and directly available properties are pitch and rhythm. In
this dissertation those two attributes will be used, also including in some cases harmonic
information, so this background section will focus on state-of-the-art works that use
these kind of data to compare music.

In the automated comparison of musical pieces in symbolic format there have been
two works that can be considered milestone. The first one by Mongeau and Sankoff
(1990) used string matching techniques (Wagner and Fischer, 1974) from computational
biology adapted to the music comparison task. The second one, edited by Selfridge-
Field (1998), reviewed in-depth the representation methods and comparison techniques
at that date, showing that the string edit distance algorithms were the most commonly
used methods to measure musical similarity, along with some early systems based
on geometric representations (Maid́ın, 1998). Since then, many methods have been
proposed to compare music content in symbolic format. However, the number of really
new representations or algorithms introduced remains limited. The contribution of
most works is rooted in the study of the high number of variations of those original
techniques, both in the way of representing symbolically music and in the pattern
matching algorithms used.

The way music is encoded determines the kind of searches that can be undertaken as
stated in several works like (Selfridge-Field, 1998) or (Barthelemy and Bonardi, 2001).
To the date of writing this manuscript, there are basically six trends in the representation
and comparison of music in symbolic format:

11



CHAPTER 2. BACKGROUND

• string edit distance and alignment methods using a variety of representations (Grachten
et al., 2005; Lemström, 2000; Mongeau and Sankoff, 1990)

• n-gram algorithms (Doraisamy, 2004; Downie, 1999; Uitdenbogerd, 2002)

• graph encodings (Pinto and Tagliolato, 2008)

• statistical comparison measures (Bernabeu et al., 2009; Engelbrecht, 2002; Habrard
et al., 2008; Pardo et al., 2004; Pickens, 2004)

• geometrical frameworks (Aloupis et al., 2006; Tanur, 2005; Typke, 2007; Ukkonen
et al., 2003a; Wiggins et al., 2002)

• tree representations (Rizo et al., 2003, 2008)

In this section, the different ways of encoding pitch and rhythm for monophonic
and polyphonic music will be presented first, then the particularities of each comparison
system will be reviewed. The last paradigm, using trees for representing music, is the
central topic of the current dissertation and will be covered through the rest of chapters.

2.1 Monophonic music

In the context of music comparison, a monody is a sequence of notes or rests represented
here by two main properties: pitch and rhythm. In this section monophony only means
one note sounding at any time. No consideration is made on whether the composer
wanted to collapse several perceived musical lines in a monody as it happens with the
Bach’s Partitas for violin solo. This issue will be covered in further sections. Several
different encodings for both properties have been proposed so far in the literature.

4
36�
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36�Õ ��
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�
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�
����
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(a)

w
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3���

�ww
w

w
(b)

Figure 2.1: First bar of “Rumores de la Caleta” from Isaac Albeniz (left), op. 71, and
a transposition (right).

These encodings are not designed to describe thoroughly the music they depict,
but to serve as adequate intermediate data for this comparison task. Besides, it
is desirable that the intermediate representations hold some properties that ease the
comparisons: transposition invariance and tempo invariance (Lemström, 2000). The
former means that the transposition of a melody or its tonality change should not affect
its representation (see Fig. 2.1), because the transposition has little effect on similarity

12



2.1. MONOPHONIC MUSIC
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Figure 2.2: Different figurations for the bars 3 and 4 of the Manuel de Falla’s “Sombrero
de tres picos: danza de los vecinos”.

perception (Uitdenbogerd and Zobel, 1999). The latter means that a change in the
tempo or figuration of the song should not alter the representation (see Fig. 2.2). For
the interested reader, a set-theoretic formalism for defining and classifying the various
musical invariances can be found in (Lemström and Wiggins, 2009).

Some of the different representations that will be exposed have been approached
with slight differences depending on the author. In all cases our own definition of the
encoding that will be used later in the experiments will be stated.

2.1.1 Pitch encodings

The different properties used for the symbols that encode the pitches in a melody can
be absolute, if the property depends only on the represented note, or relative, if it is
defined in terms of differences to their surrounding notes, usually the preceding one.
Relative encodings make no sense in a polyphonic context as there may be more than
one previous or next note to be selected as the reference note.

Next, some commonly used pitch properties are presented. In each case, the alphabet,
Σp, applicable is enunciated. The pitch encodings presented below are illustrated in
Fig. 2.3.

For each of the definitions of pitch representations given below, a function with the
same name is implicitly defined from the set of pitches P to the representation alphabet.
In general, given a pitch representation r, the function pr : P → Σpr returns the pitch
representation r of the given note.

Common music notation pitches (absolute) (pcmn)

In this dissertation, only western tonal music for the common practice period is covered.
As common music notation we understand the set of graphical elements that are used for
writing this kind of music. In terms of pitch, the fundamental elements found in any score
are the name of the notes, their accidental, and the octave: P = (N ×A×O) ∪ {‘s’} ,
N ∈ {C,D,E, F,G,A,B}, A ∈ {[[, [, \, ], x}, O ∈ [−2, 8] ⊂ Z. The ‘s’ stands for “rest”.

13
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Pitch encoding Song Pitch Sequence

Common music notation (pcmn)
D minor (A,\,2) (E,\,3) (A,\,3) (C,],4) (E,\,4) (A,\,4) (C,],5) (A,\,5)

B minor (F,],1) (C,],2) (F,],2) (A,],2) (C,],3) (F,],3) (A,],3) (F,],4)

Base-12 (p12)
D minor 9 4 9 1 4 9 1 9

B minor 6 1 6 10 1 6 10 6

Base-21 (p21)
D minor 10 5 10 2 5 10 2 10

B minor 7 2 7 11 2 7 11 7

Base-40 (p40)
D minor 32 15 32 4 15 32 4 32

B minor 21 4 21 33 4 21 33 21

Absolute (pabs)
D minor 33 40 45 49 52 57 61 69

B minor 18 25 30 34 37 42 46 54

Interval (pitv)
D minor 0 7 5 4 3 5 4 8

B minor 0 7 5 4 3 5 4 8

Interval from tonic (pift)
D minor 7 2 7 11 2 7 11 7

B minor 7 2 7 11 2 7 11 7

Directed-modulo12 (pdm)
D minor trqprqu

B minor trqprqu

Contour (pc)
D minor 0 1 1 1 1 1 1 1

B minor 0 1 1 1 1 1 1 1

HD-Contour (phdc)
D minor 0 2 2 1 1 2 1 2

B minor 0 2 2 1 1 2 1 2

Figure 2.3: Different pitch encodings for the first bar of “Rumores de la Caleta” and its
transposition. Note the key signature to read the pitch class representation.

Definition 2.1.1 The alphabet is Σpcmn = (N ×A×O) ∪ {‘s’}, |Σpcmn | = 351 1

although in practice is usually more reduced. The range for piano is [A−1,C7], which is
enough for most cases.

This encoding is the closest to that used in music written scores. However, it is
necessary to perform a pitch spelling process (Meredith, 2006) if the source of the music
is a MIDI stream or the result of a transcription.

Base-n pitch representations (absolute)

There are two properties the encoding of a note in the range of an octave should hold for
being adequate for representing and handling music for analysis and composition, and to
a lesser extent, for similarity computation. The discrete accommodation of enharmonic
pitches property means that two notes with the same pitch but different spellings (e.g.
(E, ], 3) and (F, \, 3)) should be given two different codes. The second one, the interval
invariance, is held when given an interval, it leads to the same numerical value (obtained

1This figure has been obtained through the product of 10 octaves by 5 possible accidentals for each
one of the seven note names plus the rest.
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Figure 2.4: Base-7 representation of pitch.

through the subtraction of the numerical values of the represented notes) for any pair of
notes separated by this interval.

Four different ways to encode a note from the common music notation into a single
number have been studied focusing in those two properties in (Hewlett, 1992) and
(Selfridge-Field, 1998), namely base-7, base-12, base-21, and base-40.

In the context of melodic comparison, the main advantage of working with a single
number representing pitches instead of tuples is the speed-up of the symbol comparison
computation.

Base-7 (p7) It is the diatonic representation for the C major scale, an integer mapping
to the note name N in P (See Fig. 2.4).

Definition 2.1.2 The alphabet is Σp7 = {i ∈ N | 0 ≤ i ≤ 7}, where 0 is used to encode
rests.

For the comparison task this representation has no advantage. Thus, it has not been
used in any similarity computation system.

Base-12 and Interval from tonic (p12,pift) This encoding has been also named
as folded pitch or name without octave (Rizo et al., 2003), or more commonly, pitch
class. In some cases it has been referred as absolute modulo 12 as in (Gómez et al.,
2007b; Hanna et al., 2008), where pitches are represented modulo 12, so that only one
occurrence of the same note in different octaves is preserved (see Fig. 2.5).

The pitch class is just the interval formed by the note and C. If instead of using C as
base note, the local tonality is used, this representation is converted in interval from tonic
(see (Barthelemy and Bonardi, 2001; Habrard et al., 2008; Mongeau and Sankoff, 1990)),
interval from key note (Uitdenbogerd and Zobel, 1999), key relative (Hanna and Ferraro,
2007), interval from a reference note or numerical scale in (Uitdenbogerd and Yap, 2003),
in which case the note can be anyone, not only the tonic. Barthelemy and Bonardi
(2001) encode the same melody with all possible tonalities using this interval from tonic
representation in what the author names as multireferenced descriptor. Sometimes a
symbol denoting the direction of the motion from the previous note is also added as in
the directed key relative representation (Ferraro and Hanna, 2007).

This encoding has the advantage of being octave invariant, i.e, two melodies
belonging to two different octaves will be equally encoded. However, it is not able to
distinguish between enharmonic tones. On the other hand, it can be obtained directly
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Figure 2.5: Base-12 representation of pitch
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Figure 2.6: Base-21 representation of pitch

from the absolute pitch just by computing a modulo 12 on the original MIDI note and
summing up 1 so that the rest can be encoded as a 0.

Definition 2.1.3 The pitch class p12 encoding has an alphabet Σp12 = {i ∈ N | − 1 ≤
i ≤ 11}, corresponding to the 12 semitones of the octave, from A to G, including flat
and sharp notes, and the rest. C is encoded with a 0, C] with a 1, B with a 11, and the
rest as a -1.

Definition 2.1.4 The interval from tonic (pift) is defined as the difference in steps
between a note and the tonic of the working tonality. |Σpift

| = 13, that is, the 12 octave
semitones plus a symbol for rests. The unison is represented by a 0 and rests by a −1.

Base-21 (p21) “The base-21 system provides a sufficient number of numerals to
differentiate each enharmonic tone within the range of single sharps and flats” (Selfridge-
Field, 1998).

It solves the problem of the encoding of the dual naming of enharmonic tones into
a unique integer number (see Fig. 2.6). However, as for the base-7, and base-12, it is
not interval invariant either. In the case of the base-21 representation, the minor third
between C (represented by a 1) and E[ (encoded with a 6) produces a value of 5 (i.e.,
6− 1), while the same interval between E[ and G[ leads to a value of 12− 6 = 6.

Definition 2.1.5 The alphabet is Σp21 = {i ∈ N | 0 ≤ i ≤ 21}. The number 0 is used
for representing rests.
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Figure 2.7: Base-40 representation of pitch

Base-40 (p40) The base-40 encoding solves the problem of the interval invariance
property. The list of integers associated to each note are shown in Fig. 2.7. This
representation is used as an intermediate representation in Humdrum (Huron, 2002)
and in (Typke et al., 2003).

Definition 2.1.6 The alphabet is Σp40 = {i ∈ N |0 ≤ i ≤ +40}. The number 0 is used
for representing rests.

pabs Absolute pitch (absolute)

In this representation, pitch is encoded by an absolute number that distinguishes
univocally each frequency of the scale. No distinction is made of enharmonically tones.
Pitch is represented with its MIDI number. See Fig. 2.8 for a listing of the note numbers
and Fig. 2.3 for an example.

This representation has been thoroughly used in similarity computation as a non-
processed pitch encoding. In the literature, it has been mainly named as absolute
pitch as in (Ferraro and Hanna, 2007; Gómez et al., 2007b; Neve and Orio, 2004;
Uitdenbogerd, 2002), as notes (Grachten et al., 2002), or just referred as MIDI note
numbers in (Lemström, 2000).

The main advantage of this encoding is its direct availability from the most extended
symbolic representation, the MIDI files, and its easy computing from a score. However,
it has the drawback of not holding the transposition invariance property.

Definition 2.1.7 The alphabet is Σpabs
= {i ∈ N | 0 ≤ i ≤ 128}. The number 128 is

used for representing rests.
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Figure 2.8: MIDI note numbers equivalences (From Joe Wolfe, University of South Wales
- UNSW - http://www.phys.unsw.edu.au/jw/notes.html)
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Figure 2.9: Hanson intervallic representation for two bars.

Interval and directed-modulo-12 (relative) (pitv, pdm)

A way to accomplish the transposition invariance of a pitch representation is the use of
intervals between successive notes expressed in terms of number of steps.

This encoding has been widely used in the literature in a number of names and
variants. Some works establish several levels in which the difference between two
successive notes can be quantized, being the semitone unit just a possibility. This is the
case of the Delta Pitch (DP) (Orio, 2005) and one of the abstraction levels (Grachten
et al., 2002).

Some interval representations include a sign that encodes the motion direction, for
example Grachten et al. (2004) and Ferraro and Hanna (2007) name it as directional
intervals or signed intervals.

In other works the size of the interval is limited to a maximum value or clipped with
a modulo function. For example, in (Orio, 2005) and in (Meek and Birmingham, 2002)
the interval mod 12 coding is just a clipping of the maximum interval to an octave, e.g,
“the interval from D3 to G4 (perfect 11th, or 17 semitones) would be mapped to the
interval of a perfect 4th (5 semitones)”. In other cases, instead, when the maximum
value is reached a special value or function is applied (Dannenberg et al., 2003; Pardo
and Birmingham, 2002b; Uitdenbogerd and Zobel, 1999). In works like (Orio, 2005),
it is suggested that the different levels of interval quantization may be accompanied by
other pitch properties as the local tonality or the relative frequency of pitches.

The interval is usually obtained from the previous note, as in (Uitdenbogerd and Yap,
2003; Uitdenbogerd and Zobel, 1999) or in (Neve and Orio, 2004) where it is denoted
by Pitch Interval in semitones with the previous note (PIT), but it may be calculated
relative to the next note.

The intervals have been sometimes mapped to characters in an ASCII alphabet
in order to take advantage of text retrieval tools. Doraisamy (2004) maps the most
frequent intervals into ASCII chars using a sigmoid function. The same scheme is used
by Uitdenbogerd (2007) in her directed modulo-12 representation (see pdm in Fig. 2.3).
A similar approach is followed by Serrano in his implementation of the Hanson Intervalic
system (Serrano and Iñesta, 2006a), where the intervals are represented with the symbols
d-s-n-m-p-t of the Hanson system (Hanson, 1960) plus the five vowels a-e-i-o-u to form
the intervals of two octaves and a half (See Fig. 2.9).

Definition 2.1.8 The interval is defined as the difference in semitones between a note
and the preceding one. Theoretically, Σpitv = {i ∈ Z | − 127 ≤ i ≤ +127}, but in
practice large intervals seldom appear, so the limiting approach is followed: Σpitv = {i ∈
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Z | − 24 ≤ i ≤ +24}, being any other larger value assigned to the extremal values. This
way, |Σpitv | = 49. Rests are encoded also here with a 0.

Pitch contour (relative) (pc)

This is the coarser quantization of an interval: it encodes the motion direction of the
pitch by three symbols indicating unison, ascending, or descending (e.g.,{‘U’, ‘A’, ‘D’}).
In (Uitdenbogerd and Zobel, 1999) it is stated that contour can be more important
than exact pitch for remembering a song, although exact pitch intervals help listeners to
distinguish between melodies. However, the lower representation precision requires the
length of the sequences to be longer for their recognition.

This representation was introduced by Parsons (1975), where a catalogue of themes
was compiled with an index built on the contour representation of them. It has been
widely used, with a variety of symbols denoting the three possibilities of motion, in QBH
systems (Ghias et al., 1995) and in QBE from text or OMR (Bainbridge et al., 1999),
because this representation is more robust against transcription errors and easier to
remember or reproduce for an average user. Maybe for this reason, it has also been used
to be compared with other pitch encoding schemes or abstractions levels (Barthelemy
and Bonardi, 2001; Dowling, 1978; Ferraro and Hanna, 2007; Grachten et al., 2002,
2004; Kim et al., 2000; Lemström and Perttu, 2000; Müllensiefen and Frieler, 2004a;
Uitdenbogerd and Yap, 2003; Uitdenbogerd and Zobel, 1999).

Definition 2.1.9 Σpc = {−1, 0,+1}; ‘+1’, if pabs(ni) > pabs(ni−1), ‘−1’ if pabs(ni) <
pabs(ni−1), and ‘0’ otherwise. As for the other relative pitch properties, for the first note
in the sequence it is not defined. |Σpc | = 3. Rests are coded also with a ‘0’.

High definition contour (relative) (phdc)

Sometimes the contour representation is too general and leads to many false positives
in the melodic retrieval task, and the interval too fine producing false negatives. In
the context of the number of interval quantization levels, this representation can be
positioned between both representations as a trade-off. It has been also referred as
extended contour (Uitdenbogerd and Yap, 2003). In that work, the threshold that divides
the levels is questioned and in the work of Downie (1998) a more in-depth study of it
can be found paying a special attention to on the optimal point of division of each level.

Other variations of the previous definition can be found in the literature. In (Barthelemy
and Bonardi, 2001) the qualified contour is introduced, encoding conjunct or disjunct
degrees with direction, i.e., the levels of the contour are ’d’ for disjunct, ’c’ for conjunct,
plus the sign indicating the motion direction. In (Müllensiefen and Frieler, 2004a) the
interval range is divided into up to nine divisions in what they name as fuzzification,
borrowing this term from the fuzzy logic just to give concept names to the numerical
magnitudes of the intervals. (see Table 2.1). Finally, Lemström and Laine (1998)
introduce a real fuzzy division of the interval space in what they denote as Quantized,
Partially Overlapping Intervals (QPI).
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Table 2.1: Interval classes used in (Müllensiefen and Frieler, 2004a)

Class Intervals Name

-4 < 7 Big leap down
-3 -7, -6, -5 Leap down
-2 -4, -3 Big step down
-1 -2, -1 Step down
0 0 Same
1 1, 2 Step up
2 3, 4 Big step up
3 5, 6, 7 Leap up
4 > 7 Big leap up

Definition 2.1.10 Same as contours (Def. 2.1.9) but it also includes ‘+2’ and ‘−2’ if
the pitch difference exceeds 4 semitones. Σphdc

= {−2,−1, 0, +1,+2}. Rests are encoded
with a 0.

2.1.2 Rhythm encodings

By rhythm all properties related to the temporal dimension of notes are considered,
being the onset time and the duration of notes the most commonly used. Other rhythm
related features have been seldom used, like for example the stress related to the note
position in the bar.

In many of the symbolic music comparison methods so far, rhythm is not present
or just ignored. This is why there is a lower number of rhythm encodings than pitch
representations in the literature. Studies where the rhythm has been left out can be found
in (Uitdenbogerd and Yap, 2003). On doing the contrary, the work presented by Pardo
and Birmingham (2002b) only encodes rhythm. Some works have used no information
about duration but only the position of each note in a sequence, using a dummy symbol
(e.g., a dash) where a rest is found (Barthelemy and Bonardi, 2001). Although the
convenience of using rhythm is not widely established in the literature, there are works
that report better results when using rhythm combined with pitch (Ferraro and Hanna,
2007). In fact, as indicated by (Barthelemy and Bonardi, 2001), the music dictionary
of Barlow and Morgenstern (1978) shows that music retrieval based on pitch information
only leads to results with typically too many false matches. See (Selfridge-Field, 1998),
page 27 for such absurd matches.

The different rhythm encodings presented below (denoted by alphabets Σr) are
illustrated in Fig. 2.10.

For each of the definitions of rhythm representations given below, a function with
the same name gets implicitly defined. In general, given a rhythm representation s, the
function rs : P → Σrs returns the rhythm representation s of the given note.
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Rhythm encoding Song Representation

Absolute time (rtabs)
♩= 120 0 1

2
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4 1 7
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Contour (rc)
♩= 120 0 −1 0 1 −1 1 −1 1 −1 0 1

♩= 240 0 −1 0 1 −1 1 −1 1 −1 0 1

High Definition Contour (rhdc)
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(c)

Figure 2.10: Different rhythm encodings for two different figurations of the same excerpt.
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Figure 2.11: Side effects of quantization using sixteenth quantization (from (Clausen
et al., 2000)): first bar is quantized at 16th as the second, third and fourth bars are
quantized equal as shown in fifth bar.

Absolute rhythm encoding (absolute) (rtabs, rdabs)

The simplest and most common way to encode rhythm is to use the note onset time and
its ending or its duration. In some cases, only the onset is used, in other cases only the
duration. Anyway, the onset time of a note can be obtained just by summing up the
duration of all preceding notes.

The main issue to deal with here is the duration resolution, i.e., the number of
subdivisions a beat can be split in. If the songs are stored in SMF files, the resolution is
found as a meta-data in the file, and duration is expressed in terms of onset and offset
times in ticks, where a tick is a unit of resolution and is given in ticks per beat. The
duration is computed through the subtraction of offset minus onset. This problem has
been avoided in (Doraisamy, 2004) by the use of milliseconds. However, this method is
too tight to the tempo of the piece.

The resolution may be referred also as quantization, because notes that do not fit
in the grid defined by the given resolution must be quantized. The most commonly
used quantization figure is the 16th (Clausen et al., 2000; Hanna and Ferraro, 2007;
Mongeau and Sankoff, 1990; Uitdenbogerd and Yap, 2003). However, this quantization
may introduce problems after the encoding of the durations as shown in Fig. 2.11.

One special case of absolute encoding is that of the relative to a standard duration
representation (Selfridge-Field, 1998; Uitdenbogerd and Yap, 2003), where real numbers
are allowed, representing the relative duration of a note given a reference note, for
example the quarter note. In that case, a 8th dotted note would be encoded with the
real 0.75. The main advantage of this absolute encoding is that it does not suffer from
the quantization problems 2.

The main disadvantage of any absolute duration representation is that it does not
hold the tempo invariance, when tempo is modified by the change of figures as can be
seen in the two scores in Fig. 2.10.

Definition 2.1.11 Given a note ni, let tON (ni) be its onset time, and tOFF (ni) its
offset time. Let the resolution q ∈ N be the duration of a single beat. The absolute time
is the standardized time tON/q. Strictly speaking, Σrtabs

∈ R is in practice a limited set
of durations appear depending on the quantization used.

2This affirmation is true only in theory. The float number implementations in any programming
language have a precision, and finally this is also a quantization level
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Definition 2.1.12 The absolute duration of a note n is defined as tOFF (ni)− tON (ni)
expressed as multiples or fractions of the beat duration or resolution q. Strictly speaking,
Σrdabs

∈ R is in practice a limited set of durations appear depending on the quantization
used.

Tied notes. Tied notes may appear for a number of reasons, for example if their source
is a written score. There are three ways of handling this situation: just ignore the ties
and consider the tied notes as individual ones, by merging all tied notes summing up
their durations, and finally encoding the tie with a special symbol, say for example ‘∧’,
that may accompany the rhythm symbol in Σr.

In some cases, notes are splitted in tied notes of duration equal to the quantization,
as the time grids in (Hanna et al., 2008) with a limitation to 6 consecutive notes for
implementation issues, or the necessary subdivision imposed by the tree representation
we propose (Rizo et al., 2003). In (Müllensiefen and Frieler, 2004a) the duration
is encoded in what they name rhythmical weightings: every note in the melody is
substituted by d times the pitch of the melody, being d the duration of that note. Thus,
duration is encoded (in this case without the need of that special tie symbol) with the
multiple sequential occurrences of pitch. This same encoding is used in (Tanur, 2005)
with the name repeated unit time steps.

Rhythm contour (relative) (rc)

The same method to solve the transposition invariance in pitch can be followed to
overcome tempo invariance: the use of encodings relative to the surrounding notes. The
rhythm contour, introduced in works like (Neve and Orio, 2004) and (Uitdenbogerd and
Yap, 2003) with the name duration relative to previous duration, encodes the duration
of a note as longer, equal, or shorter than the previous (or next) note.

Definition 2.1.13 Σrc = {−1, 0,+1}; ‘+1’ if the rdabs(ni) > rdabs(ni−1), ‘−1’ if
rdabs(ni) < rdabs(ni−1), and ‘0’ otherwise. For the first note in the sequence it is not
defined.

High definition contour (rhdc) The same way in which several levels of pitch contour
were established, the rhythm contours can be grouped in several levels, like in (Frieler,
2004; Müllensiefen and Frieler, 2004a), where duration contours are categorized to five
duration classes, represented as gaussified values.

24



2.1. MONOPHONIC MUSIC

Definition 2.1.14

Σrhdc
= {−2,−1, 0,+1,+2};

‘ + 2′ if rdabs(ni) ≥ 2 · rdabs(ni−1)

‘ + 1′ if rdabs(ni) > rdabs(ni−1) ∧ rdabs(ni) < 2 · rdabs(ni−1)

‘ 0′ if rdabs(ni) = rdabs(ni−1)

‘− 1′ if rdabs(ni) ≤ 2 · rdabs(ni−1)

‘− 2′ if rdabs(ni) < rdabs(ni−1) ∧ rdabs(ni) > 2 · rdabs(ni−1)

(2.1)

For the first note in the sequence it is not defined.

Interonset Interval (IOI) (relative) (rioi)

Equivalent to intervals in the pitch domain, the Inter-Onset Interval (IOI) encoding
represents the interval of a note from the previous (or to the next) note (Grachten
et al., 2004; Orio, 2005). Again, the value can be encoded in any of the resolutions or
quantizations introduced previously in the absolute rhythm encoding, or standardized
using a reference figure (Neve and Orio, 2004).

Definition 2.1.15 The time lapse from the ith note onset to that of the next; IOIi =
(tON (i + 1) − tON (i))/q, expressed the same way as in for rdabs. For the last note, it
is defined as its duration (rdabs). The same situation about enumerability described for
Σrabs is applicable to Σrioi. Note that rests disappear for this property.

Interonset Interval Ratio (IOR) (relative) (rior)

This representation solves definitely the absolute duration encoding IOI by means of the
use of ratios (Doraisamy, 2004). This is why sometimes it has also been named as Inter-
Onset Interval Ratio (IORatio) in (Pardo and Birmingham, 2002b) or just Inter-Onset
interval Ratio (IORr) in (Cambouropoulos et al., 2005; Dannenberg et al., 2003).

In some works this encoding is post-processed by mapping the Inter-Onset interval
Ratio (IOR) values space in some equivalence classes. In (Pardo and Birmingham, 2002b)
and (Pardo et al., 2004) the IOR is discretized into five log-spaced classes, in (Neve and
Orio, 2004) a possible normalization or quantization is suggested.

Definition 2.1.16 The ratio between successive IOI is defined as IORi = IOIi
IOIi+1

. The
same situation about enumerability described for Σrdabs

is applicable to Σrior. It is not
defined for the last note.
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Position in measure (absolute) (rpim)

If the meter of the song is present 3, the onset can be encoded by indicating its position
relative to the bar start time (Barthelemy and Bonardi, 2001; Clausen et al., 2000).
In (Typke et al., 2003), the time coordinate is calculated as the sum of the measures
preceding the note plus the note’s position within this measure.

This may be considered a special case of absolute encoding on onsets, where instead
of using the absolute time from the beginning of the piece, the bar number and the
time from the beginning of the bar are used, and thus, it has the same advantages and
problems than any absolute encoding. However, if only the relative time is compared, it
is a completely different encoding.

Accent (racc)

Accent may be considered as a rhythm property because the stress of notes depends,
among other things, on its position in strong or weak beats of the bar, besides other
properties, like changes on contour direction, or large pitch intervals (Uitdenbogerd and
Zobel, 1999).

Several works that study the importance of stress in music identification can be
found (Huron and Royal, 1996; Jones, 1987; Tekman, 1997; Thomassen, 1982), with
studies on the accent structure from a perceptual point of view. In (Selfridge-Field,
1998), an accented-note model is depicted. However, few works include this property in
their codings for similarity computation (Müllensiefen and Frieler, 2004a; Robine et al.,
2007a; Uitdenbogerd and Yap, 2003).

The same way Maid́ın (1998) gives different weights for the similarity computation
to notes depending on their metrical stress, we will consider only the stress depending
on the position of the note in the bar.

2.1.3 Melodic analysis

Depending on their task in the melody with respect to harmony, individual notes can
be classified as harmonic (H) or Non-Harmonic Tones (NHTs). The harmonic tones
are tagged as ’h’. For the NHT, different tags are given based on the type of ornament:
appoggiatura (ap), passing tone (p), neighbor (n), etc, and they are computed using
information of meter, pulse, duration, and pitch interval information. Σm = {h, ap, p, n}.

Some of the rules to compute those tags (Illescas et al., 2007) use the functions
defined below and are specified in Table 2.2. Mainly, the “harmonicity” of a note is
determined by its pitch interval and relative duration with respect to its surrounding
notes, and its metrical accent.

Definition 2.1.17 strong(ni) For quaternary meters a note is strong when its onset is
located exactly on the first or third beat of the measure. In ternary meters, it is strong

3it may be calculated (Eck and Casagrande, 2005; Frieler, 2004; Meudic, 2002b; Temperley and
Sleator, 1999)
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if and only if it onsets on the first beat. For the compound meters, this function can be
computed from these two situations. The alphabet for this property is Σracc = Bool.

Definition 2.1.18 ratio(ni) = rdabs(ni)
rdabs(ni−1) ×

rdabs(ni)
rdabs(ni+1) This ratio function determines

the importance in terms of duration of a note in the context of its surrounding notes,
such that ratio(ni) ≥ 1 means that the note seems to be harmonic, and ratio(ni) < 1
suggests that the note can be a NHT.

Definition 2.1.19 pnitv The next interval is the pitch interval pitv between a note ni
and its successor. pnitv = pitv(ni+1)

NHT type rules

appoggiatura (‘A’) strong ∧ pitv = 0 ∧ nextI ∈ {−1,−2,+1}
passing tone (‘P’) (¬strong) ∧ (ratio ≤ 1) ∧

((pitv ∈ {−1,−2}) ∧ (pnitv ∈ {+1,+2}))
∨ ((pitv ∈ {+1,+2}) ∧ (pnitv ∈ {−1,−2}))

neighbor tone (‘N’) (¬strong) ∧ (ratio ≤ 1) ∧
((pitv ∈ {+1,+2} ∧ pnitv ∈ {+1,+2})
∨ (pitv ∈ {−1,−2} ∧ pnitv ∈ {−1,−2}))

Table 2.2: Summary of melodic rules for a note ni. The parameter ni for the functions
has been omitted for clarity (from (Illescas et al., 2007)).

2.1.4 String representations of monophonic music

As stated in the introduction of this section, string representations have been the most
used approach to encode music for comparison so far. The number of ways to encode
notes by combining pitch and rhythm representations is high and it will be examined
in the experiments section. Now, following the different representation encodings just
presented, a string representation framework for monodies will be formally defined.

Strings are defined over a finite alphabet Σ and the empty symbol is denoted by
λ 6∈ Σ. In this work, we use lower-case for symbols of Σ ∪ {λ} while upper-case are
applied to strings built using symbols in Σ. Given a string X, the reference to the i-th
individual symbol in a sequence will be denoted as Xi. The extraction of a substring
from the position i to j included will be denoted as X[i..j].

In string representations, note pitch and rhythm are coded with explicit symbols.
For representing a melody as a string, symbols from the pitch description alphabet,
Σp, and from that of rhythm, Σr are combined such that for S ∈ Σ∗, S = σ1σ2...σ|S|,
Σ = Σp×Σr. Any of the alphabets for pitch and rhythm described in the previous
section may be used. This code is said to be coupled. The pair for a note can only be
formed when both dimensions are defined for it.
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When both dimensions are handled independently, the representation is said to be
decoupled or splitted. For decoupled string representations, Σ = Σp ∪Σr, being σ2i−1 ∈
Σp and σ2i ∈ Σr; i = 1, 2, ..., |s|2 . Similarly as before, the symbols for a note are included
in the string only if both dimensions are defined for it.

The main sense of a decoupled representation is that it allows the comparing method
to find a rhythm similarity in part of the song, and a pitch coincidence in other part. For
coupled encoding, the similarities must be found in pitch and rhythm simultaneously for
the whole sequences.

The symbols can be enriched by the combination of several encodings of the same
dimension, i.e. pitch or rhythm. For example, interval from tonic can be joined with
pitch contour information as done in (Ferraro and Hanna, 2007). Regarding rhythm, a
combination of IOI and accent may be used. For example, in (Robine et al., 2007b), the
accent is used in the string distance by giving more importance to notes located on strong
beats of the bar, and in the distance by Typke et al. (2003), this property along with the
note position from the beginning of the score is also included in the weighting of points.
Additionally, the melodic analysis can be added to the tuple representing each note. For
coupled representations, all those possibilities can be expressed as Σ = Σ+

p × Σ+
r × Σm.

A more sophisticated model of simultaneous note properties and transformations
from the raw data has been proposed recently by Conklin and Anagnostopoulou (2001)
in their multiple viewpoints system.

Rests

Depending on the source of the symbolic representation to be encoded, rests are explicitly
represented or just skipped. If the source is an interpretation where only onsets and
offsets are represented (e.g. MIDI notes in a SMF), rests are not explicitly present and
they must either be induced or just omitted in the different encodings detailed above. If
the files represent score information where rests are explicitly represented, they should
be encoded.

In (Mongeau and Sankoff, 1990) rests are indicated with a dummy symbol as a
pitch. In the relative representations (intervals and the different contours), usually they
are encoded as the unison. In (Uitdenbogerd and Zobel, 1999) a study on the effects of
including or omitting rests in the encoding can be found.

Note that for all pitch encodings in section 2.1.1, rests have been given a special
code.

Harmonic tones

From music theory, it is well known that melody ornaments use to appear as NHT
like appogiaturas, neighbor or passing tones. It is supposed that for comparing music, if
notes with a NHT tag are removed, a large part of ornaments will be eliminated, and two
works that differ only in the ornamentation will resemble more this way. One possible
drawback of this is that those ornaments may be the main motive of the songs. To the
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best of our knowledge, apart from our tree codings, only one similarity computation
work has dealt with this hypothesis (Robine et al., 2007a).

For the illustration of the different string representations that are detailed in this
section, a simple melody has been displayed in figure 2.12 and coded in terms of these
pitch and duration properties 4.
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Figure 2.12: Simple example of melody and how it is represented in terms of the different
options regarding coupling, rests, and harmonic tones.

String matching algorithms

The similarity between two songs encoded in any string representation is measured with
a string matching algorithm. For equal length sequences an euclidean or a hamming
distance may be used (Mäkinen et al., 2003; Rolland, 1998). However this is not usually
the case as songs use to be of different lengths, being the classical edit distance more
suitable for the music comparison task.

The classical edit distance between two strings, also called the Levenshtein distance,
is the minimal cost to transform one input string into an output one by edit operations.
Three kinds of basic edit operations can be used in the transformation process: the
insertion of a symbol, the deletion of a symbol, and the substitution of a symbol by
another one. To each operation, a so-called edit cost c : Σ × Σ → R is assigned that
can be defined using a costs matrix. Suppose, for example, that strings are built from
an alphabet of two letters a and b. The costs for computing an edit distance can be
represented by a 3 × 3 matrix C where the rows describe the input alphabet and the
columns the output one. Therefore, c(a, b) = Cab denotes the cost of applying the edit
operation (a, b) where a is an input symbol while b belongs to the output alphabet, that
in our case they are always the same; If a = λ, the operation denotes an insertion; If
b = λ the operation is a deletion. Note that the operation (λ, λ) is not allowed.

4This musical excerpt does not have other musical meaning than that of illustrating the pitch and
duration representations
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An example of matrix is shown in Table 2.3, where the substitution costs is 2 for
different symbols and 0 for equal symbols. The insertions and deletions, usually denoted
as indel costs, are assigned a 1.

Table 2.3: Matrix of edit costs. Cab = 2 means that the cost of changing the symbol a
in the input string into a b in the output one is 2.

c λ a b

λ - 1 1

a 1 0 2

b 1 2 0

Definition 2.1.20 An edit script e = e1 · · · en is a sequence of edit operations ei =
(ai, bi) ∈ (Σ ∪ {λ})× (Σ ∪ {λ}) allowing the transformation of a string X into a string
Y . The cost of an edit script π(e) is the sum of the costs of the edit operations involved
in the script: π(e) =

∑n
i=1 c(ei).

Definition 2.1.21 Let E(X,Y ) be the set of all the scripts that enable the emission of Y
given X, the edit distance between X and Y is defined by: d(X,Y ) = mine∈E(X,Y ) π(e).

For example, according to the costs in Table 2.3, the cost of a possible edit script
between two strings a and ab is:

π((a, a)(λ, b)) = π((λ, a)(a, b)) = 3.

The computation of such an edit distance can be done in quadratic time using
dynamic programming techniques (see recurrence in Eq. 2.2).

d0,0 = 0

di,j = min


di−1,j + c(Xi, λ)
di,j−1 + c(λ, Yj)
di−1,j−1 + c(Xi, Yj)

d(X,Y ) = d|X|,|Y |

(2.2)

The difference among works is the different processing of the costs c : Σ×Σ→ R, some
limitations to the value returned by the recurrence formula, and several optimizations
on the distance computation algorithm.

Global alignment. The string edit distance or global alignment (Needleman and
Wunsch, 1970) should be used for similar length sequences because it aims to transform a
whole sequence in another. Thus, it seems to be useful to compare motives and incipits,
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but not to perform a short query to a whole song. It has been used in works such
as (Ferraro and Hanna, 2007; Uitdenbogerd, 2002), where a number of different costs for
the edit operations can be found. In some cases, only positive values are given, while
in others a match between symbols is rewarded with negative values, and mismatch
and indel operations are penalized with positive values. The Levenshtein or unit cost
distance is a case where the indel operations have a unit cost, the cost of substitution is
0 if the compared symbols are equal, and 1 elsewhere.

Following this kind of alignment, Lemström (2000) uses bit-parallelism techniques to
speed up process while respecting the transposition invariance.

Dynamic time warping. Some works (Birmingham et al., 2001; Hu and Dannenberg,
2002; Pardo et al., 2004; Tsai et al., 2005) use the so-called Dynamic Time Warping
(DTW), borrowed from the speech recognition field that finds an optimal match between
two sequences of feature vectors which allows for compressed and stretched regions of
the sequence. To compare strings X and Y, algorithm starts by building the local cost
matrix L ∈ R|X|×|Y | representing all pairwise distances between X and Y. Once the local
cost matrix is built, the algorithm finds the optimal alignment path or optimal warping
path which runs through the lowest cost areas on the cost matrix. The computation of
this alignment path is done by dynamic programming with the recurrence in Eq. 2.3.

c(i, j) = Lij
d1,j =

∑j
k=1 c(X1, Yk), 1 ≤ j ≤ |Y |

di,1 =
∑i

k=1 c(Xi, Y1), 1 ≤ i ≤ |X|
di,j = min{di−1,j−1, di−1,j , di,j−1}+ c(Xi, Yj), 1 ≤ i ≤ |X|, 1 ≤ j ≤ |Y |

(2.3)

Local alignment. The local alignment (Smith and Waterman, 1981) is a variation of
the string edit distance where, instead of computing the similarity between two whole
strings, it looks for regions that are similar in the two sequences compared. To this end,
instead of computing the distance with min, the similarity value is obtained with max,
the match (i.e. c(Xi, Yj) when Xi = Yj) is rewarded with +2, and indel and mismatch
is penalized with −1 (see Eq. 2.4). Additionally, to avoid penalizing prefixes or suffixes
and thus find a local alignment, the indel operations for prefixes and suffixes are not
penalized (see the 0 value in the recurrence).

d0,0 = 0

di,j = max


0
di−1,j + c(Xi, λ)
di,j−1 + c(λ, Yj)
di−1,j−1 + c(Xi, Yj)

(2.4)

Many of the works that use this string matching variant try to find queries in whole
song databases, being the local alignment more adequate than the global. See works (Fer-
raro and Hanna, 2007; Uitdenbogerd and Zobel, 1999) and MusicBLAST (Kilian and
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Hoos, 2004) using BLAST, a faster version of the (Smith and Waterman, 1981) algorithm
by the use of heuristics.

Longest common subsequence (LCS). In some cases, what has been used is the
number of coincident symbols in the two compared strings, only rewarding matched
symbols (See Eq. 2.5). Works such as (Lemström et al., 2005; Mäkinen et al., 2003) use
this algorithm.

d0,0 = 0

di,j = max


di−1,j

di,j−1

di−1,j−1 + 1, if Xi = Yj and i, j ≥1

0 otherwise

(2.5)

Mongeau and Sankoff variant. As cited in the introduction of this chapter, an
important work in the use of strings for similarity computation was (Mongeau and
Sankoff, 1990). Its main contribution are: first, the computing of the substitution
cost according to musical rules based on the consonance of intervals, and second, the
introduction of two new musical edit operations: fragmentation and consolidation, trying
to model the division of a long note by several shorter notes. These operations leave the
recurrence in Eq. 2.2 as the one in Eq. 2.6.

d0,0 = 0

di,j = min



di−1,j + c(Xi, λ)

di,j−1 + c(λ, Yj)

di−1,j−1 + c(Xi, Yj)

di−1,j−k + cf (Xi, Y [j − k + 1..j]), 2 ≤ k ≤ j (fragmentation)

di−k,j−1 + cc(X[i− k + 1..i], Yj), 2 ≤ k ≤ i (consolidation)

(2.6)

Consolidation and fragmentation require the definition of two functions to compute
their costs cf : Σ×Σ+ for of fragmentation and cc : Σ+×Σ for consolidation. In practice,
those operations should only permit fragmentations and consolidations of symbols of Σ
representing the same pitch.

The work of Mongeau and Sankoff has been extended or partially adopted in works
other such as (Dannenberg and Hu, 2004; Grachten et al., 2004; Kadota et al., 2001;
Tsai et al., 2005) with new distances between symbols (Grachten et al., 2005), and both
the substitution costs tuned (Gómez et al., 2007a).

δ, γ, and (δ−γ) matching. A different way to measure the approximate similarity be-
tween two strings is the use of the so-called δ, γ, and (δ−γ) matching algorithms (Clifford
and Iliopoulos, 2004; Crochemore et al., 2001). These algorithms compute the similarity
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by looking at the distance between the individual notes, represented by single symbols
in a string. To that end, a distance must be defined between individual symbols. Being
defined the subtraction operation between symbols of the alphabet − : Σ× Σ→ Z, two

symbols a, b ∈ Σ are said to be δ-approximate, denoted by a
δ
= b, if and only if

|a− b| ≤ δ
Two strings X and Y are δ-approximate, denoted by X

δ
= Y , if and only if

|X| = |Y |, and Xi
δ
= Yi, ∀i ∈ {1, ..., |X|} (2.7)

For a given integer γ, two strings X and Y are said to be γ-approximate, denoted
by X

γ
= Y , if and only if

|X| = |Y |, and

|X|∑
i=1

|Xi − Yi| ≤ γ (2.8)

The relation
δ
= establishes a maximum difference between individual symbols and

the operation
γ
= bounds the accumulated distance. So, two strings X and Y are said to

be (δ − γ)-approximate, denoted by X
δ,γ
= Y , if and only if conditions 2.7 and 2.8 are

held.
Obviously, this similarity measure is not useful for the majority of cases in music

comparison for the equal length restriction. One needs to use a measure able to work
with different length sequences. This can be accomplished using the δ-approximate
pattern matching, that is designed to look a pattern inside a whole sequence. It is
defined as follows: given two strings X and Y , compute all positions j of Y such that

X
δ
= Y [j..j +m− 1] (2.9)

Similarly, the (δ, γ)-approximate pattern matching, is obtained computing all posi-
tions such that

X
δ,γ
= Y [j..j +m− 1] (2.10)

Different works have proposed methods to compute these approximate similarity
measures adapted to music, such as δ-Tuned-Boyer-Moore, δ-Skip-Search, and
δ-Maximal-Shift algorithms (Crochemore et al., 2001). The work by Clifford and
Iliopoulos (2004) proposes to allow gaps in the comparison, allowing the skipping of
notes, what makes possible the comparison of different length strings, and thus, of two
whole songs, instead of a query pattern query against a whole length song, as happened
in the previous δ-approximate schemes.

The α-bounded δ-approximate pattern matching (or (δ, α)-approximate matching)
and α-bounded (δ, γ)-approximate pattern matching are variants of the just defined
schemes where a maximum number α of notes can be skipped, i.e., the size of gaps
must be lesser or equal than α.
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Comparison of string representations of monodies.

The similarity of two monodies ma and mb, with string representations A and B is
obtained by using any of the string matching techniques used in the previous section.

For applying those algorithms, the edit costs between individual symbols in the
strings (Sec. 2.1) must be defined, or in some cases, just operators that judge whether
a symbol can be considered equal to other one. When only a dimension of music is
represented, either pitch or duration alone, a single cost function must be defined,
cp : Σp → R for pitch and cr : Σr → R for rhythm. The problem arises when both
dimensions are represented. In that case the edit cost for pitch and for duration must
be computed separately to be combined later. Following the approach introduced by
Mongeau and Sankoff (1990), the costs are put together with a linear combination. For
a coupled scheme it is defined as expressed in Def. 2.1.22.

Definition 2.1.22 Let p(ni) denote the pitch dimension of a note ni, and r(ni) its
rhythm component, for an edit operation ei = (ai, bi) ∈ (Σp×Σr ∪{λ})×(Σp×Σr ∪{λ}),
its cost c is defined as the linear combination c(ei) = (1 − k) · cp(p(ai), p(bi)) · k ·
cr(r(ai), r(bi)), where k ∈ R is a constant 0 ≤ k ≤ 1.

In the case of using a decoupled representation, it makes no sense to compute the cost
of replacing a pitch with a duration symbol. In order to incorporate this restriction in
the cost computation, instead of using single cost matrix, two of them will be used, one
for the pitches and another for the durations, and the cost of changing a pitch symbol
with a duration symbol will be given a ∞ cost (see Def. 2.1.23).

Definition 2.1.23 For an edit operation ei = (ai, bi) ∈ (Σp ∪Σr ∪{λ})×(Σp ∪Σr ∪{λ}),
its cost c is defined as:

c(ai, bj) =


cp(ai, bi) if ai ∈ Σp and bj ∈ Σp

cr(ai, bi), if ai ∈ Σr and bj ∈ Σr

∞ otherwise

The computation of cp and cr can be accomplished in a number of ways. One
may compare literals, returning 0 for equal symbols and a constant greater than 0 for
different literals. Other option is to use a substitution matrix like the one presented in
Table 2.3. The values in the matrix may be fixed according to some musical criteria,
like those used in (Hanna and Ferraro, 2007; Mongeau and Sankoff, 1990), where the
consonance of the intervals to be compared determines the substitution cost, i.e., a
fifth is more consonant than a second. Other authors use probabilities of a symbol
to be substituted by other (Hu et al., 2002) (expressed as the negative logarithm of
the probability of the interval defined by the two pitches pi − pj), or as we introduced
in (Habrard et al., 2008). All the costs can be learned using probabilistic edit distances
instead of classical ones. Finally, another option is to define a distance function between
alphabet symbols. This is the case usually applied to compare durations. For example,
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the crioi(a, b) may be simply defined as |a−b| where a and b are IOI, or more sophisticated,
like in (Hu et al., 2002), where the pitch distance between pitches pj and pi is defined as
min((pj − pi) mod 12, 12− (pj − pi) mod 12), where the possible inversion of the interval
defined by both pitches is taken into account. However, in this case, the authors report
best results for the probabilistic approach when dealing with QBH inputs.

Normalization and standardization. One thing to deal with is the normalization
of measures in order to avoid making the results dependent on the lengths on the
compared works. Two common strategies have been applied: the division of the distance
or similarity measure by the maximum of the lengths of the sequences (Müllensiefen and
Frieler, 2004a), and by the sum of the lengths of the sequences (Serrà and Gomez, 2008)
because that is the longest possible path. In order to choose an option, one should divide
by the maximum value the distance can produce.

Another issue is the fact that some measures yield a similarity value, while others give
a distance. In order to be able to compare them, and eventually, to combine them, they
must output the same kind of information. We have decided to use similarity values. In
order to transform the normalized distance d into a similarity value we just return −d.

Transposition invariance As introduced earlier, the transposition invariance is an
important property for the comparison methods to be taken into account. Some methods
that compare strings use transposition invariance representations of pitch, making the
used string matching algorithm transparent to that property. In other cases other
non-relative representations that do not hold the transposition invariance have been
used, so the string matching algorithm must solve this situation. Works like (Allali
et al., 2007; Lemström, 2000; Lemström et al., 2005; Mäkinen et al., 2003) for standard
edit distance and string alignment algorithms, and (Cantone et al., 2005a,b) for the
(δ, α)-approximate matching problem introduce some approaches for the transposition
invariant similarity computations. There are also works that use a brute-force solution
to find the best transposition (Birmingham et al., 2001; Gómez et al., 2007b). A more
elaborated approach is that of Lemström and Ukkonen (Lemström and Ukkonen, 2000)
where both the interval representation and the absolute are taken into account to use
the best of both: the substitution cost is 0 if the pabs of the compared notes are equal,
when those pabs are different, their pitv are compared.

Implication / Realization model.

This model, first introduced by Narmour (1990) and then used for comparing music
in (Grachten et al., 2002, 2004, 2005), builds a string using an intermediate representation
that tries to capture the sequence of realizations of the user expectations while listening
the melody. It is supposed that two similar melodies produce the same intermediate
model of expectations so they can be successfully used to compare music.

Given an interval, listeners use to expect a second one of size and direction that
depend on the former two. This is what Narmour (1990) defines as implication. The
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Figure 2.13: Top: Eight of the basic structures of the I/R model. Bottom: First measures
of All of Me, annotated with I/R structures (from (Grachten et al., 2004)).

level of satisfaction that the second interval causes to the listener’s expectation is named
as realization. The different sequences of three notes are represented in eight so-named
Implication / Realization Narmour model (I/R) structures. See Fig. 2.13 for illustrations
of the I/R structures and an analysis of a melody excerpt. These structures can be
extended with some further properties as the melodic direction of the pattern, the
amount of overlap between consecutive I/R structures, and the number of notes spanned.

Having represented two melodies as a string of I/R structures, any string matching
technique can be used just by defining a distance between the two I/R strings (Grachten
et al., 2005).

2.1.5 n-grams

Given a string of symbols encoded in any of the previously exposed pitch and/or rhythm
representations, one may group sequences of length n to constitute elements of a set
of a so-called n-grams (see Fig. 2.14). The set of all n-grams extracted from a given
melody forms a language, the language that describes that melody. It is supposed
that the languages of n-grams of two similar songs are also similar. This hypothesis is
the one used by the approaches that use n-grams to compare music. They use the
techniques previously used in text information retrieval in order to accomplish this
language comparison (Doraisamy, 2001, 2004; Doraisamy and Rüger, 2002, 2004; Downie,
1999; Melucci and Orio, 2000; Pickens, 2000; Uitdenbogerd and Zobel, 1999).

The main differences among n-gram based systems are the size of the n-grams, the
windowing process to extract the n-gram (sliding or not), how they encode the pitch
and rhythm properties into ASCII characters 5, and finally the algorithms to evaluate
the similarity between n-gram languages. Most of the n-gram systems compare the sets
of n-grams collected for each song to evaluate similarity. Other approach is the use of
the statistical n-grams models, i.e., the probability of an n-gram is modeled using the
probability of its (n− 1)-gram: P (xi|xi−1xi−2...xi−n). To our best knowledge, only one
work (Ling and Sharp, 2004) uses it for music similarity computation, where a Katz’s

5this is not strictly necessary but eases the used of available software used for text information
retrieval, e.g. Hillewaere et al. (2009) use directly a pair of pitch and rhythm
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Representation Actual value

String trqprqu

1-grams {p, q, r, t, u}
2-grams {pr, qp, qu, rq, tr}
3-grams {prq, qpr, rqp, rqu, trq}
4-grams {prqu, qprq, rqpr, trqp}
5-grams {qprqu, rqprq, trqpr}
6-grams {rqprqu, trqprq}
7-grams {trqprqu}

Figure 2.14: A string in directed-modulo12 (from Fig. 2.3) and the corresponding n-gram
sets.

backing-off model is used to smooth the probability estimation and a multi-class Support
Vector Machine (SVM) to classify.

Uitdenbogerd (2002); Uitdenbogerd and Zobel (2002); Uitdenbogerd et al. (2006)
state that the best n-gram size ranges from four to seven. Shorter sizes lead to high
recall and low precision, longer sizes produce better precision but with the cost of a lower
recall. In order to overcome this trade-off problem, Orio (2005) proposes to combine
different systems, with the data fusion technique as described in Lee (Lee, 1997), built
using different sizes and properties, leading to better precision than when using a single
size. In the probabilistic approach, the longer the n-grams are, the bigger the training
corpora needs to be. Ling and Sharp (2004) report an optimal size of 2 or 3 for music
comparison.

For the non-probabilistic approach, all used similarity measures use formulas based
on frequencies of occurrences of the different n-grams in the compared songs. One of
them, named count distinct measure (Uitdenbogerd, 2002) counts the number of n-grams
that occur in both strings (Def. 2.1.24).

Definition 2.1.24 Let τA and τB be the set of n-grams of strings A and B, respectively.
The similarity between both strings can be defined as:

S(A,B) = |τA ∩ τB|

Another commonly used way to compare n-gram sets is the TF-IDF family of
similarity measures based on Term Frequency (TF) (relative to the occurrences of a term
in both songs to be compared) and the Inverse Document Frequency (IDF) (referent the
presence of the term also in the rest of the corpus). These measures try to give more
weight to those terms that are more discriminant or less common in the corpus.

Another similarity measure borrowed from the text information is that of the cosine
and some variants as the Kaszkiel and pivoted cosine, that Serrano and Iñesta (2006b)
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report to yield better results. In that work the hansonian representation is used (see
Fig. 2.9 in page 19), that can be regarded as a special case of transposition invariant
bigram.

2.1.6 Geometric modeling

First explored by Maid́ın (1998), geometric representations of music have been widely
explored in the literature (Aloupis et al., 2006; Lemström and Pienimaki, 2007; Lemström
et al., 2008; Lubiw and Tanur, 2004; Romming and Selfridge-Field, 2007; Ukkonen et al.,
2003a,b), mainly in the polyphonic context, as they will be reviewed below (see Sect. 2.2).

Maid́ın represents a monody as a graphic representation of the pitch-duration
contour. In a cartesian plot, pitch is represented in the y-axis and time in the x-
axis in something similar to a piano-roll sheet where the notes are connected with lines
(see Fig. 2.15). The similarity between two melodies is the area between the lines that
represent the contour of each melody (see Fig. 2.16).

Figure 2.15: Geometric representation of music (from (Aloupis et al., 2006)).

Figure 2.16: Geometric comparison of music (from (Tanur, 2005)).

In order to solve the transposition invariance and tempo invariance, Aloupis et al.
(2006) propose an algorithm to minimize the area between line contours (see Fig. 2.17)
by permitting the shift of horizontal and vertical dimensions.
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Figure 2.17: Minimization of the area between contours to find best transposition and
tempo invariance (from (Aloupis et al., 2006)).

The main differences among methods can be found in the units used to map the
pitch property in the y axis, and time in the x axis, i.e., the quantization used for
both characteristics, and in the way the graphical representations of the melodies are
compared.

Earth Mover Distance

In his model, Typke (2007) puts notes in the aforementioned cartesian plot, where
duration of notes is represented by the weight or radius of the points in the plot
(see Fig. 2.18). Having two pieces represented this way, their similarity is obtained
by measuring the effort it takes to transform one weighted point set into the other in
a transportation distance so-called Earth Mover Distance (EMD). The transposition
invariance is obtained as in (Maid́ın, 1998) by moving the two melodies where the
distance is minimum.

2.1.7 Statistical measures

Engelbrecht (2002) introduces a different way to encode music, modeling a melody as
defined in Def. 2.1.25. In this case, instead of editing one string trying to reach or align
to the other, what is measured is how similar they are using some statistical measures
like correlations. Thus, this technique is closer to geometrical methods than to string
ones.

Definition 2.1.25 A (mathematical) melody is a quadruple (T, p, l, P ) consisting of
sequence of onset times T ⊂ Z, a pitch progression function p : T → Z, a loudness
progression function l : T → Z and a probability density P : T → [0, 1].

In the original work (Engelbrecht, 2002), rhythm and loudness are considered
dependent, and ignored.

In order to compare two melodies or quadruples the same statistical measures have
been applied. Namely, correlation, central moments, and entropy-based measures.
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Figure 2.18: Two pieces of music and their representations as weighted point sets, along
with the optimum flow that turns one of the point sets into the other. To make the
two point sets easier to distinguish, they are shifted apart (top score is represented by
black points, bottom score by gray points). For the actual distance calculation, they are
positioned on top of one another (from (Typke et al., 2005b)).

2.1.8 Graph representations

In (Pinto et al., 2007), signatures of monodies are created using directed graphs from the
pitch profile. In their graph, each pitch class is associated with a node, and each melody
transition from a pitch class to another with a label. The label represents the frequency
of the interval defined by the two pitch classes the edge connects (see Fig. 2.19). The
graph represents also the interval from the last note of the melody to the first one.

Let M be a melodic sequence of length m = |M | defined by the sequence of pitch
classes {p12(j)}1≤j≤m, the graph G is defined with vertex set VG = Z12 and edge set
whose elements are the edges aj between vertices vi ∈ VG such that

aj =

{
vj → vj+1 for every couple (p12(j),p12(j + 1)) ⊆M
vm → v1 for the couple (p12(m), p12(1))

The arrow am : vm → p1 does not represent an actual interval in the melody but it
has been added for symmetry reasons.

The graph can be expressed as an adjacency matrix A(G), where the entry (i, j)
represents the number of oriented edges from vertex i to vertex j. The laplacian matrix
L(G) computed as D(G) −A(G), being D(G) the degree diagonal matrix where entry
(i, i) represents the sum of the cardinalities of outgoing edges of vertex i. The laplacian
matrix has more representational power than the adjacency matrix, in terms of resulting
in fewer cospectral or isospectral graphs. Two graphs are called cospectral if they
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have the same eigenvalues. Thus, in order to measure the similarity of two graphs
the eigenvalues of their laplacian matrices are computed, and then compared with an
euclidean distance. The advantage of this method as noted by the author is that the
measure is invariant to column shifts and then make the distance invariant to pitch
transposition.
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Figure 2.19: Graph representation of a score

2.1.9 Hidden Markov Models

Two main works use Hidden Markov Model (HMM) (Rabiner, 1989) to encode and
compare music: (Pardo et al., 2004) and (Pickens, 2004). The former uses note properties
to build the HMM. The latter, instead, use chords as the source to construct the models,
and will be reviewed below within the polyphonic music section (Section 2.2).

In the work of Pardo et al. (2004) and similarly in (Durey and Clements, 2001),
states represent duples Σpitv × Σrdior

, where Σrdior
is just a discretization of the Σrior

representation. All states are likely to be start state and ending states. Directed edges
between states contain transition probabilities (see Fig. 2.20 and 2.21 with only the non-
zero probability edges plotted). Until here, this model resembles somewhat the graphs
proposed by Pinto reviewed above in Sec. 2.1.8. What really makes the systems different
is the way melodies are compared. It is performed by encoding a target song as a HMM.
The query song is treated as an observation sequence, and the similarity value is obtained
from the likelihood of the HMM to generate this observed sequence. The observations
are encoded also with duples Σpitv × Σrior .

The probability estimation of observations is performed by a standard counting
process: “given a state s, the probability of observation oi can be estimated by counting
how often oi is seen in state s, compared to the total number of times s is encountered”
(see Eq. 2.11).

P (oi|s) =
count(oi, s)∑|Σpitv |·|Σrdior

|
j=1 count(oj , s)

(2.11)

They found that in order to estimate the probabilities of the paired observations and
the hidden states would require a huge corpus. In order to make it more tractable they
assume conditional independence between pitch interval and IOR:

P (o|s) = P (pitv(o)|pitv(s))× P (rior(o)| rior(s))
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Figure 2.20: Markov model for a scalar passage (from (Pardo et al., 2004)).

Figure 2.21: Markov model for a Alouette fragment (from (Pardo et al., 2004)).

In their system (Pardo et al., 2004), they do not perform the usual Baum-Welch
Training, because their model requires only one exemplar, paired with a known error
model defined in their paper obtained from a set of sung melodies. As mentioned above,
the similarity value is the likelihood of the observed sequence given the HMM: let αt(i)
be the probability of the partial observation sequence Ot = {o(1), o(2), ..., o(t)} to be
produced by all possible state sequences that end at the i-th state:

αt(i) = P (o(1), o(2), ..., o(t)|q(t) = qi)

Then, the unconditional probability of the partial observation sequence is the sum of
αt(i) over all N states. For computing that probability the forward algorithm is used,
computed recursively as detailed in (Rabiner, 1989).

2.1.10 Neural networks

To the best of our knowledge, few works have been used to compare music in symbolic
format. Two works (Harford, 2003; Yahzong et al., 2001) give a shallow description of
the use of two different neural network architectures to indexing and retrieving of music.
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One (Harford, 2003) is based on a fusion of SONNET (Self-Organizing Neural
Network) architecture and an associative map derived from ARTMAP (Carpenter et al.,
1991). By feeding the neural network input cells with pitch classes and IOI, the similarity
in the way cells get activated for each of the songs to be compared is measured.

The second work (Yahzong et al., 2001) is based on the ability of the recurrent neural
networks to predict time series (Elman, 1990). The input and output of the network is
a series of pitch contours. Each of the songs to be compared is fed to the network and
the output is collected. The output string is then compared using a distance named by
the authors as correlation degree.

2.2 Polyphonic music

In order to choose a suitable representation for polyphonic music the kind of polyphony
to be compared has to be established. In the previous definition of polyphonic music
(page 4) we have differentiated two kinds of polyphony: one that considers a source as
polyphonic if there are simultaneous notes played at a time, and other when there are
simultaneous voices, even if they are arranged in a monody.

Working with the first model is the most straight-forward option and it is always
available independently of the music source, notated or raw played. The second one
is more difficult because some separation of voices is required previous to measure
similarity. The separation of the individual voices from a polyphonic input can be
done easily if the input is a file with already differentiated voices in the form of staves
or instruments (like in MusicXML), tracks or channels (as in MIDI files). In turn, each
voice may be polyphonic. If the input is a raw polyphonic stream, some techniques have
been proposed recently to obtain that separation (Rafailidis et al., 2008).

Having done this consideration, polyphonic music similarity measurement systems
can be classified in:

• Those systems that compare directly two polyphonic streams without any voice
separation (Clausen et al., 2000; Lemström et al., 2008; Rizo et al., 2009b). We
name them pure polyphonic. This is the approach followed in this dissertation.

• Algorithms or techniques that are able only to compare two monophonic lines.
They may be denoted just as monophonic methods. They need some kind of
reduction of the polyphony into monophony. The skyline (Uitdenbogerd and Zobel,
1998) seems to be best and most widely applied method to perform that reduction
(see Uitdenbogerd and Zobel (2002, 2004) for a study on these techniques). Besides
those reduction techniques, and under the assumption that the musical work is
composed of a melody line with an accompaniment, that melody line can be
extracted by using algorithms that classify voices as melody or accompaniment and
are able to obtain it. We have introduced a method that seems to be robust enough
for that task (Rizo et al., 2006a). As far as we know, the use of the melody track
to compare polyphonic files has not been approached in the literature, although
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there is a similar approach (Meek and Birmingham, 2001) that looks for the song
main themes ranked by importance that may be used later to compare the song.

• Other group of methods try to locate a monophonic query into polyphonic
documents, optionally with gaps, and respecting transposition invariance, either
with some kind of voice separation looking for the part or voice that returns the
best matching (Lemström and Mäkinen, 2005; Pardo and Sanghi, 2005) or just in
the raw polyphonic sequence (Hanna et al., 2008). We denote them as mono to
poly following the algorithm named monopoly in (Lemström and Tarhio, 2003).

• Finally, we consider an additional group that, to the best of our knowledge, has
not been reported in the literature. It consists in obtaining the best alignment of
the separated voices of the two songs to be compared. In order to align voices, a
pre-filtering process to eliminate almost repeated voices within the songs should
be applied. Both for that filtering, and for the alignment, the similarity of the
voices must be measured. This can be done by using any of the other polyphonic
methods. We have used this approach to refine one of the corpus used in the
experimentation in order to find repeated MIDI files that differ only in the track
layout.

Under the perspective of symbolic music encoding, the separation of voices only leads
to a high level grouping of notes into several possibly polyphonic sequences, but it does
not change anything in the simultaneous note encoding scheme. There are two main
ways in which a polyphonic source can be encoded: either by representing individual
notes, or by encoding simultaneous pitches, sometimes called unnamed chords 6 or
sonorities (Taube, 1999), with more or less information of rhythm, and optionally with
some kind of processing to map these pitches to named chords.

The main existing methods in the literature to encode and compare music roughly
lie inside the same groups we have made for monophonic music: strings, n-grams, and
geometric modeling. Besides, some methods based on the harmonic modeling have been
proposed that will be reviewed below in the following sections.

2.2.1 String modeling

When only a note is sounding at a time in a sequential order the string representation
of music is straight-forward. However, when the input is a polyphonic source this is not
the case. An interesting analysis of different string representations for polyphonic music
is developed in (Lemström and Pienimäki, 2006). In that review, three ways of building
a string of symbols from the polyphonic source are proposed, namely interleaved and
non-interleaved representations, and onset-based representation (see Fig. 2.22).

The non-interleaved representation corresponds to a sequential arrangement of all
monophonic lines of the polyphonic piece, separated by any symbol not belonging to the
alphabet. The main problem of this representation is that the meaningful extraction

6versus named chords as C]Maj7
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of monophonic lines from the polyphonic material is not solved so far (Rafailidis et al.,
2008). The other possibility, the representation of all possible monophonic lines lead to
a combinatorial explosion of possibilities, besides, the pattern matching process would
generate too many false positives. The advantage is that any interval-like representation
may be used to deal with transposition invariance.

A more adequate encoding is that of the interleaved representation (Pienimäki,
2002). All notes in the polyphony are sorted lexicographically, i.e., first the onset
is considered and for equal onset times the pitch is used as sorting criteria. When
using edit distances to compute similarity, big gaps may occur between contiguously
perceived notes. Increasing the maximum allowed gap the same false positives problem
is committed. Furthermore, the transposition invariance can be only managed by
computing the brute-force solution of all possible transpositions.

The two previous representations model individual notes. If sonorities are modeled
instead, the so-called onset-based representation may be used. After quantizing
the input, notes with the same onset are grouped in sets of pitches. Given this
representation, the search of a monophonic line in that structure is more or less straight-
forward, being the efficiency and, again, the transposition invariance the problem to be
handled (Lemström and Tarhio, 2003).

As noted in (Lemström and Pienimäki, 2006), the duration information of all but
the non-interleaved representation is lost, or at least, transformed by the fragmentation
of long notes into several notes occurring in contiguous onsets or groups. This is the
same case that was aforementioned in page 24 regarding the tied notes. Some authors
have tackled this problem by fragmenting long notes into fixed duration tied notes as
in (Hanna et al., 2008) (see Fig. 2.23), and the notebits in (Pardo and Sanghi, 2005).

A similar representation to the onset-based is the quotiented sequence in (Hanna
and Ferraro, 2007) as can be noticed in Fig. 2.24. Citing (Hanna and Ferraro, 2007),
“basically, quotiented sequences refer to sequences whose nodes are also sequences”.
In that work, quotiented sequence is just a string of sets of notes with their individual
durations mapped into unnamed chords. The similarity is computed with adapted string
matching techniques, and the comparison between sets of notes is achieved by comparing
a note of the mono query with all the notes from the set, and considering only the most
similar for the global score of similarity. If the named chords of the polyphonic source are
extracted previously with any of the available methods (Pardo and Birmingham, 2002a;
Temperley, 2001), this mapping from notes to chords is skipped and the polyphonic
piece may be regarded as a linear string of chord symbols (e.g. CM FM G7 CM ...)
whose similarity can be matched with any string matching algorithm. They key issue
here again is the comparison of individual chords. In (Pienimäki and Lemström, 2004)
that comparison is performed based on the chord tonal functions described in Def. 2.2.1.
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(a) An excerpt of polyphonic music from Einojuhani Rautavaara’s
opera Thomas (1985).

(0,68) (1,66) (2,71) (3,76) (4,80) %

(0,70) (2,71) (4,72) (6,74)%
(0,65) (2,66) (4,68) (6,69)%
(0,62) (2,64) (4,66) (6,67)%
(0,56) % (0,47) (4,48) % (0,40) %

(0,68) (1,66) (2,71) (3,76) (4,80)%

(0,70) (2,71) (4,72) (6,74)%

(0,65) (2,66) (4,68) (6,69)%

(0,62) (2,64) (4,66) (6,67) %

(0,56) % (0,47) (4,48) % (0,40) %

(b) Non-interleaved representation of the first bar of the excerpt in Fig. (a). Notes are
represented by ordered pairs (o,p) where o represents the onset time and p the pitch
information. We have emphasized (left) a solid occurrence, and (right) a distributed
occurrence of an imaginary query pattern.

(0,40) (0,47) (0,56) (0.62) (0,65)
(0,68) (0,70) (1,66) (2,64) (2,66)
(2,71) (3,76) (4,48) (4,66) (4,68)
(4,72) (4,80) (6,67) (6,69) (6,74)

(c) The first bar of the excerpt in
Fig. (a) in an onset-based representa-
tion.

(d) The first bar of the excerpt in Fig. (a) in an
onset-based representation.

Figure 2.22: String polyphony representations (from (Lemström and Pienimäki, 2006)).
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Figure 2.23: Illustration of the representation of polyphonic music with tied notes: a
monophonic query corresponding to one voice (a), a first polyphonic representation based
on onsets (b), and the representation chosen that considers tied notes (c) (from (Hanna
et al., 2008)).

Figure 2.24: Example of polyphonic musical score and its related quotiented sequence
(from (Hanna and Ferraro, 2007)).

Definition 2.2.1 Let A and B be two chords, the distance D between them is defined
as:

D(A,B) =



0, if A and B are exactly the same chord

a1, if A and B are inversions of same chord

a2, if A and B are different chords of same function

a3, if A and B are major and minor forms of same chord

1, if A and B otherwise

where coefficients a1, a2, and a3 must be defined such that they weight the functional
differences of chords: a1 ≤ a2 ≤ a3. Tonal functions are defined traditionally: tonic
includes degrees I and V I, degrees V and V II are dominant, degrees IV and II are
considered subdominant, and finally the III degree is not in any of those groups.

The so-called Tonal Pitch Step Distance (Haas et al., 2008) that measures the
distance between two chords, can be used also instead of that defined in Def. 2.2.1
to compute the substitution cost in any string matching algorithm on chord sequences.
This distance between chords is based on the relative distance from each of the two
compared chords to that defined on the tonic of the song key. As depicted in Fig. 2.25,
now the problem is converted in a geometric one that is solved with the techniques
in (Aloupis et al., 2006) described above in Fig. 2.17 of Section 2.1.6. Other similar
distance that could be used is that defined in (Lerdahl, 2001).

Another possibility is that introduced in (Allali et al., 2007) to look for a monophonic
query into a polyphonic song coded as a sequence of unnamed chords: following a
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Figure 2.25: A plot of the step functions of two blues variations. The TPSD is defined as
the hatched area between Blues variation 1 and 9 divided by the length of the shortest
step function (which can be either one in this example) (from (Haas et al., 2008)).

standard string matching algorithm, the substitution cost of an individual note with
a chord is that of the lowest cost of that note and each note of the chord.

Instead of using chords, in one of the several schemes presented in (Müllensiefen
and Frieler, 2004a) named Harmonic Edit-Distance, the most probable tonality name
is extracted for each bar in a so-called harmonic string, that will be compared using
classical string matching algorithms.

In (Robine et al., 2008) different levels of descriptors are proposed: in the first level
the key sequences, the second level contain the chord sequences, and finally the actual
notes.

The fourth considered option is to obtain a sequence of descriptors from the
polyphonic content. The difference between this option and the previous ones is that
now notes are neither considered individually nor grouped, instead of that features are
extracted with some windowing process. This is usually the approach used in audio cover
identification (Adams et al., 2004; Bello, 2007; Downie et al., 2008; Serrà and Gomez,
2008). Usually a sequence is built with chromagrams (see Fig. 2.26) with 12 octave
independent bins or Harmonic Pitch Class Profiles (HPCP) (Gómez, 2006) with 36
octave independent bins histogram representing the relative intensity of each semitone,
and 1/3 of the 12 semitone equal tempered scale respectively. After that, in the case
of (Serrà and Gomez, 2008) a global HPCP for each compared song is built as the
average of all the HPCP, and it is used to deal with transposition invariance by looking
for the rotation of the global HPCP that maximizes the dot product of both HPCP.
After applying the best transposition, songs are compared by using sequence comparison
methods like DTW or Smith-Waterman edit distance (see Section 2.1.4).
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C

log power-spectrum
C Hanning filters

Figure 2.26: Computing schematic for building a chromagram. The power spectrum
energy is accumulated into 12 pitch classes through a bank of filters tuned to the equal
temperament chromatic scale (from (Jehan, 2005)).

Multi-feature polyphonic comparison.

Arguing that text-matching or pure-mathematical algorithms are not suitable for
comparing music, and that more cognitive and musicological information should be used
for the task, in (Meudic, 2003) it is proposed to extract three different sets of features
to compute similarity between songs: pitches, contours, and rhythm.

Following the onset-based representation, he models the polyphonic sequence of all
merged voices using equally spaced beat sequences, representing pitches, durations, and
onsets extracted using their own beat tracking algorithm (Meudic, 2002a) (Fig. 2.27).
The similarity value is a linear combination of the individual similarities of pitches,
contours, and rhythm. Songs are previously normalized so that they contain the same
number of beat sequences. For computing the pitch similarity only downbeats are
considered, leaving apart the continuations (equivalent to the aforementioned tied notes),
reducing thus the running times of algorithms under the rationale that “two sequences
whose pitches coincide on the downbeat but differ elsewhere are often recognized as very
similar” 7. As each beat sequence is a pitch set, he introduces a distance between pitch
sets based on the chords they form and the intersection between them: looking for exact
occurrences of pitches or transposed versions of chords. The rhythmical similarity is
obtained just by aligning the two compared sequences and looking for the coincidences
in beat sequences. The upper and lower contours are compared using the intervals that
produce them, heuristically taking a threshold of 5 half-tones to consider each pair of
intervals similar.

7he states this fact has been confirmed by his experiments
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Figure 2.27: Beginning of the Aria of the Bach’s Goldberg variations, BWV 988. The
vertical lines delimit the beat segments. Horizontal lines are the durations of each event
(from (Meudic, 2003)).
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(a) All possible paths

1 2 3 6 7 8

n

(b) Path selection

Figure 2.28: n-gram extraction from polyphonic sequences (from (Doraisamy, 2004)).

2.2.2 n-grams

In her thesis, Doraisamy (2004) uses non-probabilistic n-gram models, or bag of
words models to index music collections and evaluate similarity as introduced in the
monophonic methods review (see page 36). In her model a mapping from intervals
and IOR to ASCII printable characters is presented, requiring a linear sequence to be
computed. To this end, after a windowing process of the input polyphonic content, all
possible pairs are obtained and converted into characters (see Fig. 2.28a). However, the
combinatorial explosion of possibilities of all pairs when dealing with actual polyphonic
pieces requires the pruning of some of those possibilities keeping only important paths
(see Fig.2.28b). One straight-forward possibility is to use those paths that define the
top and bottom envelope of the sequence. Other one is to keep the highest pitch at
each onset, what is equivalent to perform a skyline reduction. For the results and
conclusions presented in that thesis, the last possibility may be considered the best and
most simple. The model also includes an extension of the classical bag of words model
to include positional information in a polyphonic context, in such a way that multiple
words may be located at the same position.
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2.2.3 Harmonic methods

Pickens (2004) uses a harmonic characterization of the musical pieces to obtain their
similarity or evocativeness, on the hypothesis that the chord sequence of a song cover is
enough to evoke the original version. From the raw polyphonic content (either obtained
from an audio to symbolic process or directly in that format) the so-called simultaneities
are obtained and processed so that finally only pitch classes without durations are kept
(see Fig. 2.29), being this sequence of simultaneities (encoded each simultaneity as a bit-
vector of size 12) the input to the system, what leads to a system that is not note invariant
to transposition 8. That harmonic characterization is modeled using a language modeling
approach, assuming that a piece of music d is generated by a model p(d|Md), being the
unknown parameter the model Md. Two ways of constructing Md were presented.

First, by means of a HMM for each piece, where the states are the 24 different
major and minor triads, the observations are the sequence of simultaneities, and the
transitions of the model are initialized according to the classical circle of fifths where
tonalities are replaced with chords, upon the assumption that closer chords in that
circle should lead to higher transition probabilities. The observation probabilities for
each state are initialized using two different schemes, both use a measure of coincidence
between the triad notes and the piece actual simultaneities notes. Finally the model is
estimated using the standard Baum-Welch parameter re-estimation algorithm (Rabiner,
1989). Given a model for each piece, the similarity value of a new song or query is the
likelihood of the model of having generated the query observation sequence, obtained by
running the classical forward algorithm on the HMM.

The second model tries to avoid the lack of generalization due to the small training
dataset used because each model is estimated for each song. This is accomplished, at least
for the results and conclusions given, by the use of 1st, 2nd, and 0th order Markov models.
Now, the simultaneities are mapped heuristically into chords, and with the sequences
of chords, a Markov model is constructed for each piece. One interesting point is that,
instead of mapping each simultaneities into a single chord, a probability is assigned
to each chord in what the author denotes as partial observation vector. Now, given a
query song, it is modeled with a Markov model the same way as the collection pieces,
and the similarity value between them is obtained by measuring the dissimilarity of the
constructed model for the query and each collection piece model, being this dissimilarity
measure the conditional relative entropy.

The harmonic characterization of pieces in order to compare songs has been used
also in (Mardirossian and Chew, 2006). In that work, the 55-bin harmonic profile from
C [[ to C x of each song is obtained with their Center of Effect Generator algorithm
based on the spiral array (Chew, 2000), and then compared using either the L1 or L2

norms (see Fig. 2.30).

Following the early proposal of Shmulevich et al. (2001) to use Krumhansl’s tone
profiles (Krumhansl, 1990) for symbolic music retrieval, Müllensiefen and Frieler (2004a)

8however, all possible transpositions could be obtained, or use an interval from tonic pitch encoding
pift instead.
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(a) y-axis represent the MIDI note (b) The duration is removed

(c) y-axis represent the pitch class

Figure 2.29: Pickens’ simultaneities. x-axis represents time, black circles represent notes
sounding at that moment (from (Pickens, 2004)).
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Figure 2.30: Plot of key histogram for three pieces (from (Mardirossian and Chew,
2006)). Note that not all 55 possible major and minor keys from C[[ to C x are present
in the x-axis labels.
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apply these pitch profiles in what they name harmonic vector correlation to compare
music. A harmonic vector for a bar based on the Krumhansl pitch profiles (Krumhansl,
1990) is computed as follows: given the local tonality of the bar, a vector with a cell for
each pitch class is constructed. The value for each pitch class is computed multiplying
the sum of the IOIs of the notes of that pitch in the bar by the weight of that pitch class
in the Krumhansl pitch profiles 9.

With those harmonic vectors, melodic similarity is measured by computing the
correlation of those vectors for the two melodies compared. As both songs may have
different lengths in number of bars, the minimum of the lengths is used and the exceeding
bars are discarded. Although only used for comparing monophonic music, it may be
easily extended to polyphony. The same system structure is used in (Miura and Shioya,
2003) where a vector representing the pitch spectrum for each bar is built for each song,
and then compared using an ad-hoc measure based on the cosine similarity to compare
vectors, and giving more importance to the first bars of the song.

2.2.4 Geometric modeling

Following the same scheme described in the monophonic representation systems (see
Sect. 2.1.6), another way to encode the notes of a polyphonic melody is to depict it as
a cartesian plot, where time is represented in the x axis, and pitch is mapped in the y
axis, producing a sort of piano-roll picture (see Fig. 2.31). On that basis, notes may be
represented just as points, with a radius that represents duration or any other quality of
the note, and finally line segments like in a piano-roll score. The model can be extended
to more dimensions to represent other note features.

The natural way of encoding simultaneous notes is the strength of these group of
methods.

Quantized point-pattern similarity.

There is a group of systems that only use the note onsets of the piano-roll, i.e., the
starting point of each segment.

In order to compare raw polyphonic MIDI files, in (Mitzenmacher and Owen, 2001)
the documents are first converted in a list of onset times or points for each pitch.
Adapting the early approach in (Leppig, 1987) for monophonic music, where similarity
is measured as the count of the matched notes versus the non-matched notes, for each
MIDI pitch the intersection of the coincident times divided by the union of both sets is
computed. Then, the similarity of two documents is obtained by calculating the weighted
average of that coincidence measure for all pitches.

Clausen et al. (2000) used inverted file indices with the geometric representation in
their PROMS system. The onset times of the notes are quantized to a pre-selected
resolution so that both the pitch and time dimensions are discrete. Now, onset times are
represented relatively to their metrical position within the measure (see Fig. 2.32). The

9that are just a vector with a real value for each pitch class in each tonality
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Figure 2.31: Line-segment representation on a pitch-against-time Euclidean plane.

information within a measure constitutes one unit for the query. The retrieval method
finds occurrences (total and partial) that have a similar metrical positions as the query;
local time and pitch fluctuations cannot be dealt with. The tempo invariance can be
obtained by conducting a metrical structure analysis phase and transposition invariance
by using a mathematical trick that outperforms the brute-force solution.

Instead of all possible transpositions, the interval from tonic pitch encoding pift could
be used.

In the original algorithm, the approximate search is accomplished by allowing a
maximum of k dissimilarities between the query and the database document. To compare
whole pieces of music, the original algorithm may be modified to return the normalized
number of coincidences for the best alignment. In the sequel, we will refer to this
technique as PROMS similarity, named after Clausen et al.’s original system.

Multidimensional point sets.

If instead of using different radius for representing other properties of notes (apart from
time and pitch) like in (Typke, 2007) (see Sect. 2.1.6), more dimensions are added to
the plot, the problem of comparing two pieces is converted into the one of mapping or
translating two n-dimensional point sets. The SIA(M)ESE system (Wiggins et al., 2002)
works on the translation vectors between the points in the piano-rolls. This way, finding
a transposition invariant exact occurrence of a query pattern becomes straightforward:

54



2.2. POLYPHONIC MUSIC

22
�22�2� 22 ���224

3��� �2 ��2222
(a) Excerpt of Beethoven’s Hammerklaviersonate, Scherzo

{
{[8,74], [11,77], [11,69]},
{[12,77], [12,72], [16,74], [16,65], [20,70], [23,74], [23,66]},
{[24,74], [24,69], [28,70], [28,62]}
}

(b)

Figure 2.32: Representation in PROMS of fragment (from (Clausen et al., 2000))

find a translation vector that translates each point in the pattern to some point within
the studied musical work. They look for either the longest time-contiguous subset of
pattern notes into the score, or, under the assumption that usually the beginning and
ending of a piece is more rememberable than the middle part, exact matches at the
beginning and ending of the song (see Fig. 2.33). For large queries, in (Clifford et al.,
2002) the MSM system is presented, that finds the largest subset of a pattern appearing
in a point set at an arbitrary offset in any of the dimensions represented, thus allowing
tempo and transposition invariance, and according to that work’s authors, outperforming
the SIA(M)ESE system.

Line segments.

In order to find exact matches of the starting points of the line segments representing
the compared songs, Ukkonen et al. (2003a) show how to process the translation vectors
in a suitable order to obtain an algorithm of a linear expected and a quadratic worst
case time complexity (algorithm P1). Their method was also modified for the case
of finding all partial occurrences of the pattern. This is doable in O(nm logm) time,
where n and m refer to the length of the musical work and the pattern, respectively
(algorithm P2). Moreover, they also suggested to replace the points in the piano-rolls
by horizontal line segments (thus considering the length of the notes instead of the bare
note-on information) and modified their algorithm to solve the problem of the longest
common total length. For this problem, their P3 algorithm requires some extra data
structures but runs also in O(nm logm) time (with discrete input). This setting takes
into account tempo fluctuations but not pitch fluctuations. One attempt in this direction
is presented by Lubiw and Tanur (2004). More recently, Lemström et al. (2008) have
developed more efficient versions of the P2 algorithm using indexing: namely P2v5 and
P2v6. These algorithms are framed into the C-Brahms project (Lemström et al., 2003),
generic name that we will use from here on to refer them.
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)b()a(

)d()c(

Figure 2.33: (a) Two-dimensional point set representation of a score; (b) two-dimensional
point set representation of a pattern; (c) an approximate match of the pattern into the
score that exactly matches the start and end of the pattern; (d) an approximate match
of the pattern into the score that matches the longest time-contiguous subset of pattern
notes into the score. (from (Typke et al., 2005b)).

2.2.5 Network flow distance for chords

By describing the Earth Mover Distance (Typke, 2007) (see Sect. 2.1.6) as a special
case of a network flow distance (Ramon and Bruynooghe, 2001), “where a certain total
amount of weight has to be moved across the network such that the flow is maximized
and the costs are minimized”, the problem of finding an optimal transportation between
point sets is equivalent to that of finding a maximum flow at minimum cost through
such a network.

In order to compare polyphonic music unnamed chords or sonorities are identified,
and weights and arc costs are adjusted to reflect which notes belong to the same chord
so that the distance is able to handle them.

For the interested reader, there is another work that based on the Typke’s EMD
distance model to compare melodies and allowing note-to-chord comparisons (Garbers
et al., 2007).

2.2.6 Similarity by Kolmogorov complexity

There have been isolated attempts to use information theory measures to compare music.
Ling and Sharp (2004) used a metrics based on the Kolmogorov complexity (Li and
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Vitanyi, 1997). This metrics is based on the assumption that the compression of two
similar pieces concatenated should be higher that two non-similar pieces because the
more similar the pieces are, the more information they share.

In order to construct the binary string that will be fed into the LZW compres-
sor (Welch, 1984), a skyline reduction from a whole polyphonic piece is performed and
absolute pitches and pitch intervals are used to generate that string. In their work, they
reported better performance than other models based on language modeling like bigrams
and trigrams.
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3
Music comparison with tree representation

“One of the most obvious facts about the experience of listening to
practically any piece of music is that one perceives not merely an arbitrary
sequence of note durations, but some sort of temporal structure in which the
notes are grouped into various kinds of units.” (Lee, 1985)

“Reductions offer a tempting solution to fuzzy matching because they
suppress the differences of surface detail. But do they suppress the most
appropriate surface details?” (Selfridge-Field, 1998)

3.1 Previous uses of trees in computer music

These two sentences support the hypothesis our approach is based on. The abstract
data type tree seems to be the most suitable for capturing the temporal and hierarchical
structure, and it is ready for representing the reduction of a work. Therefore, trees seem
to be an adequate data structure to encode and process music in symbolic format for
similarity computation. Despite this might look like an obvious assumption, as far as
we know, trees had not been used as a method to represent music for comparison until
our first proposal in (Rizo and Iñesta, 2002). However, some other uses of trees in the
domain of computer music can be found in the literature.

Song

1.Period 2.Period 3.Period

O-Phrase C-Phrase O-Phrase C-Phrase O-Phrase C-Phrase

1.Motive 2.Motive 1.Motive

Figure 3.1: Form structure of “Alle Voegel Sind Schon Da.” (from (Linster, 1992)).

A straight forward use of trees can be found in the representation of the formal
architecture of a whole musical work (see Fig. 3.1). Another tree that instantaneously
comes to mind is that of the hierarchy of subdivisions of the figure durations (see
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Figure 3.2: Duration hierarchy for note figures. From top to bottom: whole (4 beats),
half (2 beats), quarter (1 beat), and eighth (1/2 beat) notes.

Fig. 3.2). Those two kinds of tree structures have been widely used in the domain of the
rhythm perception. As noted in (Linster, 1992), the simplest rhythm patterns have a
regular pulse, and multiples of this pulse are stressed in a hierarchical way, leading to the
tree in Fig. 3.2. In order to describe formally the perception of more complex rhythms, a
number of grammars and parsing strategies have been proposed. In (Lee, 1985) a review
of the research of (Longuet-Higgins, 1978; Martin, 1972; Sundberg and Lindblom, 1992)
shows different grammars to model the perceived rhythm from notational figures, under
the assumption that a listener performs an unconscious grammar parsing (see Fig. 3.3).
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1 + 4
1+ 4
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4
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(a) Grammar for meter 3/4

�
termat

�
the

�
4
3����

be?

��
dear!

��
Oh,

�
can

�
what

�

(b) First four bars of “Oh dear, what can the matter be”
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(c) Parse tree of score with 3/4 grammar

Figure 3.3: Longuet-Higgins grammars (from (Lee, 1985) pages 54-55).
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As pointed out in the work of Lee (1985), there are many rhythms that can be
unambiguously analyzed using those grammars. However, there are also many situations
in which the parsing is not so straight forward. See in Fig. 3.5c some possible parses for
score in Fig. 3.5a using both the grammar for 3/4 in Fig. 3.3a and the grammar for 4/4
in Fig. 3.5b.

S [12]

S [5]

S [1]

S [0]

I [1]I [− 1]I [1]

I [4]

I [2]I [2]

I [7]

I [0]I [7]

Figure 3.4: Parse tree from (Gilbert and Conklin, 2007).

Being a very interesting approach, however, none of those works specifies an
implementable computer algorithm or specification. Instead, two grammars that
were conceived from a computational point of view were those found in (Bod, 2002)
and (Gilbert and Conklin, 2007). The former tries to learn a grammar with the so-
called Data-Oriented Parsing (DOP)using the ESSEN corpus (Schaffrath, 1995) (see
Fig. 3.6). In that work, the task is to learn segmentations from a corpus of melodies
with manually separated phrases. In (Gilbert and Conklin, 2007), monodies are parsed
into tree structures using a probabilistic context-free grammar that is used to perform
melodic reductions (see Fig. 3.4). This grammar is based in a melodic analysis like the
one presented above in Section 2.1.3 (page 26) and was evaluated through a segmentation
task.
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(a) First two bars of“Auld Lang Syne”
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(b) Grammar for meter 4/4
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3    · · · · R� R RR R�� �

1 ��� � �     · · · ·   |   � ��� �

(c) Some possible parses of (a) using
the grammar in (b) and that detailed in
Fig. 3.3a.

4
4

4
2

8
1

8
1

4
2

4
1

4
1

4
4

4
2

4
1

4
1

4
2

4
1

4
1

(d) Some possible parses

Figure 3.5: Longuet-Higgins grammar for meter 4/4 (from (Lee, 1985) pages 54-55) and
some possible parses.
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R R R RRRRR RR
4
2�� R RRRRR R RRRR RR R RR RRR RR RR

(a) Essen Folksong K0029, “Schalf Kindlein feste”.

(3 221 -5)(-533221 -5)(13335432)(13335432 )(3 221 -5 )

(b) Bracket representation. The parenthesis delimit phrases.

S

P P P

N N N N N ... ...

3_ 2 2 1_ -5

(c) The labeled bracket representation in (b) for
(first five notes of) the K0029 rendered as a tree.

Figure 3.6: Example of data used to learn grammar in (Bod, 2002).

As a way to conceptually represent music for a composition task, trees have been
used in (Smaill et al., 1993) and (Balaban, 1996). In the latter, music is represented with
a sort of object oriented structure where nodes represent musical objects and children
inherit possibly transformed properties from their parents (Fig. 3.7).

. . .

.

0 0

mp4

mp2 mp3 mp5

max[ duration( mp ), duration( mp 3 ) ]2

Figure 3.7: This tree describes hierarchically a piece, mp4, that consists of simultaneous
occurrences of mp2 and mp3, followed sequentially, by a piece mp5 (from (Balaban,
1996)).

Some tree structures have been used to describe the hierarchical nature of pitch
encodings (Höthker et al., 2001) (Fig. 3.8), however they describe meta-information and
are not used to represent melodies.

In automatic composition, the Wind in the Willows system (Högberg, 2005) uses
tree transducers to generate music. From a tree representation of a melody (Fig. 3.9a),
the system uses tree transducers for structure and chord progressions (Fig. 3.9b) in order
to create new music.
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contour

stationary

pause other repeated note

moving

straight

U

. . .

D

. . .

oscillating

UD

ud uud udd

DU UDU DUD

Figure 3.8: The tree-structure representation C2 in (Höthker et al., 2001).

Schenkerian analysis. During the late 19th and the early 20th centuries Heinrich
Schenker (1868-1935) developed a method for analyzing tonal compositions based on
the hierarchical structuration of music (see (Beach, 1977) for a compendium of his
publications). He posed that a musical work can be eventually understood as a series
of elaborations that leads from a basic harmonic and melodic structure to the actual
sequence of notes that compose a melody. In order to develop the root idea into the
actual notes, he used a hierarchical structure, i.e., a tree. However, as his theories were
not developed from a formal point of view, there is not a “computable” methodology
that drives an analysis from a piece. Instead, several non-deterministic principles
have to be taken to derive the several levels of reduction of the schenkerian analysis.
There have been a number of attempts to create an automatized system to perform
a schenkerian analysis: Smoliar (1979), Kassler (1988), Kirlin and Utgoff (2008),
and the excellent works of Marsden (2001, 2004, 2005, 2007). In his article ”Generative
structural representation of tonal music” (Marsden, 2005), he reviews the previous works
in-depth. Nonetheless, as the theory is not deterministic, there are many situations where
a decision has to be taken to disambiguate two possible valid analyses. None of those
computer approaches to the schenkerian analysis has as its main objective to compare
music, so as far as we know, there is no groundtruth that assesses that the computer
made analyses are valid for the comparison goal.

One important concept for this thesis in those theories is the notion of elaboration.
It can be seen as the contrary of the concept of division or diminutions (Forte and
Gilbert, 1982), that refers to the process by which an interval formed by notes of longer
value is expressed in notes of smaller value, comprising passing notes (P), the neighbor
notes (N), the consonant skips (CS), the repetitions (R), the suspensions (S), and the
arpeggiations (Arp). See Fig. 3.10 for an example of each.
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(a) Above, the first two bars of the sonata in C-major KV545 by Mozart,
and below, the same piece represented by a tree

I⇒I

◦
◦

◦
◦ ◦

◦
◦ ◦

◦
◦

◦ ◦
◦

◦ ◦

→
◦

I⇒V

◦
◦

◦ ◦
◦

◦ ◦

V ⇒I

◦
◦

◦ ◦
◦

◦ ◦

∗→

◦
◦

I⇒IV

◦
◦ ◦

IV ⇒V

◦
◦ ◦

◦
V ⇒IV

◦
◦ ◦

IV ⇒I

◦
◦ ◦
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I I

IV
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◦

V I
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IV V

(b) A transducer assigns a chord progression common to pop
music.

Figure 3.9: Tree manipulation in Wind in the Willows (from (Högberg, 2005)).
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½ �
Arp

�� �
CS

�
.

�� � CM �
.

�
P

� �
R

�
N

�� � ½

Figure 3.10: Basic elaborations

�� � �� ��
����� ��� � ��� ��� ��

8
6 � � ����

(a) Beginning of Mozart’s piano sonata in A major,
K.331.

(b) Schenker’s analysis (from
(Schenker, 1935), Fig. 157).

(c) Simple elaboration-tree representation in the original Marsden (2005) notation.

R C#5

N C#5 C#5

C#5 D5

R E5

E5 E5

CS C#5

R B4

N B4 B4

B4 C#5

R D5

D5 D5

CS B4

P C#5

R A4

A4 A4

R B4

B4 B4

P A4

Apg D5

E5 D5

N C#5

C#5

CS A4 C#5 B4

CS E5 S B4

P C#5

(d) Our standardized tree representation. The left box of each node contains the elaboration
used, the right box has the note name.

Figure 3.11: Marsden Schenkerian analysis of a musical excerpt. The tree notation in (d)
introduced in the present work to homogenize reduction notation along the manuscript.

According to Marsden (2005), the analysis of the first two bars of the Mozart’s piano
sonata in A major, K.331 (Fig. 3.11a) leads to the tree in Fig. 3.11c. In that figure, our
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own notation of the reduction tree has been used (Fig. 3.11d) to homogenize this kind
of information along this manuscript.

Being these theories relevant to our hypothesis of using reduced melodies, we have not
been able to use them directly because, besides the non straight forward computability
of the theories, there are relations that span across the strict parent-leaves relation of
trees, what suggests that in Schenker theories are closer to graphs than to trees as noted
in (Marsden, 2005).

Generative theory of tonal music. A somewhat similar approach to that of
Schenker to explain hierarchically the inner relations in a musical piece is the Generative
Theory of Tonal Music (GTTM) (Lerdahl and Jackendoff, 1983). Inspired in the
linguistics grammars, the authors of GTTM wrote: “we take the goal of a theory of
music to be a formal description of the musical intuitions of a listener who is experienced
in a musical idiom”. Although no formal grammar is defined in that work, an extensive
series of rules that try to explain what the listener perceives is provided. Those rules
cover from the base tactum and beat perception to how the whole piece is structured,
passing through the individual dependencies between notes. Related to the concept of
reduction and elaboration, Lerdahl and Jackendoff define the concept of subordination
to denote which of two notes is more important in terms of structure, either the left note
in the so-called right elaboration (see Fig. 3.12) or the right note in the left elaboration
(see Fig. 3.13). In Fig. 3.14 we have plotted using our proposed notation an example of
GTTM reduction of a musical excerpt.

x y

(a) Original GTTM notation.

R x

x y

(b) Our own tree notation. The
left box of each node contains
the branching used (R stands for
right), the right box has the note
name.

Figure 3.12: GTTM: y is a right-branching elaboration of x.
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x y

(a) Original GTTM notation.

L y

x y

(b) Our own tree notation. The
left box of each node contains the
branching used (L stands for left),
the right box has the note name.

Figure 3.13: GTTM: x is a left-branching elaboration of y.

As it happens with Schenker theories, the GTTM is not directly computable. Most of
the rules are ambiguous, in fact they are grouped in well-formedness rules and preference
rules which lead to conflicts in many cases. Some attempts to implement the GTTM
can be found in the literature (Hamanaka et al., 2007; Jones et al., 1993), being the work
of Hamanaka (currently named ATTA) the most active and promising so far. However,
the proposed systems, that have a multitude of parameters to be tuned, are still far to
be able to work with whole pieces 1.

OpenMusic rhythm trees. In the context of assisted musical composition in the
symbolic domain, a tool stands out from the rest: OpenMusic (Assayag et al., 1999).
This tool uses trees as a natural way of representing the hierarchical nature of duration
subdivision of musical figures and groupings like tuplets. It is implemented in LISP,
where everything can be represented either with a list or a tree (list of lists). In order to
be able to make the computer processing of complex rhythmic formulae easier, it uses the
so-called rhythm trees (Agon et al., 2002), that represent the totality of the hierarchical
relationship of traditional rhythmic notation: bars divided into groups divided into beats
divided into notes. Rhythm trees only contain the rhythmic structure, they do not have
any pitch information. This data is contained in synchronized lists that have the pitches
for the leaves of the trees. The OpenMusic manual describes those trees as:

Trees represented in list form (D,S) where D is a number (integer or
fractional) expressing a time extent, S is a list of items defining a set of
proportions to take place in D, each item of S being either :

• a number, possibly preceded by a dot to indicate that it is tied to the
previous note

• a sublist, having itself the same structure (D,S).

The actual duration indicated by D depends on the group of which its
list is a part. At the highest level, the basic unit is assumed to be the

1Personal communication
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whole note. So, (1 (1 1 1 1)) (Fig. 3.15) is a structure whose duration
is a whole-note (1) which is subdivided into 4 equal parts, which would
be 4 quarter notes in this case. Similarly, (2 ( (1 (1 1 1 1)) (1 (1 1 1

1)))) (Fig. 3.16) is a structure with a duration of two whole-notes, containing
two equal substructures, each lasting a whole-note. These substructures in
turn contain 4 equal values, i.e., quarter notes. So it can be interpreted as a
voice containing 2 measures in 4

4.

By convention, when the value of D is on the measure level it will be
expressed in a whole note unit. Following this rule, a three quarter notes 4

3

bar is represented by (3/4 (1 1 1)).

1

1 1 1 1

Figure 3.15: OpenMusic rhythm tree representation of list of lists (1 (1 1 1 1))

2

1 1

1 1 1 1 1 1 1 1

Figure 3.16: OpenMusic rhythm tree representation of list of lists (2 ( (1 (1 1 1 1))

(1 (1 1 1 1)))

An example of this representation for a particular melody can be found in Fig. 3.17a.
In order to facilitate the interpretation of the tree, we have added some labels containing
between parenthesis either a meter or the actual pitch that has been obtained from the
list of pitches that accompanies the rhythm tree in OpenMusic to represent a melody.

Fig. 3.18a shows the already used example on the firsts bars of Mozart’s K331 with
the representation of OpenMusic.

Indexing. Finally, trees have been also used not as a means to represent music,
but as an intermediate data structure for other goals like document structuration in
searching (Blackburn, 2000; Drewes and Högberg, 2007; Skalak et al., 2008).

Our approach: metrical trees. Many of the just reviewed tree applications are very
interesting and useful for the particular task they were designed for. However, all of them
have some drawbacks for the similarity computation task: basically they are not ready
for performing a straight forward reading of an input MIDI file, represent it, perform a
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reduction, and finally use the final tree to compare with other musical works encoded in
the same kind of trees. Some approaches, like the OpenMusic representation seem to be
adequate for the comparison task, but were discovered by the author of this dissertation
after having proposed our first proposal of tree representation (Rizo and Iñesta, 2002).
However, being somewhat similar, our representation encodes the kind of rhythm pulse
proposed by several rhythm analysis as explored in (Lee, 1985).

Our objective is to use the tree data structure to better represent musical symbolic
information in order to compare different pieces to judge their similarity. Our goal is not
to depict faithfully all musical details, but to keep only those elements that are important
for the comparison computation. Thus, our method is designed to be unambiguous and
as much simple as possible.

We pose the importance of metrical structure against the linearity of other
representations. The proposed trees, named metrical trees, avoid the necessity of
encoding explicitly onsets and duration as it happens with string representations, leading
to less degrees of freedom and less different possible encodings to be explored because
only pitches need to be encoded. Besides, as stated in (Rolland, 1999), “melodic
comparison requires taking into account not only the individual notes but also the
structural information based on music theory and music recognition”.

Next in this chapter, the tree construction method will be introduced. First some
definitions and notations are stated. Then, the tree algorithms for the metrical tree
construction are detailed. After that, some approaches to melodic reduction are shown.
The comparison of melodies by the use of tree edit distances is treated in the next section.
The method is finally extended for the representation of polyphonic music. Finally,
the experiments section shows the performance of the proposed approach compared to
existing music comparison paradigms.

3.2 Tree representation of monophonic metered music

A melody has two main dimensions: rhythm and pitch. In linear representations,
those dimensions are coded by explicit symbols, but ordered trees are able to implicitly
represent time in their structure, making use of the fact that the whole piece is divided
hierarchically into bars, and note durations are multiples of basic time units, mainly
in a binary (sometimes ternary) subdivision. The left to right ordering of tree nodes
depicts the time flow. This way, trees are less sensitive to the codes used to represent
melodies, since only pitch codes are needed to be established and thus there are less
degrees of freedom for coding. Furthermore, this hierarchical organization allows to
append additional information such as harmonic descriptors to groups of notes in a
natural way. We name this kind of representation metrical trees.

In the western music from the common practice period, the lapse of time is usually
divided first in bars regularly, then in beats and finally in subdivisions of those beats.
The duration of the bars depends on the meter and tempo. The duration of the actual
figures is designed according to a logarithmic scale: a whole note lasts twice than a half
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note, that is two times longer than a quarter note, etc. (recall figure durations hierarchy
in Fig. 3.2 at page 60).

In our tree model, each melody bar is represented by a tree, τ . Each note or rest is
found in a leaf node. The left to right ordering of the leaves preserves the time order of
the notes in the melody. The level of a leaf in the tree determines the duration of the
note it represents, as displayed in Fig. 3.2: the root (level 1) represents the duration of
the whole bar (e.g., a whole note for a 4

4 bar), the two nodes in level 2, the duration of
a half. In general, nodes in level l represent duration of a 1/2l−1 of a bar.

If only a whole note is found in the measure, the tree will consist of just the root,
but if there were two half notes, this node would split into two children nodes. Thus,
recursively, each node of the tree will split into two until representing the notes actually
found in a measure.

During the tree construction, internal nodes are created when needed to reach the
appropriate leaf level, filling the tree from left to right. Initially, only the leaf nodes
contain a label value. The tree labels represent the corresponding pitch information in
any representation of those introduced in section 2.1.1 (MIDI note, interval, etc.), and
even harmonic data can be associated to the note. Once the tree is built, a bottom-up
propagation of these labels can be performed to fully label all the nodes. The rules for
this propagation will be introduced below.

An example of this scheme is presented in Fig. 3.19. Note that in this case the meter
is a 4

2 and the root duration is equal to a half. In the tree, the left child of the root has
been split into two subtrees to reach level 3 that corresponds to the first note duration
(as eighth note lasts 1/23−1 of the bar, pitch B coded as 11 according to the pitch class
representation). In order to represent the duration of the rest (coded as an empty label)
and note G, coded as 7 (both last 1/8 of the bar), a new subtree is needed for the right
child in level 3, providing two new leaves for representing them. The quarter note C
(0) onsets at the second beat of the bar, so it is represented in level 2 according to its
duration.

Fig. 3.19 depicts how the time order of the notes in the score is preserved by traversing
the tree from left to right. Note also how onset times and durations are implicitly
represented in the tree, in opposition to the explicit encoding of time when using strings.
This representation is invariant under time scalings, as for instance, different meter
representations of the same melody (e.g., 2/2, 4/4, or 8/8).
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Figure 3.19: Simple example of tree construction using pitch class representation
.
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Processing non binary durations.

In some occasions the situation can be more complicated. There are note durations that
do not match a binary division of the whole bar or the parent node. This happens, for
example, for dotted notes (duration is extended in an additional 50%) or tied notes whose
durations are summed (see Fig. 3.20a). In such a case, a note cannot be represented just
by one leaf in the proposed scheme. However, it is well-known (Mongeau and Sankoff,
1990) that our auditory system perceives a note of a given duration the same way as
two notes of the same pitch, played one after the other, whose durations sum up to that
of the single one. Therefore, when a note exceeds the considered duration, in terms
of binary divisions of time, it is subdivided into notes of binary durations, and the
resulting notes are coded in their proper tree levels. Nodes containing the continuation
of another one can be encoded by appending any special symbol or indication to denote
the continuation. Fig. 3.20b shows such an example and how it is handled by the scheme.
This kind of duration splitting has been also used in other works (Hanna et al., 2008;
Pardo and Sanghi, 2005).
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(b)

Figure 3.20: Tree representation of notes exceeding their notation duration: dotted and
tied notes. Both 0 leaves correspond to the same dotted quarter note. The two 4 leaves
represent the two tied notes. Shaded nodes denote continuation notes.

Other frequently used non binary divisions are ternary rhythms. In that case, the
length of one bar is usually 3 beats and it is split into 3 quarter notes, etc. This is not
a problem, since neither the tree construction method nor the metrics used to compare
trees need to be binary; there can be any arbitrary number of children for a node. So,
in ternary meters or ternary divisions, the number of children for a node is three. Now,
durations at each level l is 1/3l−1 of the whole bar. This can be generalized to other
more complicated cases that can appear in musical notations, like tuplets or compound
meters. Fig. 3.21 gives an example of compound meter based on ternary divisions and
the corresponding tree.
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Figure 3.21: The compound meter 9/8 is based on ternary divisions. The tree
construction method can also represent this melody.

There are other subtle situations that may appear in a score, like for example grace
notes2, that are not included in the cases described above. Nevertheless, in digital scores
(e.g., MIDI files) these special notes are represented by short notes that are subsequently
coded in the level corresponding to their written duration by our scheme.

Representation of complete melodies.

The method described above is able to represent a single bar as a tree, τ . A bar (or
a measure) is a basic unit of rhythm structure in music. A melody is composed of
a sequence of B bars. Let us now describe how to combine the set of trees {τ i}Bi=1

representing the bars.

To build a tree, T , for a complete melody, the computed bar trees are joined in a
particular order. For instance, the sub-trees can be grouped two by two, using always
adjacent pairs. This operation is repeated hierarchically, bottom-up, with the new nodes
until a single root is obtained. Let us denote the depth (or height) of a melody tree T
by h(T ). With this grouping method, the trees grow in depth quickly:

h(T ) = log2B + 1 + max
i

h(τ i),

making the tree edit distance computation very time consuming, since it heavily depends
on this tree feature as will be discussed below in Section 3.5.

The use of the hierarchy for capturing the musical architecture or structure of a
whole work could be an option, but the automatic recognition of structure (Chai, 2005)
is outside the scope of this dissertation. Then, our best choice is to build a tree with a
root for the whole melody, whose children are the bar sub-trees. This way, the depth of
a tree corresponding to a whole melody becomes

h(T ) = 1 + max
i

h(τ i).

The smaller depth of the tree of the latter approach makes it the choice taken.
Besides, this scheme is closer to the notion of regular time subdivision levels as studied
in the common music theory. Fig. 3.22 displays an example of a simple melody, composed
of three bars, and how it is represented by a tree composed of three sub-trees.

2 A grace note is a very short note or a series or notes to achieve musical effects that occupies no
time in the duration notation in a score. They are also known as acciaccatura.
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Figure 3.22: Melody and the corresponding tree. The root of the tree connects all the
bar sub-trees.

In order to briefly compare our construction method with the other tree representa-
tion methods exposed in the beginning of this chapter, we have collected in figure 3.23
the already used fragment of Mozart’s K331 piano sonata represented with the four
previously depicted tree music representations using our standardized notation, along
with our metrical trees. Our metrical trees do not focus on the analysis process
through the bottom-up grouping of notes as happens with the Schenkerian analysis
(see Fig. 3.23c) and the GTTM (see Fig. 3.23d), however, as we will describe below in
Section 3.4, it is ready to support that kind of process. Instead, the figure shows how
our approach focus more in a metrical based hierarchical subdivision of time, similar to
that proposed by Lee (Lee, 1985) reviewed at the beginning of this chapter. The only
approach able to represent rhythm is that of OpenMusic (see Fig. 3.23e), that it has a
node representing each bar and contains the duration of the notes explicitly represented
in the leaves. All those tree representations contain the actual notes in leaves, being our
representation the only one that needs to split notes because the duration is implicit in
the depth of nodes. Finally, all approaches represent time flow through the left to right
ordering of nodes.

3.2.1 Examples of tree construction for different meters

In order to illustrate the metric tree construction from monophonic melodies, an example
for each representative meter is shown in the appendix D.1 (page 173). The incipits in
these examples have been obtained from the kern scores 3 library of virtual musical
scores.

3.3 Metrical tree construction algorithms

Now that our tree representation of monophonic music has been depicted, in this section
the construction of the tree in a more formal way will be detailed. First some required
definitions and notations will be introduced, and finally the algorithms for constructing
trees and some examples will be provided.

3http://kern.ccarh.org
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CHAPTER 3. MUSIC SIMILARITY WITH TREES

3.3.1 Definition and notations

In this section, the terms and notations that will be used along this and the following
chapters will be defined. These notations are based on the work of Valiente (2001).

Definition 3.3.1 A labelled graph G = (V,E,L) consists of a finite non-empty set V
of vertices, a finite set E ⊆ V × V of arcs, and a set L of labels for nodes.

Definition 3.3.2 Let G = (V,E, L) be a labelled graph. Each node contains a label,
possibly empty. The labeling function will be defined by label : V → L. The empty label
will be denoted as ε.

Definition 3.3.3 A connected, directed, and acyclic graph T = (V,E, L) is said to be a
labelled rooted tree if there is a distinguished node r ∈ V , called the root of the tree and
denoted by root : T → V such that for all nodes v ∈ V , there is only a path from root r
to node v. Thus, root(T ) = r.

Definition 3.3.4 Let us define also the function rlabel : G → L that returns the label
of the root of the tree.

All the trees used in this manuscript are labelled rooted trees, so both terms will be
used interchangeably.

Definition 3.3.5 Let T = (V,E, L) be a rooted tree, the level or depth of a node
v ∈ V , denoted by depth: V → N ∪ {0}, is the length of the unique path from the root
node root(T ) to node v.

Definition 3.3.6 The height of tree T = (V,E,L) denoted by h: T → N∪{0} is defined
as h(T ) = maxv∈V {depth(v)}.

Definition 3.3.7 Let T = (V,E, L), and two nodes v, w ∈ V , v is said to be the parent
of w, if (v, w) ∈ E and depth(w) = depth(v)+1. The parent of a node will be obtained by
the function par : V → V . The node w is said to be a child of v. Let us define the function
children: V → 2V as the set of all children of node v. children(v) = {w|par(w) = v}.

Definition 3.3.8 Let s, t ∈ V−{root(T )}, they are said to be sibling if par(s) = par(t).

Definition 3.3.9 Let T = (V,E,L), the arity, rank, or out-degree of a node v ∈ V ,
denoted by rank: V → N ∪ {0}, is the number of children of a node. rank(v) =
| children(v)|. When applied to a tree Tm, rank(Tm) = maxv∈V {rank(v)}. When there
is no possible confusion, the form Rm will be used as abbreviation for rank(Tm).

Definition 3.3.10 Let T = (V,E,L) be a tree, a node v ∈ V is said to be a leaf if
rank(v) = 0. A boolean function leaf : V → Bool is defined to denote it. Similarly,
leaves(T ) is the set of nodes of that tree that have no children: {v ∈ V | leaf(v) = true}.
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Definition 3.3.11 An ordered tree T = (V,E, L) is a tree where the relative order of its
children is fixed for each node. It allows us to define the enumeration function child : N×
V → V , such that childi(v) is just before childj(v) iff i = j − 1, 1 ≤ i < j ≤ rank(v).
The same function can be formulated using a tree as parameter: child : N×T → V , such
that for TA ∈ T , childi(TA) = childi(root(TA)).

Definition 3.3.12 The postorder numbering of a tree consists of giving the visit order
of each node of the tree following a postorder traversal of the tree. To uniquely identify
nodes in a tree T , lets define T [i] ∈ N as the ith node in a postorder numbering, beginning
from 1.

Definition 3.3.13 desc(T [i]) is the set of all descendants of T [i] including T [i] itself.
Note that this function not only returns the children of a node, but the children of the
children and so on.

Definition 3.3.14 A subtree T ′ = (V ′, E′, L) of T = (V,E,L) is a tree such that
V ′ ⊆ V , and E′ ⊆ E.

Definition 3.3.15 A forest is a disjoint union of trees, and an ordered forest has the
property that its components follow an order being this way a sequence of trees that will be
denoted as T +. The operation T [childi(T ).. childj(T )] is the set composed by the children
of T from positions i to j, both included, and it forms a subforest. For abbreviating the
notation, T [i..j] will be used in the sequel to denote this operation.

Examples of the definitions In order to illustrate the previous definitions, some
examples are provided that have been obtained from the tree in Fig. 3.24a.

• Tree in Fig. 3.24a
T = ({v1, v2, v3, v4, v5, v6}, {(v6, v4), (v6, v5), (v4, v1), (v4, v3), (v3, v2)},
{f6, d4, c5, a1, c3, b2})

• Subtree in Fig. 3.24b
T ′1 = ({v3}, {}, {c3})

• Subtree in Fig. 3.24c
T ′2 = ({v4, v1, v3}, {(v4, v1), (v4, v3)}, {d4, a1, c3})

• Ordered forest in Fig. 3.24d
F = (({v2}, {}, {b2}),
({v4, v1, v3}, {(v4, v1), (v4, v3)}, {d4, a1, c3}), ({v5}, {}, {e5})

• Ordered subforest in Fig. 3.24e
T [1..3] = {({v1}, {}, {a1}), ({v3, v2}, {(v3, v2)}, {c3, b2})}

• Descendants in Fig. 3.24f
desc(T [4]) = {T [1], T [2], T [3], T [4]}
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the postorder index)
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a1 b2 c3 d4
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Figure 3.24: Sample tree and some operations on it.

3.3.2 Construction of monophonic metrical trees

A melody is structured in bars, which contain the notes to be represented. Each bar is
written according to a meter M = (n, d) where n ⊂ N stands for the numerator, and
d ⊂ N denotes the denominator of the meter, which determine the duration of that bar
and its structure. The sequence of bars with their meters define a segmentation of the
sequence, for our purposes it will be useful to know the meter of the bar where the note
is located. Formally:

Definition 3.3.16 Let us define a metered musical sequence S = (P,O,E,D,M), being
P = {p1, p2, . . . , p|S|} a sequence of pitches, O = {o1, o2, . . . , o|S|} the corresponding
onset times, E = {e1, e2, . . . , e|S|} indicates for each note if it is tied to the previous one,
D = {d1, d2, . . . , d|S|} denotes the durations, and M = {m1,m2, . . . ,m|S|} is the meter
of the bar where each note is located. The elements in the sequence are ordered in time,
such that ∀ 1 ≤ i ≤ |S| − 1(oi < oi+1).
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Note in the previous definition that a tied note is represented by two successive
elements in sequence with the same pitch but two onsets.

Definition 3.3.17 A sequence S = (P,O,E,D,M) is said to be monophonic if
∀ 1 ≤ i ≤ |S| − 1(oi + di) ≤ oi+1.

Definition 3.3.18 Let M = (n, d) be a meter, being n is numerator and d its
denominator, the duration of that meter mdur: M → R is computed as mdur(n, d) =
n×4
d .

Definition 3.3.19 Let M = (n, d) be a meter. The function compound: M → Bool
is defined as: compound(n, d) = (d = 2 ∧ n = 6) ∨ (d > 2 ∧ (n mod 3) = 0 ∨ (d
mod 2) = 0 ∧ n/3 > 1).

This definition includes meters like 8
6, 2

6, and 16
12.

Only western music from the common practice is inside the scope of this dissertation,
so only meters from this period will be used. Nevertheless, the extension to include other
meters is trivial.

As stated before in section 3.2 in page 76, each bar bi is represented by a tree τi. For
any bar bi, its meter Mi is known. All nodes v ∈ desc(τi) are said to be in meter Mi.

Definition 3.3.20 Let T = (V,E, L) be a tree in meter M , nodedur(v), v ∈ V is the
time span of the node, and it is defined by its depth in the tree: nodedur(v) = 1

2h(v) ×
mdur(M).

The recursive subdivision of a duration can lead to too deep trees representing notes
shorter than a 256th. To avoid it a minimum duration for the notes is established and
denoted by a constant kMINDURATION.

The algorithm to construct a tree from a monophonic sequence of notes is given in
Algorithm 1. That algorithm is just a wrapper for the procedure that actually creates
nodes from the musical sequence: (fillTree). For readability reasons, this algorithm
has been simplified by removing the tuplet detection. The complete algorithm can be
found in the Appendix B (page 164).
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Algorithm 1: Construction of a metric tree from a metered monophonic melody
Input: Sequence S of notes
Output: Tree T
Data: i is the index of the current note of the sequence S of notes.
Data: pendingDuration is the duration still left of the current note to be put in the tree.

Duration is encoded using rdabs representation.
Data: continuation is a boolean value that is true when the next node to be created is

representing a continuation of previous one
i = 0;
pendingDuration = rdabs(i);
continuation = false;
T = new empty tree while (i ≤ |S|) ∨ (pendingDuration ≥ kMINDURATION) do

τ = new tree with nodedur(τ) = mdur(mi);
//see Alg. 2 in page 85

continuation = fillTree (τ , i, pendingDuration, continuation);
add τ as next child of T

end
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Algorithm 2: fillTree
Input: Subtree tree τ
Data: pendingDuration is the duration still left of the current note to be put in the tree.
Data: i is the index of the current note of the sequence S of notes. pi stands for the pitch of i-th

note, and di for its duration
Data: continuation is a boolean value indicating the next node will be a continuation of

previous one
Output: continuation the same parameter is also an output one
if i ≤ |S| then

if pendingDuration ≥ nodedur(τ) then
label(τ) = (pi, continuation) ;
pendingDuration = pendingDuration− nodedur(τ);
if pendingDuration < kMINDURATION then

i = i+ 1;
if i ≤ |S| then

pendingDuration = di + pendingDuration;
else

pendingDuration = 0;
end
continuation = false;

else
continuation = true;

end

else
if nodedur(τ) ≥ kMINDURATION then

//see Alg. 3 in page 85

a = computeArity(τ);
for j = 1 to a do

//createSubTree creates a new child for the given tree

τ j = createSubTree(τ);
fillTree (τ j , i, pendingDuration, continuation);

end

end

end

end

Algorithm 3: computeArity
Input: Tree τ
Input: Current meter with b beats at its numerator
Output: Number of children of the tree given tree

if compound (n, d) then
switch depth (τ) do

case 1: return n/3;
case 2: return 3;
otherwise return 2;

end

else
switch depth (τ) do

case 1: return b;
otherwise return 2;

end

end
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3.4 Propagation

Two causes motivate the procedure described in this section. Firstly, most tree similarity
algorithms need all the nodes (both internal and leaves) to have a label, but in the metric
tree construction process, after the structure of the tree is completed, the pitch labels
are just in the leaves. A set of rules are used for propagating the labels from the leaves
upwards, labeling the internal nodes. The propagation of a label is decided on the
basis that the note in that node is more important than that of the sibling node. The
importance of a note is related to its capability to contribute to the melody identity.
See in Figs. 3.25 4, 3.26, and 3.27 how after propagating the first bars of the original
theme and the first variation of Mozart’s K331 become the same melody.

Secondly, the high complexity of the tree edit distance computing (detailed below
in section 3.5), requires the trees to be as small as possible. When very short notes
appear or they do not match exactly the binary or ternary subdivisions of the beat,
the resulting trees are very deep. Thus, the label propagation rules are accompanied
of a pruning action to delete little significant branches when applying the rules below a
given pruning level. This process also contributes to remove irrelevant information that
would make the classification more difficult, obtaining reduced trees able to keep the
main musical features of the melody.

The decision what is relevant and what is not is a very difficult issue, note how both
Shenkerian analysis and GTTM have problems on establishing in a deterministic way
that decision. Our target is not to analyze works, but to decide which notes are more
important in order to compare the songs in a computable way. Following these principles,
two propagation schemes have been proposed, namely heuristic, melodic-analysis with
two different variants. The former is based on empirical rules found after visual analysis
of musical works against variations or renditions of them. The later uses the melodic
analysis as a basis for determining the important notes. We have included also two very
simple schemes that only rely on the metrical relative stress of notes: left-propagation
and right-propagation.

3.4.1 Heuristic propagation scheme

Given a pruning level, l, the rules for propagating the labels to internal nodes and
pruning the tree are defined below. In each case, a rule is applied to a sub-tree, and if
the level d of the sub-tree is below the pruning level l, the labels are propagated and the
tree is pruned; otherwise, the rule only propagates labels, keeping the structure of the
tree. This pruning level is equivalent to a quantization. This way, the notes represented
will be always longer or equal to a 1/2N−1 fraction of the bar length, where N is the
numerator of the bar meter. A value l =∞ means that pruning is never applied.

4Tonal analysis by Plácido R. Illescas
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Figure 3.25: Possible propagation for Mozart’s K331 first four bars of original theme and
first variation. See tree representing that propagation in Figs. 3.26 (theme) and 3.27
(variation).

The set of propagation (and pruning when applicable) rules are described below and
illustrated in figure 3.29. For the definitions, a parenthesis notation is used for the trees
that simplifies the rules description, in such a way that a subtree, t, located in level d,
having a father node with label a, and two children: left with label b and right with
label c, is denoted as t = a(bc). If a node has not a label, we will consider it as labelled
with the empty label, ε. All the labels, except ε, are symbols in one of the Σp alphabets.
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CHAPTER 3. MUSIC SIMILARITY WITH TREES

All the definitions have been stated for binary sub-trees but they can be extended
for ternary trees, keeping the meaning of each situation. All these rules are illustrated
in figure 3.29.

Definition 3.4.1 Propagation rules:

r1 This rule simply propagates/prunes a unary tree:

r1
[
ε(a)

]
=

{
a if d ≥ l
a(a) otherwise

If there is only one child it is automatically upgraded. This situation seldom
appears but it can be found in the rightmost note of an incomplete measure or
building the tree from a single measure.

r2 This rule makes the pitch propagate over a rest:

r2
[
ε(εa)

]
=

{
a if d ≥ l
a(εa) otherwise

r2
[
ε(aε)

]
=

{
a if d ≥ l
a(aε) otherwise

r3 The r3 rule is also very simple, and joins equal pitches:

r3
[
ε(aa)

]
=

{
a if d ≥ l
a(aa) otherwise

If all the children of a node have the same label, they are deleted and its label is
placed in the father node. Thus, two equal notes are equivalent to just one with
double duration.

r4 If one of the children nodes has the same label as that of the father’s sibling node,
then the other label is propagated. This rule tries to avoid the propagation of a
pitch that would be lost by the application of r3 in the next step. This is formalized
here for all possible cases:

r4
[
ε(ε(ba)b)

]
=

{
ε(ab) if d ≥ l
ε(a(ba)b) otherwise

r4
[
ε(ε(ab)b)

]
=

{
ε(ab) if d ≥ l
ε(a(ab)b) otherwise

r4
[
ε(b ε(ba))

]
=

{
ε(ba) if d ≥ l
ε(ba(ba)) otherwise

r4
[
ε(b ε(ab))

]
=

{
ε(ba) if d ≥ l
ε(ba(ab)) otherwise
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3.4. PROPAGATION

r5 The r5 rule limits the applicability of the former rules, that otherwise could
propagate a very short pitch to a much longer note, eliminating other longer
pitches. In order to avoid that, any rule (denoted as r in the rule below) can
be applied only three times for the same label (this implies to stretch its length in
a factor of 23 for binary meters).

r5
[
ε(ab)

]
=

{
b if d ≥ l
b(ab) otherwise

r5
[
ε(ba)

]
=

{
b if d ≥ l
b(ba) otherwise

iff

a is the root of t = r
[
r
[
r
[
. . .
]]]

and

a comes from a node 3 levels below.

r6 The r6 rule is a “default” case, whenever no other rule may be applied:

r6
[
ε(ab)

]
= a(ab)

This rule upgrades the label of the left child, because in binary meters, the notes
placed in odd beats are usually stressed. These notes are represented by left
children in the tree.

All these rules are applied under certain conditions and precedence order that are
described in the algorithm 4:

Algorithm 4: Application of rules for heuristic propagation

if arity(t) = 1 then
r1

else if left-child(t) = ε or right-child(t) = ε then
r2

else if left-child(t) = right-child(t) then
r3

else if root(t) comes from a leaf 3 levels below then
r5

else if t = ε(ε(ba)b) or t = ε(ε(ab)b) or t = ε(b ε(ba)) or t = ε(b ε(ab)) then
r4

else
r6

end if
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CHAPTER 3. MUSIC SIMILARITY WITH TREES

An example of the application of these rules is displayed in Figure 3.28 with a pruning
level l = 2. One measure with some notes with different durations is considered. In the
left side of that figure, the score and the tree as it results from the construction procedure
is presented. The labels in that tree are note names without octave.

1�
F

� �
G

� �
A

� �
F

�� �
s

F F

G

G

G

A G

(a) One measure-melody and its tree representation with pitch labels (only in
the leaves now) before pruning and label propagation.

s

F F

A G

G

G

F

F

A

A

G

F

r4

r4

r5

r3

r2

r6

r3

A G

r4

p=2

R
F A G

R R� ��

(b) Final tree with propagated and pruned nodes (in dashed lines
after applying dashed rules). The equivalent melody to the pruned
tree is also displayed

Figure 3.28: Effect of the heuristic propagation rules on a melody.

In Fig. 3.28a it can be observed how the propagation and pruning rules apply to the
tree. A value of the pruning level l = 2 has been considered. This way, the rules applied
below that level in the tree (d ≥ l) are pruning rules, otherwise are just propagation
rules. In the first half of the melody, the deepest levels have equal labels (F), so they
are upgraded by the rule r3 and then by r2 because the sibling node is labelled with a
rest. The second part shows how a very short note (A) is propagated by applying r4
three times. Thus, r5 is applied instead of r6 that otherwise would have been applied,
propagating ‘A’ again.

Note that in the score equivalent to that tree (Fig. 3.28b) only quarter notes (in this
context, their duration can be stated as a 1/2l−1 of the measure) have survived to the
propagation and pruning rules, keeping the main features of the original melody.
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Figure 3.29: Propagation and pruning rules. (left column): original sub-tree; (center
column) propagation rules; (right column): pruning rules. ’s’ representing rests stands
for ε in the rule definitions.
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3.4.2 Melodic-analysis propagation scheme

This analysis is based on the assumption that usually, the ornamentation of melodies
is performed by introducing non-harmonic tones. Thus, in the propagation process, the
decision on what note is more important is taken as a function of their melodic tagging
(see Section 2.1.3). Whenever both notes are harmonic, the more stressed note, i.e., the
left note, is propagated. The rules that define these situations are defined in Def. 3.4.2,
and Algorithm 5 is given (note that the rules of the heuristic propagation are reused).

Definition 3.4.2 Propagation rules:

r7 This rule gives precedence to harmonic tones over non-harmonic tones.

r7
[
ε(ab)

]
=


a(ab) if a is a harmonic tone and b is a non-harmonic tone
b(ab) if a is a non-harmonic tone and b is a harmonic tone
a(ab) otherwise

Algorithm 5: Application of rules for melodic analysis propagation

if arity(t) = 1 then
r1

else if left-child(t) = ε or right-child(t) = ε then
r2

else if left-child(t) = right-child(t) then
r3

else
r7

end if

Algorithm 6: Application of rules for left and right propagation

if arity(t) = 1 then
r1

else if left-child(t) = ε or right-child(t) = ε then
r2

else if left-child(t) = right-child(t) then
r3

else
r8 for left propagation, r9 for right propagation

end if

A special scheme named partial propagation has been devised in order to check the
suitability of the last case of rule r7. In this propagation, when both notes are harmonic
tones, none is propagated, leaving the tree partially labelled.
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3.5. COMPARISON OF TREES

3.4.3 Left and right propagations

The left (rule r8 in Def. 3.4.3) and right (rule r9 in Def. 3.4.3) propagation schemes just
propagate notes on the basis of their position in the tree, and are devised to be a base
case to compare the other more sophisticated schemes. Algorithm 6 is used to perform
the propagation, using rule r8 for left-propagation, and rule r9 for right-propagation.

Definition 3.4.3 Propagation rules:

r8 Propagate always left node

r8
[
ε(ab)

]
= a(ab)

r9 Propagate always right node

r9
[
ε(ab)

]
= b(ab)

Recall Figure 3.23 in which we compared some existing tree representation methods
with ours. We noted that both Schenker analysis and GTTM are based on a bottom-up
grouping and reduction of the melody until reaching a common root. We have collected
again, now in Fig. 3.30, both the GTTM and Marsden’s Schenker analyses along with two
propagations of the same work by using our methods. Our melodic-analysis propagation
resembles the approach by Marsden, while keeping rhythm information. The example
shown is simple and using both left propagation, and the heuristic method, they lead
to the same tree. However, this is not always the case. The important point here is
that following a pretty simple propagation scheme we have obtained, at least for that
example, the same third level for our melodic-analysis propagation than the third level
in the Marsden’s Schenkerian analysis, and almost the same than the third level of the
GTTM tree. This seems to be coherent basis for the tree similarity computation methods
to compare fully labelled trees in order to measure the resemblance of music works.

3.5 Comparison of trees

The goal of this work is to measure the similarity between two pieces of music represented
by trees. Thus, in order to compare music, we need a measure to compare metric trees.

In the metric trees depicted so far, the tree structure describes meter and beat
information. Leaves represent the actual pitches and inner nodes contain the result of
the bottom-up propagation just described. The devised similarity measure should assign
higher rates to the comparison of two variations of the same melody than to two different
works. These variations are supposed to be represented by similar trees in structure and
pitch labels.

In general, trees can be divided in ordered and not ordered trees, and in evolutionary
and not evolutionary trees. As the time dimension of music is represented implicitly
in the left-to-right ordering of trees, we deal only with ordered trees. Regarding

95



CHAPTER 3. MUSIC SIMILARITY WITH TREES
�

� �
�

�
��

�
� �

�� ��
86

� �
�

� �
��

� � �
� � ��

� �
��

(a
)

B
eg

in
n
in

g
o
f

M
o
za

rt
’s

k
3
3
1

P
ia

n
o

S
o
n
a
ta

k3
31

C
#
5

C
#
5

B
4

A
4

C
#
5

C
#
5

E
5

C
#
5

C
#
5

C
#
5

C
#
5

D
5

E
5

E
5

E
5

B
4

D
5

B
4

B
4

B
4

B
4

C
#
5

D
5

D
5

D
5

A
4

B
4

A
4

A
4

A
4

B
4

B
4

B
4

C
#
5

C
#
5

C
#
5

C
#
5

E
5

E
5

D
5

C
#
5

C
#
5

B
4

(b
)

M
et

ri
c

tr
ee

w
it

h
p
ro

p
a
g
a
ti

o
n
.

In
th

is
ex

a
m

p
le

th
e
h
eu

ri
st
ic

,
m
el
od
ic

a
n
a
ly
si
s,

a
n
d
le
ft

p
ro

p
a
g
a
ti

o
n
s

co
in

ci
d
e

k3
31

B
4

E
5

D
5

B
4

B
4

C
#
5

E
5

C
#
5

D
5

C
#
5

C
#
5

D
5

E
5

E
5

E
5

B
4

D
5

B
4

C
#
5

B
4

B
4

C
#
5

D
5

D
5

D
5

A
4

B
4

A
4

A
4

A
4

B
4

B
4

B
4

D
5

B
4

C
#
5

C
#
5

D
5

E
5

D
5

C
#
5

C
#
5

B
4

(c
)

M
et

ri
c

tr
ee

w
it

h
ri
gh
t

p
ro

p
a
g
a
ti

o
n

F
ig

u
re

3.
30

:
M

et
ri

ca
l

tr
ee

p
ro

p
ag

at
io

n
s

co
m

p
ar

ed
w

it
h

ot
h

er
tr

ee
re

p
re

se
n
ta

ti
on

s
w

it
h

a
st

a
n

d
a
rd

iz
ed

n
o
ta

ti
o
n

(c
o
n
ti

n
u

ed
on

n
ex

t
p

ag
e)

96



3.5. COMPARISON OF TREES
R

C
#5

R
C

#5
L

B
4

R
C

#5
L

C
#5

L
D

5
L

B
4

R
C

#5

C
#5

D
5

R
C

#5

C
#5

R
E

5

E
5

E
5

R
C

#5

R
B

4

B
4

C
#5

R
B

4

B
4

R
D

5

D
5

D
5

R
B

4
L

B
4

R
A

4
R

B
4

A
4

A
4

B
4

B
4

C
#5

E
5

D
5

C
#5

B
4

(d
)

G
T

T
M

tr
ee

in
o
u
r

st
a
n
d
a
rd

iz
ed

tr
ee

n
o
ta

ti
o
n

R
C

#5

N
C

#5
C

#5

C
#5

D
5

R
E

5

E
5

E
5

C
S

C
#5

R
B

4

N
B

4
B

4

B
4

C
#5

R
D

5

D
5

D
5

C
S

B
4

P
C

#5

R
A

4

A
4

A
4

R
B

4

B
4

B
4

P
A

4

A
pg

D
5

E
5

D
5

N
C

#5

C
#5

C
S

A
4

C
#5

B
4

C
S

E
5

S
B

4

P
C

#5

(e
)

S
c h

en
k
er

ia
n

a
n
a
ly

si
s

(a
ft

er
M

a
rs

d
en

)
in

o
u
r

st
a
n
d
a
rd

iz
ed

tr
ee

n
o
ta

ti
o
n
.

T
h
e

le
ft

b
ox

o
f

ea
ch

n
o
d
e

co
n
ta

in
s

th
e

el
a
b

o
ra

ti
o
n

u
se

d
,

th
e

ri
g
h
t

b
ox

h
a
s

th
e

n
o
te

p
it

ch
n
a
m

e.

F
ig

u
re

3.
30

:
M

et
ri

ca
l

tr
ee

p
ro

p
ag

at
io

n
s

co
m

p
ar

ed
to

ot
h

er
tr

ee
re

p
re

se
n
ta

ti
on

s
w

it
h

a
st

a
n

d
a
rd

iz
ed

n
o
ta

ti
o
n

.

97



CHAPTER 3. MUSIC SIMILARITY WITH TREES

the evolutionary trees, they are often used to conceptually represent the evolutionary
relationship of species or organisms in biology, evolution of works in linguistics, statistical
classifications, or even tracking computer viruses. The metrical trees we propose are not
evolutionary trees because they do not have distinct labels, so those algorithms are not
applicable for our problem.

There have been defined in the literature a number of similarity measures for the
ordered non-evolutionary trees equivalent in most cases to those of strings reviewed
in section 2.1.4. They have been used to compare ADN trees, XML structures, etc.
Some of them measure the sequence of operations needed to transform one tree in
another one (Tai, 1979), others look for the longest common path from the root to
a tree node (Bille, 2007), and there are methods that allow wildcards in the matching
process in the so-called Variable-Length Doesn’t Care (VLDC) distance (Shasha and
Zhang, 1997). Several taxonomies of these measures have been proposed. The interested
reader can look up a hierarchy of tree edit distance measures in (Kuboyama et al., 2005)
and (Valiente, 2001), and a survey in (Bille, 2005).

In this dissertation, four main techniques on tree distances have been considered:
tree edit distances (Zhang and Shasha, 1989), constrained edit distances (Selkow, 1977),
alignment distances (Jiang et al., 1995), and bottom-up distances (Valiente, 2001).
Besides, a new distance between trees only labelled at leaves is proposed.

3.5.1 Tree mapping

When assessing the similarity between two trees TA and TB, we measure the cost of
mapping the nodes of tree TA to the nodes of the tree TB (see Fig. 3.31). Non-matched
nodes in TB are said to be inserted, non-matched nodes in TA are said to be deleted,
and matched nodes in both trees having different labels are said to be relabelled.

f a

d e c d

a

c d

b a b

Figure 3.31: A possible mapping between trees TA (left) and TB (right) (from (Bille,
2005)).

Lemma 3.5.1 Formally, a mapping from TA to TB, is a triplet (M,TA, TB), where M
is any set of pair of integers (i, j), 1 ≤ i ≤ |TA|, 1 ≤ j ≤ |TB| satisfying the following
conditions (Shasha and Zhang, 1989) (see Fig. 3.32). For any pair of (i1, j1) and (i2, j2)
in M :

(one-to-one) i1 = i2 ⇐⇒ j1 = j2
(ancestor) TA[i1] is an ancestor of TA[i2] ⇐⇒ TB[j1] is an ancestor of TB[j2]

(sibling) TA[i1] is to the left of TA[i2] ⇐⇒ TB[j1] is to the left of TB[j2]
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3.5. COMPARISON OF TREES

In the following, M is used instead of (M,TA, TB) if there is no possibility of
confusion.

Definition 3.5.1 The cost of M , denoted by γ(M), is the sum of the cost of nodes
inserted plus the cost of nodes deleted plus the cost of nodes relabeled in M , being usual
to use the unit-cost setup, i.e., cost 1 for each node deleted or inserted, 1 for replacing
two different labels, and 0 for replacing equal labels. The optimal mapping can be defined
as the mapping with minimum cost: δ(TA, TB) = min(M,TA,TB){γ(M)}.

j j

T1 T2

(a) (sibling)

j

j

T1 T2

(b) (ancestor) Dashed lines represent
any ancestor/descendant relation

Not correct Correct

Not correct Correct

Mapping must preserve ancestor descendant relationship

Mapping must preserve sibling order

(c) Mapping rules (from (Shasha and Zhang, 1989))

Figure 3.32: Mapping conditions.

3.5.2 Tree Edit Distance

Analogous to the definition for strings, the classical edit distance between two trees, is
the minimal cost to transform one input tree into an output one by edit operations.
The main difference in the case of trees is the meaning of the edit operations. An edit
operation on two trees TA = (V,E, L) and TB = (V ′, E′, L′) is any of the following:

• relabeling the label l of a node v ∈ V with the label l′ of another node w ∈ V ′,
denoted by (v, w). It is equivalent to the substitution definition in strings (see
Fig. 3.33a).
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CHAPTER 3. MUSIC SIMILARITY WITH TREES

• deletion of a non-root node v ∈ V , denoted by (v, λ), consists of deleting it,
making the children of v become the children of par(v), just in the position that
was occupied by v, preserving this way the left to right ordering of leaves (see
Fig. 3.33b).

• insertion of a non-root node w ∈ V ′, denoted by denoted by (λ,w), complements
the delete operation. Given a sequence wi · · ·wj of subtrees of a common parent
w, the insertion of node w′ makes those wi · · ·wj subtrees children of w′, and w′

child of w (see Fig. 3.33c).

a b

T T1 2

(a) Substitute operation

T T1 2

aa

b

(b) Delete operation

a

T T1 2

a

b

(c) Insert operation

Figure 3.33: Tree edit operations (from (Isert, 1999)).

To each operation, a so-called edit cost ct : V × V ′ → R is assigned, and it is based
on the edit costs of the symbols of alphabet Σ at labels c : Σ × Σ → R (see Sec. 2.1.4
in page 29 for the definition of cost function c for strings). Therefore, ct(v, w) denotes
the cost of applying the edit operation (v, w) where v is an input node and w is an
output node. If v = λ, the operation denotes an insertion, if w = λ the operation is a
deletion. Note that the operation (λ, λ) is not allowed. For the substitution cost ct(v, w)
= c(label(v), label(w)). In the case of insertion and deletion, it is achieved by iteratively
inserting and removing a series of nodes as defined below in Eq. 3.1 and 3.2.

The cost of deleting a complete tree rooted at v ∈ V is defined recursively as:

ct(v, λ) = c(label(v), λ) +
∑

vi∈children(v)

ct(vi, λ) (3.1)
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3.5. COMPARISON OF TREES

Similarly, the cost of inserting a tree rooted at w ∈ V ′ is defined as:

ct(λ,w) = c(λ, label(w)) +
∑

wi∈children(w)

ct(λ,wi) (3.2)

The difference between the mapping and the edit operations is mainly that the former
only affects the nodes themselves that are inserted, deleted, or relabeled, without any
change in the structure of the tree, while in edit operations, both the insertion and
deletion can restructure the tree, affecting the children of the inserted or deleted nodes.
This fact makes it necessary to define a new cost function for the edit distance different
from that of mapping.

Definition 3.5.2 An edit script is a triplet (TA, TB, Et) where Et = et = et1 · · · etn
is a sequence of edit operations eti = (ai, bi) ∈ (V ∪ {λ}) × (V ∪ {λ}) allowing the
transformation of a tree TA in a tree TB. The cost of an edit script πt(et) is the sum of
the costs of the edit operations involved in the script: πt(et) =

∑n
i=1 ct(eti).

Definition 3.5.3 Let St(TA, TB) be the set of all the scripts that enable the emission
of TB given TA, the edit distance between TA and TB is defined by: dt(TA, TB) =
minet∈St(TA,TB)πt(et).

The sequence S of operations that leads from TA to TB is named S-derivation. There
exists a mapping M from TA to TB such that the cost of the mapping is less or equal than
the cost of the editing script: γ(M) ≤ πt(S) (Zhang and Shasha, 1989). The mapping
of Fig. 3.31 is the one corresponding to the edit script in Fig. 3.34.

f

d

a c

b

e

(a) The initial tree

f

d

a b

e

(b) The tree after deleting the
node labelled c

a

c

d

a b

d

(c) The tree after inserting
the node labelled c and rela-
belling f to a and e to d

Figure 3.34: Transforming (a) into (c) by means of editing operations (from (Bille,
2005)).

The first author to give a solution to the general tree edit problem was Tai (1979),
proposing an algorithm with time complexity O(|TA|×|TB|×depth(TA)2×depth(TB)2),
where |Ti| denotes the number of nodes in tree Ti. This algorithm was improved by Zhang
and Shasha (1989) giving a dynamic programming algorithm with time complexity
O(|TA| × |TB| × min(depth(TA), | leaves(TA)|) × min(depth(TB), | leaves(TB)|)), and a
faster alternative to the algorithm using unit costs can be found in (Shasha and Zhang,
1990).
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),) + delete cost (

) + insert cost (
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forestdist (
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Figure 3.35: Zhasha and Zhang tree edit distance algorithm (from (Dulucq and Tichit,
2003)). treedist is the distance between two trees, forestdist stands for the distance
between two ordered forests.

(a) l(i1)..i (b) l(i1)..i− 1

Figure 3.36: Scheme of recursion formula

The algorithm of Zhang and Shasha, that is based on the computation of the distance
between ordered forests, is depicted graphically in Fig. 3.35.

Some comments about notation can help to easily understand the tree edit distance
formula by Zhang and Shasha (1989) that is given below. The function l(i) is used to
denote the left-most descendant of node i. In order to define recursions, the relation
of forest l(i1)..i with forest l(i1)..i − 1, where i ∈ desc(i1), is usually used. This means
just removing the node i (see Fig. 3.36) . In the example of Fig. 3.37, i1 = 18, i = 17,
shaded nodes belong to the first set (l(i1)..i), and double line border nodes to the second
one (l(i1)..i − 1). Now, it easy to understand the first part of the Shasha and Zhang’s
general formula (Lemma 3.5.2). For example, in the insertion case, it means removing
recursively the node i, what leads to the same calculation as the definition of ct(λ, T ) in
Equation 3.2.
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T (26)

a (11) m (20) v (25)

b (7) i (10) n (18) o (19) w (23) z (24)

c (1) d (2) e (6)

f (5)

g (3) h (4)

j (8) k (9) p (12) q (13) r (17)

s (14) t (16)

u (15)

x (21) y (22)

Figure 3.37: Tree example. The numbers between parenthesis denote the postorder
index. The shaded nodes represent the forest defined by l(18)..17. The nodes with
double line border are those in forest l(18)..16

Lemma 3.5.2 Let i ∈ desc(i1) and j ∈ desc(j1)

(i) forestdist(λ, λ) = 0

(ii) forestdist(l(i1)..i, λ) = forestdist(l(i1)..i− 1, λ) + c(rlabel(T [i]))

(iii) forestdist(λ, l(j1)..j) = forestdist(λ, l(j1)..j − 1) + c(rlabel(T [j]))

Following the scheme depicted in Fig. 3.36, the second part of Shasha and Zhang’s
general formula (Lemma 3.5.3) is shown in Fig. 3.35.

Lemma 3.5.3 Let i ∈ desc(i1) and j ∈ desc(j1). Then

(i) if l(i) = l(i1) ∧ l(j) = l(j1), treedist(i, j) = forestdist(l(i1)..i, l(j1)..j) =

min


forestdist(l(i1)..i− 1, l(j1)..j) + ct(rlabel(TA[i]), λ)

forestdist(l(i1)..i, l(j1)..j − 1) + ct(rlabel(λ), TB[j])

forestdist(l(i1)..i− 1, l(j1)..j − 1) + ct(rlabel(TA[i]), TB[j])

(ii) if l(i) 6= l(i1) ∨ l(j) 6= l(j1) (i.e. otherwise) , forestdist(l(i1)..i, l(j1)..j) =

min


forestdist(l(i1)..i− 1, l(j1)..j) + ct(rlabel(TA[i]), λ)

forestdist(l(i1)..i, l(j1)..j − 1) + ct(rlabel(λ), TB[j])

forestdist(l(i1)..i− 1, l(j1)..j − 1) + treedist(i, j)

Finally, the algorithm follows a dynamic programming scheme, where all possible edit
sequences are computed bottom-up, keeping only that of minimum cost. The process is
sped-up by selecting only those roots of subtrees that need separate computations, i.e.,
those combinations of i1 and i in the expression l(i1)..i that represent different trees.
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3.5.3 Tree Alignment Distance

Two trees are said to be isomorphic if they are either both empty, or having identical
root labels, the subtrees rooted at corresponding children of their roots are also
isomorphic (Valiente, 2001). An alignment between two trees is obtained by making
both trees isomorphic if labels are ignored through the insertion of nodes with special
labels so-called spaces (Bille, 2007), that is, inserting and removing the required nodes
to both trees so that they have the same shape. By superimposing both trees after the
insertion of those spaces, the alignment cost is the sum of the substitution costs of all
pairs of matched nodes in both aligned trees (see Fig. 3.38). The optimal alignment is
the alignment of minimum cost.

a

c
f

d e

Tree B

a

b
e

dc

Tree A

a

c d e

(a) Edit distance

Tree BTree A

a

f

c

a

b

dc e ed

(b) Alignment distance

Figure 3.38: Tree edit distance vs. alignment distance. (a) shows the optimal mapping
for the two trees A and B with the edit distance: the mapping contains a deletion and
an insertion. The spaces are plotted as not labeled grayed nodes. With the alignment
in (b), the optimal mapping involves four not matched labels. (from (Jiang et al., 1995;
Touzet, 2006)).

In strings, the edit distance is equivalent to the optimal alignment distance. However,
for trees it may be different (Bille, 2007). The tree alignment distance corresponds to
a restricted edit distance where all insertions must be performed before any deletions.
Hence, the edit distance is always lower or equal than the optimal alignment (Bille, 2005).
It seems that alignment charges more for the structural dissimilarity at the top levels of
the trees than at the lower levels, whereas edit treats all the levels the same (Jiang et al.,
1995). This assumption is important for us, because at higher levels the represented notes
are longer than those at lower levels. In that work, an algorithm to solve the problem in
O(|TA|×|TB|×(rank(TA)+rank(TB))2) time and O(|TA|×|TB|×(rank(TA)+rank(TB)))
space is given.
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3.5. COMPARISON OF TREES

The alignment distance is defined as (Jiang et al., 1995):

Lemma 3.5.4 Let TA and TB be to trees, for any s, t such that 1 ≤ s ≤ rank(TA), and
1 ≤ t ≤ rank(TB),

D(TA[i1..is], TB[j1..jt]) =

min



D(TA[i1..is−1], TB[j1..jt]) +D(TA[is], λ)

D(TA[i1..is], TB[j1..jt−1]) +D(λ, TB[it])

D(TA[i1..is−1], TB[j1..jt−1]) +D(TA[is], TB[it])

c(λ, rlabel(jt)) + min1≤k<s{D(TA[i1..ik−1], TB[j1..jt−1])+

D(TA[ik..is], TB[jt])}
c(rlabel(is), λ) + min1≤k<t{D(TA[i1..is−1], TB[j1..jk−1])+

D(TA[is], TB[jk..jt])}

Implementation improvement.

The problem of this distance is that it heavily depends on the rank of the trees. In our
case, the maximum rank is determined by the number of bars in the song. This factor
makes this distance extremely slow when comparing long songs.

As stated above, the tree alignment distance corresponds to a restricted edit distance
where all insertions must be performed before any deletions (Bille, 2005). Thus, we can
use any non-constrained edit distance, as the one of Zhang and Shasha (1989) described
above in Section 3.5.2, and keep only those edit scripts that hold this restriction.

The implementation of the edit distance by Zhang and Shasha (1989) uses a dynamic
programming table D. Each cell in D represents the best cost of each edit decision. In
order to retrieve the edit script path, another table S is required that stores for each cell
in D, which other cell precedes it.

The invalid edit sequences (i.e. deletions before insertions) must be assigned an ∞
cost. To be able to detect those invalid edit sequences, the best path in S must be
traversed for each edit decision. This traversing operation at each step would make
this alternative implementation of the algorithm even more time consuming than the
original.

In order to avoid traversing at each step the partial edit script path, we can use a
finite deterministic automata, and keep at each step the current state of the automata
(see Fig. 3.39). Any edit operation that leads to the error state must be given an infinity
cost so that this path is never taken. This way, the alignment distance will have the same
temporal complexity than the edit distance by Zhang and Shasha (1989), that behaves
better than the original alignment distance by Jiang et al. (1995) for complete songs.
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I

D

I

IDD

D

DII

I E
D

D

I

Figure 3.39: Automaton reflecting valid edit operations for the tree edit distance be an
alignment distance. ’I’ stands for the insert operation, ’D’ for delete. The substitution
operation is always valid, so it is not reflected in this automaton. The state ’E’ stands
for “error”. Note that the automaton must be read reverse, because in the Zhang and
Shasha (1989) the operations are computed also from the end to the beginning.

3.5.4 1-degree tree edit distance

An interesting variant of the edit distance is sometimes called degree-1 edit dis-
tance (Selkow, 1977) or top-down distance, where deletions and insertions are constrained
to leaves. Thus, in order to delete an inner node, all its descendants must be deleted
before. “It is easy to see that if TA[i] maps to TB[j], then the parent of TA[i] must map
to the parent of TB[j]. The reason is that if TA[i] is not deleted, its parent cannot be
deleted or inserted, meaning that if two nodes are matched, then their parents must also
be matched” (Shasha and Zhang, 1997). This fact imposes a hard restriction on how
the mappings between nodes are made.

treedist ( , )

) + relabel cost ( )forestdist ( ,= ,

)forestdist ( ,

= min

forestdist (

forestdist (

forestdist (

, ) + delete cost ( )

, ) + insert cost (  )

, ) + treedist (   ),

Figure 3.40: Selkow tree edit distance algorithm.
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3.5. COMPARISON OF TREES

The Selkow’s distance between two trees is depicted graphically in Fig. 3.40, and
Lemma 3.5.5 defines the distance. The Selkow algorithm has its strength in its low
temporal cost O(|TA| × |TB|).

Lemma 3.5.5
Let us use RA for rank(TA) and RB for rank(TB), and let treedist(i..i′, j..j′) stand for
treedist(TA[childi(TA).. childi′(TA)], TB[childj(TB).. childj′(TB)])

(i) treedist(λ, λ) = 0

(ii) treedist(TA, λ) = ct(TA, λ)

(iii) treedist(λ, TB) = ct(λ, TB)

(iv) treedist(TA, TB) = c(rlabel(TA), rlabel(TB)) + forestdist(1..RA, 1..RB)

(v) forestdist(λ, λ) = 0

(vi) forestdist(i..i′, λ) = forestdist(i..i′ − 1, λ) + ct(TA[i′], λ)

(vii) forestdist(λ, j..j′) = forestdist(λ, j..j′ − 1) + ct(λ, TB[j′])

(viii) forestdist(i..i′, j..j′) =

min


forestdist(i..i′ − 1, j..j′) + ct(TA[i′], λ),

forestdist(i..i′, j..j′ − 1) + ct(λ, TB[j′]),

forestdist(i..i′ − 1, j..j′ − 1) + treedist(TA[i′], TB[j′])

3.5.5 Bottom-up distance

The bottom-up distance between two non-empty rooted trees TA and TB is equal to
1− f/max(|TA|, |TB|), where f is the size of a largest common forest of TA and TB (see
Fig. 3.41), and it can be computed in O(|TA|+ |TB|) (Valiente, 2001).

However, this complexity is actually O(|TA| × |TB| × log (TA + TB)), because in the
original paper the computing of the bottom-up mapping is not included in the complexity
calculation 5.

In order to compute that distance the following special mappings must be defined.

Definition 3.5.4 A mapping M from a tree TA to a tree TB is isolated-subtree if it
satisfies the following condition: for all (i1, j1), (i2, j2) ∈M , the rightmost node of TA[i1]
is to the left of TA[i2] iff the rightmost node of TB[j1] is to the left of TB[j2].

Definition 3.5.5 Let TA and TB be two trees, a mapping M is said to be top-down if
∀(i, j) ∈M → (par(i),par(j)) ∈M (see Fig. 3.42a).

Definition 3.5.6 An isolated-subtree mapping from a tree TA to a tree TB is said to
be bottom-up if ∀(i, j) ∈ M → (i1, j1), . . . , (ik, jk) ∈ M , where i1, . . . , ik ∈ children(TA)
and j1, . . . , jk ∈ children(TB) (see Fig. 3.42b).

5The nested loop in the mapping function (lines from 3 to 12 of the algorithm included in (Valiente,
2001)) that traverses in level-order all the nodes of both trees leads to O(|TA| × |TB | × log (TA + TB)),
where the logarithm corresponds to the map operations on a (|TA| + |TB |) size map inside the double
loop.
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A B

Figure 3.41: A largest common forest between two rooted trees.

B

A

3

1 2

2
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(a) Top-down mapping: if A is a
mapping, then B must be also a
mapping

A

B C

3 3

1 12 2

(b) Bottom-up mapping: if A is a
mapping, thenB and C must be also
mappings

(c) Sample bottom-up mapping (from
(Valiente, 2001)).

(d) Sample isolated subtree mapping
which is neither top-down nor bottom-
up (from (Valiente, 2001)).

Figure 3.42: Mapping examples

The bottom-up distance from tree to tree is the cost of a least-cost bottom-up
mapping between both trees, i.e. the bottom-up distance is defined in such a way
that two nodes vi and wi match only when all the children nodes of vi and wi match. In
order to do so, first a compacted directed acyclic graph representation G of the forest
F consisting of the disjoint union of the sets of nodes in TA and TB, together with a
corresponding map between the nodes of TA and TB and the nodes of G (see Fig. 3.43).
Then, according to graph G, a mapping M from TA to TB is extracted. Finally, the
distance between both trees is obtained as the mapping cost defined in Def. 3.5.1.
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3.5. COMPARISON OF TREES

The algorithm is based on the exact match of node labels. Therefore, the main
drawback of this method to compare music is that similarity between the represented
concepts on the labels is limited to a boolean decision.

Another disadvantage of this algorithm to compare metrical trees is the hard
restriction imposed by the bottom-up mapping to the structure of the compared trees.

1 6 6 4 11 9 16 1 21 1
2 3 7 2 12 8 17 1 22 2
3 2 8 1 13 7 18 2 23 1
4 1 9 2 14 3 19 1 24 2
5 1 10 1 15 2 20 5 25 1

Figure 3.43: Compacted directed acyclic graph representation of two rooted trees (from
(Valiente, 2001)).

3.5.6 Partially labelled tree comparison

The presented similarity measures between trees are designed to work with fully labelled
trees. In order to apply those algorithms to trees labelled only at the leaves, the non-
labelled inner nodes can be assigned a special label “empty”. However it is expected
that they don’t work as well as they do with fully labelled trees.

In order to overcome this situation two approaches are possible. The first one consists
of labeling all nodes using any bottom-up propagation scheme based on the application
domain specific knowledge . The main drawback to that option is that any intermediate
process might add noise to the resulting trees. The second approach is the definition of
a similarity function designed just to compare those partially labelled trees.

The partially labelled tree comparison algorithm (Rizo and Iñesta, 2010) sp is based on
the assumption that the similarity value between a labelled leaf and a non-labelled inner
node should be the average of chances of finding that leaf in the descendants of that inner
node. Fig. 3.44a shows the simplest case of having two leaf trees: sp(TA, TB) = δ(x, y),
where δ(x, y) = 1 ⇐⇒ x = y, and 0 elsewhere. For comparing the trees shown
in Fig. 3.44b, the chances of finding the label x in TB are computed as sp(TA, TB) =
(δ(x, y) + δ(x, z))/2. If instead of being a label, y were another tree, the function should
be computed recursively. Finally, when none of the trees is composed by a single leaf
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(Fig. 3.44c), the similarity of the ordered forests wx and yz can be computed like an
edit distance between sequences wx and yz where each symbol is a tree.

This similarity method omits the accounting of the insertion or deletion of nodes
and just measures the chance of finding coincident labels, paying more attention to the
information hierarchically contained in the tree than to the tree structure.

TA x TB y

(a)

TA x TB y z

(b)

TA w x
TB y z

(c)

Figure 3.44: Similarity function sp representative cases

Being designed for working with partially labelled trees, however, we can slightly
adapt the original idea to work also with fully labelled trees. The case of comparing a leaf
to a non-leaf tree (Fig. 3.45a), is computed as sp(TA, TB) = (δ(x, b)+δ(x, y)+δ(x, z))/3.
Likewise, the similarity sp(TA, TB) between two fully labelled trees (Fig. 3.45b) is
computed as the edit distance between sequences wx and yz, where each symbol is
a tree, plus the similarity between labels a and b.

TA x TB b

y z

(a)

TA a

w x

TB b

y z

(b)

Figure 3.45: Similarity function sp working with fully labelled trees. Note that the inner
nodes (in this case root nodes) labels correspond to one of the children in the metrical
trees.

Let sp : T × T → R be a similarity function between trees and sfp : T +×T + be a
similarity function between forests. Let us also use rlabel : T → L that returns the label
of the root of the tree, and Rm as an abbreviation for rank(Tm). The similarity between
two trees, fully or partially labelled, is defined as:
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Definition 3.5.7

(i) sp(TA, TB) =

δ(rlabel(TA), rlabel(TB)) : if leaf(TA) ∧ leaf(TB) (1)

δ(rlabel(TA),rlabel(TB))+
∑RB

j=1 sp(TA,childj(TB))

1+RB
: if leaf(TA) ∧ ¬ leaf(TB) (2)

δ(rlabel(TA),rlabel(TB))+
∑RA

i=1 sp(childi(TA),TB)
1+RA

: if ¬ leaf(TA) ∧ leaf(TB) (3)
δ(rlabel(TA),rlabel(TB))+sfp(TA,TB)

max(RA,RB)+1 : otherwise (4)

(ii) sfp(λ, λ) = 0

(iii) sfp(i..i
′, λ) = sfp(i..i

′ − 1, λ)

(iv) sfp(λ, j..j
′) = sfp(λ, j..j

′ − 1)

(v) sfp(i..i
′, j..j′) =

max


sfp(i..i

′ − 1, j..j′)

sfp(i..i
′, j..j′ − 1)

sfp(i..i
′ − 1, j..j′ − 1) + sp(TA[i′], TB[j′])

The simplest situation in Fig. 3.44a is solved by case (i)-(1). Cases (i)-(2) and (i)-
(3) solve the problems depicted in Fig. 3.44b and 3.45a. Finally, (i)-(4) computes the
similarity for Fig. 3.45b. After comparing the roots, the ordered forests composed by
the tree children (Fig. 3.44c) are compared with the similarity function between forests
sfp in the indirect recurrence (ii) to (v).

The pseudocode that computes this similarity measure is detailed in appendix B.3.

Complexity of the partial edit distance.

In order to calculate the time complexity of sp and sfp, the functions T s and T sf will
be used respectively. In both cases the size of the problem is the number of nodes of the
compared trees: (|TA|, |TB|).

T s(|TA|, |TB|) =


1 : if |TA| = 1 ∧ |TB| = 1

RB × T s(|TA|, |TB|/ rank(TB)) : if |TA| = 1 ∧ |TB| > 1

RA × T s(|TA|/ rank(TA), |TB|) : if |TA| > 1 ∧ |TB| = 1

T sf (|TA|, |TB|) : if |TA| > 1 ∧ |TB| > 1

The function sfp can be solved using a dynamic programming scheme as the used for
any edit distance. On a classical edit distance, where the substitution cost has constant
complexity, given the problem size (|TA|, |TB|), the complexity is O(|TA|× |TB|) because
its implementation is a simple double loop traversing a |TA| × |TB| matrix. However, in
our case, in each step of that iteration, the sp is called. Under these assumptions, and
following the development in appendix B.2, the temporal complexity of the algorithm is
O(|TA| × |TB|).
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I� 4
2 I I

(a) Source incipit

G

G C

C B

(b) Tree representing score in (a)

Figure 3.46: Sample incipit with its tree representation used to illustrate edit operations
in next figures.

3.6 Tree edit operations in metric trees

In this section, the meaning that each edit operation has on the score is described.
The simplest one is node relabeling (see Fig. 3.47). That operation does not lead to
any ambiguity to the resulting tree. However, a relabeling of the root ’G’ to ’F’ would
produce a tree not translatable into a score, because the new ’F’ label is not found in
any leave and thus cannot represent a valid propagation or reduction of the tree. For
these kind of operations, it is important to note that the edit operations are part of a
script of editions, so this operation can be just an intermediate operation.

The deletion of an inner node changes the rhythm pattern coded by the source tree.
The example of Fig. 3.48 shows how a binary rhythm is translated into a ternary rhythm.
The removal of a leaf node can cause the same problem regarding the musical correctness
of the resulting tree. Fig. 3.49 shows that the deletion of a leaf node yields an incomplete
tree, that may be interpreted as the score in Fig. 3.49b. Again, this operation must be
seen as a part of an edit script, as shown in the example of Fig. 3.49c, where that single
child is also deleted leaving now a valid tree.

The insertion of nodes makes changes on the structure of the tree, and thus, on the
rhythmical pattern it describes. Examples in Fig. 3.50 illustrate this fact.

G

G C

C A

(a) Tree after relabelling node la-
belled ’B’ as ’A’ in tree of Fig. 3.46b

I� 4
2 I I

(b) Score equivalent to tree in (a)

Figure 3.47: Relabel node operation
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G

G C B

(a) Tree after deleting
inner node labelled ’C’ in
three of Fig. 3.46b

R� 4
2 RR

3

(b) Score equivalent
to tree in (a)

I I� 4
3 I

(c) Another score
equivalent to tree
in (a)

Figure 3.48: Deletion of inner node

G

G C

C

(a) Tree after deleting leaf node
labelled ’B’ in tree of Fig. 3.46b

I �� 4
2 I �

(b) Score equivalent to tree in (a). The
rest could also be placed before the 8th
note.

G

G C

(c) Tree after deleting leaf node labelled ’C’ in
tree in (a)

I� I
4
2

(d) Score equivalent to tree in (c)

Figure 3.49: Delete of leaf node operation

3.7 Tree representation of polyphonic music

The introduced methodology is only designed to deal with monophonic music. If the
input works are polyphonic in any of the classifications in Section 2.2 (page 43), two
strategies are possible: one is to reduce the input work to monophonic, and the other
is to deal with the polyphonic content directly. In this section, the way to represent
and compare polyphonic content with trees is described. Our approach is to consider a
source as polyphonic if there are simultaneous notes played at a time.

To represent polyphonic music all voices are inserted in the same tree following the
rules of the monophonic music representation. Node labels now represent sets of pitch
classes. Under this approach, each node will contain all the notes played at a given
time (whose depth is conditioned by the shortest one). A node representing only rests
has an empty set as the label. Fig. 3.51 contains a polyphonic example and its tree
representation.
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G

G A C

C B

(a) Tree after inserting node labelled ’A’
as child of the root in tree of Fig. 3.46b

II� 4
3 II

(b) Score equivalent to tree in (a)

G

G C

C A B

(c) Tree after inserting node labelled
’A’ as child of the inner node ’C’
Fig. 3.46b

3

R R� 4
2 RR

(d) Score equivalent to tree in (c)

Figure 3.50: Insert node operation

3.7.1 Bottom-up propagation of labels

Once the tree is constructed, a label propagation step is performed. The propagation
process is performed recursively in a post-order traversal of the tree. Labels are
propagated bottom-up using set algebra. Let rlabel(τ) be the label of the root node of the
subtree τ expressed as a set of pitches in any of the encodings presented in Section 2.1.1.
When the label of the node is a rest, the label is the empty set: rlabel(τ) = ∅. Then,
given a subtree τ with ci ∈ children(τ), the upwards propagation of labels is performed
as rlabel(τ) =

⋃
i rlabel(ci). The upwards propagation goes until level two, that is, the

root representing the whole piece of music always remains empty. The root could also be
filled with propagated pitches, however, as the root represents the whole song, in most
cases it would contain all pitch classes.

Fig. 3.52 shows the tree in Fig. 3.51 after propagating its labels. In that figure, the
half note C (pitch class 0) in the second bar (right-most leaf), is promoted (∅ ∪ {0} =
{0}). In the first bar, the node containing the label {0, 5, 7} contained only the quarter
note G (pitch class 7) before propagation. The propagation operation merges all pitches
in that branch ({0} ∪ {5} ∪ {7} = {0, 5, 7}).

3.7.2 Multiset labels

The current polyphonic representation may have a drawback after the propagation step:
if the lower levels of the tree contain scales covering a whole octave, the sets of propagated
inner nodes would contain all the pitch classes. This way, the inner nodes representing
two different musical works would be the same and the comparison methods would
always consider both to be similar.
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�
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4

�
{7,0}
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��

(a) Score to be represented

 

{} {}

{} {0,7}

{0} {5}

(b) Tree representing top voice

 

{} {}

{7} {4} {} {0}

(c) Tree representing bottom voice

 

{} {}

{7} {0,4,7} {} {0}

{0} {5}

(d) Polyphonic tree representing both voices

Figure 3.51: An example of a polyphonic music and the corresponding tree. Labels
belong to pitch alphabet p12. Note that in polyphonic trees empty labels are explicitly
represented by the empty set.

To overcome this problem the set label is replaced by a multiset, where longer notes
have higher cardinality than short ones, i.e., giving lower importance to those pitch
classes propagated from deeper levels of the tree.

A multiset (aka. a bag) is a pair (X, f), where X is an ordered set, and f is a function
mapping f : X → N. For any x ∈ X, f(x) is called the multiplicity of x. Using this
definition and expressing the values of f(x) as an ordered set, we see that the multiset
{1, 1, 3} = ({1, 3}, {2, 1}) meaning that f(1) = 2 and f(3) = 1.

Now, all the node labels in a tree are represented by a multiset (X, f). Once again,
we start from the leaves by setting:

X = Σp, (3.3)

f(p) =

{
2h−d/F, if p ∈ rlabel(τ)
0, otherwise

(3.4)
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{0,4,5,7} {0}

{0,5,7} {0,4,7} {} {0}

{0} {5}

Figure 3.52: Tree of Fig. 3.51 after bottom-up label propagation.

where d = depth(v) returns the level of the node v in the tree τ , the height h = h(τ),
and F = maxq∈Σp f(q).

(X, f)

(X1, f1) (X2, f2) · · · (XR, fR)

Figure 3.53: Sample subtree

The propagation is performed analogously to that of above, using the multiset union
operation instead of set union. Let (X, f) be the multiset contained in the label of the
root of the subtree to be propagated, (Xi, fi) the multiset in the label of the i-th child,
and let us also denote R as the rank of the subtree as illustrated in Fig. 3.53. The union
of multisets for its propagation that will replace (X, f) by (X ′, f ′) as described below in
Def. 3.7.1.

Definition 3.7.1

X ′ =

R⋃
i=1

Xi ∪X

f ′(x) =f(x) +

R∑
i=1

(fi(x)/2)

Note that the division by 2 is performed because the level of the children is one less than
the root of the subtree.

Fig. 3.54 illustrates this representation. It can be noticed that the note ‘F’ has a
lower weight at the root level of the first bar compared to the other longer notes.

Pruning

Due to the presence of very short notes that eventually will have a low weight in the
final node labels, the pruning of the trees from a given pruning level l equivalent to that

116



3.7. TREE REPRESENTATION OF POLYPHONIC MUSIC

used for monophonic trees has been considered, thus making trees smaller and tree edit
algorithms faster.

{{},{}} {{},{}}

{{G}, {1}} {{C,E,G},{1,1,1}} {{},{}} {{C},{1}}

{{C},{1}} {{F},{1}}

1st

2nd

(a) Multiset label version of the tree in Fig. F.3d using pcmn where the octave
has been omitted to simplify the figure. The labels contain multisets (X, f).

f ′(G) = f(G) = 1
f ′(C) = f1(C)/2 = 0.5
f ′(F ) = f2(F )/2 = 0.5

(b) Propagation of subtree ‘1st’ in (a)

{{},{}}

{{C,F,G}, {0.5,0.5,1}} {{C,E,G},{1,1,1}}

f ′(C) = f1(C)/2 + f2(C)/2 = 0.25 + 0.5 = 0.75
f ′(E) = f2(E)/2 = 0.5
f ′(F ) = f1(F )/2 = 0.25
f ′(G) = f1(G)/2 + f2(G)/2 = 0.5 + 0.5 = 1

(c) Propagation of subtree ‘2nd’ in (a) after having propagated ‘1st’ in (b)

{{C,E,F,G},{0.75,0.5,0.25,1}} {{C},{1}}

{{C,F,G}, {0.5,0.5,1}} {{C,E,G},{1,1,1}} {{},{}} {{C},{1}}

{{C},{1}} {{F},{1}}

Propagated in (b)

Propagated in (c)

(d) Propagated tree after having propagated all subtrees

Figure 3.54: The first two steps of the propagation of the polyphonic tree in (a) that
leads to fully labelled tree in (d) is depicted.
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3.7.3 Polyphonic trees comparison

The comparison of polyphonic trees is analogous to that of monophonic trees. However,
the symbols contained in the leaves are no longer individual pitches but multisets. This
makes it necessary to define the substitution cost for pitch multisets.

Let M = (X, f) be a multiset that corresponds to a node label. We represent it by
using a vector vM ∈ R|Σp|, such that vM[p] = f(p),∀p ∈ X according to definition in
Equation 3.4. Then, the substitution cost csbn between two multisets Ma = (Xa, fa)
and Mb = (Xb, fb) is defined as a distance between the corresponding vectors:

csbn(Ma,Mb) , deq(vMa ,vMb
) (3.5)

For computing the distance deq, a number of distances between vectors have been
tested (Deza and Deza, 2009; Han and Kamber, 2000; Ryu et al., 1998): Manhattan
(L1), Cosine similarity, Euclidean distance (L2), Jaccard coefficient−1−1, Log distance,
Matching coefficient, Multisets distance, Overlap coefficient, Probabilities, Variational
distance, Hellinger distance, Harmonic Mean. They are all described in the appendix A.

Pitch encoding in multisets

The comparison of multisets of size N makes tree distances at least N times slower than
the analogous monophonic version. This makes it important to choose a pitch encoding
rich enough to allow to represent the merged content after propagation, and on the
contrary, of the smallest possible size to avoid slowing too much the comparison process.
The pift pitch encoding seems to be the best choice because it seems to be the one with
the best trade-off between richness and size, and it also allows for transposition invariant
comparison.
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4
Experiments

For this section the following notation will be used. The terms representation and method
will be employed interchangeably for denoting each paradigm, namely strings, trees, n-
grams, graphs, etc. All methods but graphs have a number of possible combinations
of parameters and algorithms. Some examples of these parameters are the different n-
gram sizes, the pitches and duration combinations on string methods, and the tree edit
distance with the pitch representation, propagation method, and pruning level for our
tree proposal. Each one of this combinations will be denoted interchangeably setup or
configuration.

The experiments have been devised in order to check the fitness of the tree
representation proposed for the task of measuring similarity between musical works. As
introduced in the previous sections, there are many different setups that can be adopted
in order to construct and compare trees. In the experimentation, all possible settings
have been explored trying to discover the impact of each component of the system for
the task.

As there is not any representative and big enough ground-truth in the research
community for comparing the different algorithms available, several corpora, both
monophonic and polyphonic, that focus on different aspects of similarity have been
collected.

Our proposal has been compared with the systems that may be considered the most
representative in state-of-the-art song comparison. For those systems a big number of
possible parameter combinations and configurations have been tested, specially, those
relative to parameters shared with the tree representations, as it happens with pitch
encodings.

Finally, the different parameters and algorithms for constructing and comparing trees
have been analyzed.

4.1 Music classification

In order to evaluate the suitability of the similarity measuring methods explored, the
following music retrieval system has been designed. Let GN be a corpus with a collection
of N music files in some symbolic format, such as SMF and MusicXML (Good and
Actor, 2003). Following a classical pattern recognition naming convention, these files
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are referred as prototypes, and each one belongs to a so-called class of a set C of classes.
The classification process can be regarded as a mapping c : GN → C. In our setup, each
class represents a song, and each prototype pi ∈ GN is a different rendition or variation
of the original song. The class of a prototype is denoted by c(pi). The objective of
the classification is to know which class (song) each prototype corresponds to. To that
end, a nearest-neighbor scheme has been followed: let sα(px, py) be the similarity value
between two musical works px, py ∈ GN (1 ≤ x, y ≤ N) using the configuration α, the
file pi is classified as c(pj), where pj is the work such that j = argmaxN−1

k=0 {sα(pi, pk)}.
Instead of a classifier, the system can be also devised as a music retriever one. To

that end, for a given song file q or query, the similarity measure is computed with respect
to all the files in the corpus, and they are sorted in descending order using that measure
in a list L(q), being L0(q) the song with the maximum similarity value, L1(q) the second
one, and so on. Note that the similarity values might be repeated for successive positions
in the list. From that point of view, the nearest-neighbor scheme consists in retrieving
c(L0(q)).

4.2 Evaluation metrics

Several measures for evaluating the algorithms have been used in order to assess different
performance aspects. They are formulated upon the basis of a music retrieval system,
and are described just below:

Success rate. Given a set Q ⊂ GN of query prototypes, and for q ∈ Q, let L(q) be the
resulting list of prototypes retrieved ordered by descending similarity value, the success
rate is defined as the number of queries for which the most similar prototype belongs the
same class as the query. Besides, in order to be considered a successful classification, the
resulting similarity value of the first retrieved item must be strictly greater than that
value for the second. This is done to avoid giving good classification rates to algorithms
that are not able to correctly order the results computing the same similarity value to
several prototypes.

Precision. The precision is defined as the rate | relevant documents retrieved |
| documents retrieved | . The

definition of relevance and the documents retrieved for our problem is not straight-
forward, because for each trial, all the documents in the corpus are retrieved, sorted by
the similarity value. In order to complement the success rate for those cases in which
several prototypes have the same similarity value and are located in the first positions
of L(q), we consider as the set D of documents retrieved all documents that are returned
in the first positions with all the same similarity value: D = {Lk(q) | sα(L0(q), q) =
sα(Lk(q), q)}. The set R of relevant documents for the query q, are those items in the
corpus belonging to the same class as the query, R = {q′ ∈ Q | c(q′) = c(q)}. The set
Rr of relevant documents retrieved is composed of those relevant documents that are in
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the set of documents retrieved, Rr = {q′ ∈ D | c(q′) = c(q)}. Finally, the Precision (PR)
for a query q is defined as:

PR =
| Rr |
| D | (4.1)

Precision-at-n. This measure is defined as the number of relevant documents within
the first n returned items. In our case, the relevant documents retrieved definition is the
one expressed for the precision measure, i.e., they are those documents belonging to the
same class of the query.

Precision-at-|class| or (PaC) When the number of prototypes per class is balanced
in the corpus, the n in the precision-at-n measure can be fixed. However, this is not the
case for our corpora, so instead of fixing that n, it is variable and equal to the number
of prototypes in the corpus that belong to the class of the query, i.e., n = |R|.

Given the composition of our corpora, there are many cases where for a prototype
there are others very similar and their retrieval seems to be easy. The Precision-at-class
(PaC) measure is the most restrictive and measures not only the correct retrieval of the
first slot, but all expected slots.

Recall. The Recall (RC) is utilized in its usual definition: |relevant documents retrieved||relevant documents| ,
where the meaning of those terms are those expressed in the precision measure:

RC =
| Rr |
| R | (4.2)

In an ideal case, all the prototypes belonging to the same class of the query would be
retrieved with the same highest similarity value. However, it is very difficult that the
similarity values coincide, and thus, this value is expected to be very low. High values
mean that the prototypes used are actually equal after being encoded with the chosen
representation.

f-measure. It is defined as 2×PR×RC
PR+RC . Here, like in the previous definitions, when the

denominator is 0, a 0 is returned as the value of the measure.

Reciprocal rank. The success rate only takes into account the first item returned,
and it does not give value to the following positions in the retrieved list. The Reciprocal
rank (RR) scores all the retrieved documents using the following formula:

RR =
1

min{k | c(Lk(q)) = c(q)} (4.3)

When only the mean is reported, this measure is usually referred as Mean Reciprocal
Rank (MRR).
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Intra-class vs. inter-class measure. This measure is useful for evaluating the ability
of the similarity algorithm to give high similarity values to all prototypes in the same
class and to give low similarity values to different class prototypes. The higher this value,
the better the algorithm is. It was introduced by Bunke and Csirik (1992) to serve as
evaluation measure for learning string distance edit costs. Given a corpus, it is defined
as the ratio A/B, where A is the average intra-class distance, i.e., the average distance
among all prototypes of the same class, and B is the average inter-class distance, i.e,
the average distance among all pair of prototypes belonging to different classes. In order
to integrate this measure in our system, it is only necessary to note that we are dealing
with similarity values instead of distances. Thus, this measure may be expressed as:

II =
A+ ε

B + ε
(4.4)

where an ε is introduced to avoid divisions by 0. In our implementation, we have used
the minimum value of the double Java data type ε = 2−1074

Time. Running times are measured in milliseconds taking into account only the test
phase, leaving aside the construction of the representations that may be done off-line.
All experiments have been performed using a Sun machine with 8 Gb RAM and 8
Intel(R) Xeon(R) CPU X5355 running at 2.66GHz, with a SUSE Linux version with
kernel version 2.6.

4.3 Corpora

As stated above, there is not a single way to define music similarity. Thus, two songs
can be considered similar if they fall in one of the following three cases:

• Renderings or interpretations of the same original work. It includes both the
interpretation of a song with possible mistakes and embellishments, and in the
case of polyphonic music, the different distribution of voices and tracks.

• Variations in the classical music form.

• Songs processed from an input source and altered in some way. The polyphonic
to monophonic skyline process is an example.

In order to take all three cases into account several monophonic and polyphonic
corpora has been collected, being each corpus representative of one kind of similarity.
Below, these corpora are described. The detail of their contents can be found in
appendix C.

These corpora contain two main file encodings: SMF and MusicXML. The only
important consideration about the encoding is that in those corpora encoded with
MusicXML, the pitch enharmonic spelling is available, not being the case for SMF files.
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Monophonic corpora

PASCAL. The PASCAL 1 corpus contains different renditions of the same theme
of a number of songs. It consists of a set of 420 monophonic 8-12 bar incipits of 20
worldwide well known tunes of different musical genres. For each song, a canonic version
were created by writing the score in a musical notation application and exported to MIDI
and MP3 formats. The MP3 files has been given to three amateur and two professional
musicians who listened to the songs (mainly to identify the part of the tune to be played)
and played them with MIDI controllers several times with different embellishments and
performance errors. This way, for each of the 20 original scores, 20 different variations
were built. This corpus tries to represent different possibilities of how the same song can
be played.

VARM. Being our starting point that the hierarchical structure of trees should capture
the essence of the themes, even if they are enriched with music variation techniques,
this corpus has been built from monophonic themes and variations as written by the
composers. It is formed by 9 different themes plus a total of 36 variations of these
themes. They are short monophonic sequences of an average of eight measures, all them
encoded with MusicXML.

104. This corpus, first collected for the work on metrical trees representations (Rizo
and Iñesta, 2002), includes 8 bar incipits of 102 melodies MIDI files downloaded from
Internet and processed using a skyline process. This melodies correspond to different
renderings of 10 well-known tunes of different genres.

MIREX. The MIREX corpus corresponds to a published subset of that collected
by Typke et al. (2004) and used in the similarity computation contest (Downie, 2006) for
training purposes. This ground-truth consists of a set of 11 queries and a 581 document
collection, all of them containing around 10 to 40 notes in a range of 3 to 6 bars. For each
query, this document collection is ordered according to the similarity of each song to the
query. The similarity was obtained by averaging the 35 human experts judgements on
the resemblance of each document to the query. Several documents may share the same
position in the list. In order to evaluate the quality of a similarity algorithm the authors
of this corpus proposed the so-called Average Dynamic Recall (ADR) measure (Typke
et al., 2006) that accounts for this ground-truth organization.

Polyphonic corpora

Each of the polyphonic corpus is presented in two formats:

• As it is, to be processed by pure polyphonic comparison methods

• In monophonic format after an skyline reduction process

1This name is given after its origin, a project developed under an European Union Network of
Excellence named PASCAL (Pattern Analysis, Statistical Modeling and Computational Learning).
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ICPS. This corpus has 68 MIDI files corresponding to different interpretations of the
incipits of seven musical works. They have been played by the author using a MIDI
keyboard and, for some songs, an accompaniment with the Band in a Box commercial
application was added.

VARP. This corpus consists of 85 sequences representing variations of 16 different
themes of classical works as written by the composer. In this case, the variations are
founded mostly on the harmonic structure of a main theme. The average length of the
themes is 8 bars.

INET. It is made of 101 whole MIDI files downloaded from the Internet, corresponding
to cover versions of 31 different popular songs. They contain full-length real-time
sequences with mistakes and different arrangements of the original versions.

COVERS. Finally, the corpus that has been considered as the target of a realistic
application scenario is made up of 2279 MIDI files collected from several personal
collections or downloaded from the Internet. It has been named COVERS and it is
composed of MIDI files with different renderings of 790 full-length pop-rock songs, that
have been manually tagged. This corpus has been split into ten balanced folds for
performing a cross-validation evaluation.

As noted above in page 119, some of the songs of the corpus are used as queries that
are compared to the rest of the songs of that corpus in order to evaluate each similarity
method. Two different ways of selecting prototypes to be the queries has been used.
In the case of the academic music (the monophonic corpus VARM and the polyphonic
corpus VARP), each class or song has one prototype that the composer named as theme,
and a set of prototypes that were given the name of variations. We have used those theme
prototypes as queries. For the PASCAL corpus, the melody extracted directly from the
score is taken as the query, and the different renderings as versions. For the rest of
corpora one file is chosen randomly as the query and the other renderings as versions.

4.4 Method parameters and configurations

In the background chapter several methods have been described with a number of
possible parameters and configurations. In this section, the different ways of represent
and compare monophonic music that have been tested are described. First our trees
proposal is detailed, then the other approaches from the literature.

Metric tree configurations

Trees can be built and compared in 1680 different ways. This is the product of the
combination of all factors described in Section 3.3:

pitch: The eight different pitch encodings introduced in Section 2.1.1, namely: pabs,
p21, p40, pc, p12, phdc, pint, and pift.
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pruning level: The tree pruning explained above in Section 3.4 has been explored
from level l = 1 that leads to trees containing only one node for each bar, to l = 6
containing the maximum resolution used in this dissertation that is 1/26 of a bar,
leading to a 64th note for a 4

4 meter.

propagation method: Introduced also in Section 3.4, the explored propagation
methods are None, Partial, Heuristic, Melodic, Left, and Right.

distance: The different tree similarity measurement algorithms described in Section 3.5
are: Align, Partial, Selkow, Shasha, and Valiente. In all cases the result of the
distance has been normalized using the maximum of the number of nodes of both
compared trees.

Although some of these factors are parameters for the construction of the trees, and
others are edit distance algorithms, in the sequel they all will be considered as parameters
for simplicity of the exposition.

Polyphonic tree configurations

pruning level: This is equivalent to that found in monophonic metrical trees.

multiset distance: The different multiset distances introduced in Section 3.7.3: Man-
hattan (L1 ), Cosine similarity, Euclidean distance (L2 ), Jaccard coefficient−1, Log
distance, Matching coefficient, Multisets distance, Overlap coefficient, Probabilities,
Variational distance, Hellinger distance, and Harmonic Mean.

edit distance: For the polyphonic trees only the Selkow edit distance has been used
because it is the only one with a practicable performing time, and our proposed
partial distance cannot be applied because it compares the equality of the labels
of the nodes, operation that does not make sense for multisets.

Rest of parameters

A number of the similarity measurement methods detailed in the introduction (Sec-
tion 2.1) have been implemented in our framework, in some cases from an available
implementation 2, and in other cases from the description found in the respective
publications.

As detailed in the introduction, all those methods have parameters or configurations
that must be set to perform the actual comparisons. With the objective to find the best
setup for each method, all possible configurations have been tested, that are listed just
below.

2Thanks to Iman Suyoto for the fanimae implementation of the n-grams methods, Kjell Lemström
for the C-Brahms geometrical algorithms, and Alberto Pinto for his graph approach implementation
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String edit distances (S). Among all the explored methods, maybe the closest one
to our proposal is the string edit distance approach. Thus, this has been the method
that most exhaustively has been explored. All parameters about pitch and rhythm have
been tested that result in 2240 different setups:

pitch : The eight different pitch encodings introduced in Section 2.1.1: pabs, p21, p40,
pc, p12, phdc, pint, and pift. Besides, an special pitch is used when only the rhythm
is compared.

rhythm : The seven duration and time encodings detailed in Section 2.1.2: rdabs, rtabs,
racc, rc, rhdc, rioi, and rior. The special rhythm symbol is used when only the
pitch information is considered.

k : It is the linear combination constant detailed in Definition 2.1.22, and has been
tested with values k ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

coupling : The coupling of rhythm and pitch (Section 2.1.4) has been tested in the
two possible setups: coupled and decoupled. Note that parameter k, when applied
to decoupled configuration, instead of combine the partial results of pitch and
duration, it serves as weighting constant of pitch or rhythm symbols.

rests : The inclusion (withRests) or ellision (withoutRests) introduced in Section 2.1.4
has been also tested.

NHT : One of the contributions of the trees approach is the use of tonal information
in order to discriminate notes. This information has been also used in string
representation (Section 2.1.4), leading to two possible configurations: withNHT
leaves all notes, and withoutNHT removes all notes that are not harmonic tones,
simulating this way the promotion of notes in the tree representation.

Mongeau-Sankoff (MS). This an interesting variant of the string edit distance that
adds fragmentation and consolidations to the edit operations as detailed in Section 2.1.4.

The possible 97 setups of this distance are similar to those used for classical string
edit distances:

pitch: Only pabs, pc, and pitv have been used.

duration : rdabs and rioi.

k : {0.1, 0.5, 0.9}.
coupling : Only coupled representations.

rests, NHT : exactly as the classical string edit distances.

pitch comparison : the pitch comparison has been performed in two possible ways:
matrixPitch that compares the equality of the compared pitches in pitv encoding,
and Sankoff, that uses the weights proposed in the original paper (Mongeau and
Sankoff, 1990) for comparing pitches.
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4.5. BEST RESULT FOR EACH CORPUS

C-Brahms. For the geometric methods (Section 2.1.6) the C-Brahms system (Lem-
ström et al., 2003) has been used. All the different comparison and indexing techniques
P1, P2, P2v5, P2v6 (Lemström et al., 2008), and P3 have been tested.

PROMS. Another geometric-like system that only uses onsets and text-retrieval
techniques is PROMS (Section 2.2.4).

In the original algorithm, the approximate search is accomplished by allowing k
dissimilarities as a maximum between the query and the database document. To our
needs, where whole pieces of music are to be compared, the original algorithm has been
modified to return the normalized number of coincidences in the best alignment. The
different setups of the PROMS establish the quantization r per bar. Values from 4
(meaning a resolution of a quarter note for a 4/4 meter) to 28 have been tested in
our experiments. The PROMS representation is very sensitive to quantization. This
quantization produces chords with closer notes. The quantization of the polyphonic
scores leads to too dense chords, and as r raises, it gets less dense.

n-grams and edit distances by Uitdenboderg. The n-grams approach used
(Section 2.1.5) follows the approach by (Suyoto and Uitdenbogerd, 2005). We have
implemented the algorithms proposed in that paper and present in the fanimae sofware:
the n-gram counting algorithm, using sizes n ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, and some
string edit distances proposed in that paper: the simple local alignment as described in
page 31, the start match alignment, and finally the string edit distance using the directed-
modulo-12 pitch representation (see pdm in Section 2.1.1) with cost 1 for insertion and
deletions, and 2 for substitutions.

Graphs (G). The graph approach (Section 2.1.8) does not have any parameter to be
set.

All methods have been implemented in Java to be integrated in our system, except
for C-Brahms, for which an adaptation layer has been created to be plugged into our
system. We have followed a strict object oriented approach that enables the system
to be easily extended with new representation approaches, comparison algorithms, and
retrieval schemes.

4.5 Best result for each corpus

Recall we denote as setup a possible combination of factors or parameters of each method,
i.e., a combination of prunning level, pitch, tree distance, propagation strategy.

All possible setups for each method in each corpus have been tested generating a huge
amount of results. In order to have a first insight on the behavior of each method, its best
setup in each corpus has been selected using as sorting criteria the precision-at-|class|
that is the most restrictive measure. These results are detailed in Table 4.1.
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This table is valid for having a first overall view of the performance of each method on
each kind of similarity represented by each corpus. However, there are some important
drawbacks that arise if we want to give an averaged global result from these figures:

• The three corpora used are not class balanced

• They represent different aspects of similarity

• The differences shown may not be significant

• The setup that has achieved the best result for each method in each corpus is
different

• Time, although not included in the table for space reasons, varies from setup to
setup in such a way that the best setup may be very slow while the second best
setup may be very fast

The next section describes a more complex experiment design that enables us to
extract global conclusions while overcoming those drawbacks.

4.6 Experiment setup and results

The experiments in both the monophonic and polyphonic case have been designed in
the same way.

The experiments are two folded. On one hand, the objective is to study the tree
representation approach for the music similarity computation task. On the other hand,
to put in context our proposal by comparing the results of the tree approach to those of
other representations. For those two purposes four steps were followed:

1. The first step was to select those setups that achieved a good trade-off between
time and accuracy that perform robust for all considered kinds of musical similarity
represented in the different corpora.

2. Having selected a list of adequate configurations of each method in the first step,
they were used both in a realistic scenario that is represented by the COVERS
and the MIREX corpora.

3. From the previous results, one of the selected setups is chosen to be the finest
configuration of the method.

4. Finally, after giving the results of our proposal compared with other state-of-the-
art methods, a more in-detail analysis of each factor of tree construction and
comparison is done.

Each one of these steps is explained in more details next.
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CHAPTER 4. EXPERIMENTS

4.6.1 Method setups selection

The objective of this step is to decide which setups of each method perform the best in
average for all kinds of similarity reflected in each corpus, while taking into account the
class unbalance of some of the corpora used, the different types of corpora content, and
processing times. The basis of the process for selecting good setups are:

1. The use of the precision-at-|class| as the retrieval quality measure because it is
the one that takes more advantage of the results obtained for each query, being as
well the one that shows more differences among methods. The success rate and
the reciprocal rank only consider the first correct returned item for each query.
Instead, the precision-at-|class| is measuring all correct items returned within the
first positions. The number of considered retrieved items has a strong implication
on how the results can be analyzed. Consider each query retrieval result as a
sample of a statistical population. The success rate returns only values 0 or 1.
The precision-at-|class| returns a full range between 0 and 1 instead, that allows
for a finer statistical analysis of the results.

2. The comparison of results among different setups of a method in a given corpus is
performed by using statistical significance tests.

3. A voting algorithm is used to combine the results of each setup in all corpora
to rank the setups while overcoming the unbalance of corpora and their different
nature.

Let αi be a setup or configuration of a method. The process that ranks all possible
setups of a method is summarized in Fig. 4.1 and is composed of the following steps:

1. For each setup αi and each corpus Gj compute the average and standard deviation
of the precision-at-|class| (abbreviated as PaC(αi,Gj)) for all queries in that Gj .

2. Given the population of results of all setups, it is ordered descending in terms of
mean of PaC(αi,Gj), grouping the setups whose precisions-at-|class| differences
are not statistically significant. This step produces a rank of setups for each corpus,
where the setups with non significant different performances are in the same slot of
the ranking. For testing significance of groups, non-parametrical tests have been
used: Kruskal-Wallis (Kruskal and Wallis, 1952) test for groups of size greater than
two, and Mann-Whitney (Mann and Whitney, 1947) for pairs of samples, using a
typical setup p < 0.05. The non-parametrical tests have been chosen instead of
the ANOVA (Anscombe, 1948) test because the later makes the assumption on
the normality and equality or homogeneity of variances (homoscedasticity) that
we cannot assume.

3. Combine the different ranks obtained of each setup in all corpora by the use of
a Borda count voting method of group decision theory (Ho et al., 1994). This
combination outputs a score for each setup that indicates how well each setup has
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4.6. EXPERIMENT SETUP AND RESULTS

performed in comparison to other setups in all corpora. It is important to note
that this score gives a ranking of performances for all setups in a method, and its
scope is restricted to that method. It has not sense to compare the Borda count
among methods because a method can be consistently bad with all setups, and
however, the best among all its setups will have a high Borda count. The Borda
count score is computed as follows: for each corpus, give a score 1 to the setups
in the first slot, 1/2 for those in the second slot, 1/3 for the third, · · · , 1/s for the
s-th ranking slot. Note that if two setups are in the first slot, for the third setup
occupying the second slot the 1/3 score is given. Then, the Borda count score of
each setup corresponds to the accumulated scores obtained for all corpora.

4. Having the precision-at-|class|, processing times, and Borda count scores, we have
enough information to select as the most suitable setups those having a good
trade-off among these three measures.
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4.6. EXPERIMENT SETUP AND RESULTS

Selection of setups of monophonic methods

The corpora PASCAL, 104, VARM have been used to perform the experiments with
monophonic methods. Besides, an skyline version of ICPS has been used in order to
evaluate the behavior of the methods with a corpus that it is expected to contain a lot of
noise. Recall that VARM contains theme and variations as written by the composer, 104
are melodies downloaded from internet, and PASCAL and ICPS are different renderings
of the same song extract.

The plot in Fig. 4.2 shows graphically the behavior of the different setups of methods.
Note that the Graph method has not been plot because it only has a possible setup and
we don’t have the necessity of selecting the best one. A Borda count threshold has
been established empirically to remove setups that do not behave consistently among
the different corpora and keep enough setups to follow with the next experiment step.
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Figure 4.2: Precision-at-|class| and times trade-off for each method. The color shows
the Borda count score. Recall the Borda count only indicates consistence among results
in different corpora. Note the C-Brahms plot does not follow the same ordinate axis as
the rest of methods.

The full list of results can be found in appendix E.1. Among all these setups, only
those having a processing time faster than 200 ms and having the best Borda count have
been selected for being applied to the realistic scenario experiment. The methods Metric
trees, String edit distances, PROMS, and Mongueau-Sankoff reach in several setups the
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Table 4.2: Method selected setups count

Method Total setups Selected setups

Trees 1680 57

Strings 2240 61

Mongeau-Sankoff 97 7

Uitdenboderg 14 4

PROMS 6 2

C-Brahms 5 4

Graphs 1 1

maximum Borda count score 4.0, that means that these setups are among the best in the
four used corpora. Only 16 setups of trees reach the Borda count score 4.0, so we have
included also the setups with at least a Borda count 3.0. In the case of Uitdenboderg
and C-Brahms, as this maximum value has not been obtained by any setup, only the
time and precision-at-|class| criteria has been followed to select setups. This decision
reduces considerably the number of setups of each method as shown in Table 4.2.

The plot in Fig. 4.2 shows that the string based methods are the ones reporting
best precision-at-|class|, while following the Borda count, they are consistent along the
corpora. The proposed metric tree methods yield the best trade-off of consistence with
precision-at-|class| and processing times. The most surprising result has been that of
the 2-grams, that while not being very consistent along corpora, have been extremely
fast with a good precision-at-|class|.

Selection of setups of polyphonic methods

The same methodology has been applied for the selection of the polyphonic methods.
Plots in Fig. 4.3 show the trade-off between processing times and precision-at-|class|.
The detail of all setups can be found in appendix E.2. In the polyphonic case, having
less possible setups, all values with a non-zero Borda count have been included in the
appendix.

The plot in Fig. 4.3 shows that the best Borda count is obtained by the C-Brahms
method, however, at a low precision-at-|class| rate. For the trees and the PROMS
methods, the most robust (best Borda count) are not the fastest setups, but a good
compromise among time, precision-at-|class|, and Borda count can be easily spotted in
the plots. The reported Borda count values are lower than those found in the monophonic
experiments. This is due to the fact that the precision-at-|class| obtained by the different
setups are now in most cases significant, and thus, the best ranked setup uses not to be
shared among setups.

134



4.6. EXPERIMENT SETUP AND RESULTS
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Figure 4.3: Precision-at-|class| and times trade-off for each polyphonic method. The
color shows the Borda count score.

4.6.2 Application to realistic scenarios

The datasets utilized for testing the feasibility of the approach were designed to test
different aspects of music variability. The corpora 104, PASCAL, VARM, VARP, INET,
ICPS were small song sets, aiming to reach conclusions on the system architecture
without spending large computation times in carrying out the experiments. Now, we try
to apply the lessons learned from those experiments in more realistic scenarios.

In this set of experiments, the MRR has been used instead of the precision-at-|class|
because now we want to measure the performance of each method from the point of view
of the the retrieval system user.

First using as a corpus the COVERS dataset, whose songs have been applied the
skyline algorithm in order to apply the monophonic methods. However, it is important
to note that this corpus does not contain all kinds of similarity that the small corpora
represent. Ten balanced subsets have been constructed for performing a ten-fold cross-
validation evaluation. The queries-dataset retrieval scheme used previously has been
used for each fold. The results are obtained as the means and sample standard-deviations
of the different quality measures described in Section 4.2 for the 10 sub-experiments.
Only the setups of each method considered “suitable” after the previous experiment
have been tested. Note that the previous Borda count methodology employed in that
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experiment has not been applied now because, on the contrary as before, the different
folds of COVERS are balanced and contain homogeneous content.

The MIREX corpus results has been reported because it is publicly available and
these results could be useful for other researchers to compare their results with ours,
keeping in mind that this is not the corpus used for the MIREX contest, but only the
training dataset.

Monophonic results on COVERS corpus

The selected setups from the previous section have been applied to a skyline version of
the COVERS corpus. The result of the best setup in average of each method is detailed
in Table 4.3. All values are averaged from the ten folds of the corpus. For each method,
the setup with best trade-off MRR vs. time has been plotted in Fig. 4.4. The full detail
of results has been placed in appendix, Table E.10.
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Figure 4.4: Skyline COVERS corpus results for selected setups.

The method that has performed the best in terms of retrieval quality has been
PROMS, the fastest methods have been C-Brahms, Uitdenboderg, and Graphs, and the
one with the best trade-off between retrieval quality and processing time is the proposed
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metric tree approach, using our proposed tree partial similarity algorithm, with heuristic
propagation, normalization, pruning at level l = 2 and high-definition contour pitch phdc.

From the full listing of results in the appendix, other setups of trees are similar in
performance, but this one seems to be the fastest one with best performance among all
tree configurations.

Polyphonic results on COVERS corpus
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Figure 4.5: COVERS corpus results for selected polyphonic setups.

The polyphonic methods have been tested with the original polyphonic COVERS
corpus, divided into ten folds, without any skyline process applied. Selected results
are plotted in Fig. 4.5 and detailed in Table 4.4, and the full detail can be found in
appendix E.4.

The best performance has been obtained again by PROMS in terms of MRR.
However, the rest of quality measures report comparable results between PROMS and
the trees approach, being the latter the one with best trade-off between performance
and time. The C-Brahms has reported the best processing times.
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It is very interesting to look at the intraclass vs. interclass value. The trees are the
ones that most separate the distances of the songs belonging to different classes from
those belonging to the same class.

Monophonic results on MIREX corpus
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Figure 4.6: MIREX corpus results for selected setups

The MIREX corpus, used for training in that contest in its 2005 edition, has been
tested with the selected setups of methods. Results are plotted in Fig. 4.6 and detailed
in appendix E.5, page 195. For each method, the setups with best trade-off between
ADR and time have been plotted (recall that the quality measure used for this corpus
is ADR that accounts for this ground-truth organization).

Note that these results cannot be compared with the published results of that contest
because we are working only with the training set part of it. However, we include it here
because that training set is publicly available and can be useful for comparison with
other methods not included in this manuscript. One thing to be considered about this
corpus is that what is evaluated is the similarity of incipits as perceived by a group of
people that judged their resemblance, and not the different versions or covers of songs
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4.6. EXPERIMENT SETUP AND RESULTS

Table 4.5: Example of different Borda count rankings

Sorted list of results Borda count Nauru variant

0.9 1 1

0.9 1 1

0.7 1/3 1/2

0.7 1/3 1/2

0.5 1/5 1/3

0.3 1/6 1/4

0.3 1/6 1/4

0.1 1/8 1/5

that are explicitly the same work with different renderings or variations, as it happens
with the result of corpora used in this dissertation.

In this small dataset, the best method has been the Uitdenboderg approach with its
4-grams approach. The strings methods reported best ADR than our trees approach,
however, the trees method obtains the second best trade-off between ADR and processing
time.

4.6.3 Best setup selection

After having analyzed a number of possible setups for each method running on different
kind corpora, to conclude, it is desirable to select only one configuration for each method
as the best one. For doing this selection, all results on all corpora will be used to elaborate
a ranking of setups. The MRR and time will be the measures employed for deciding the
best setups, because they are the measures most perceived by an end-user.

In order to give a ranking of the setups of methods that have reported the best results
in terms of MRR in average in all corpora, a variant Borda count known as Nauru has
been used. In this variant, repeated items do not decrease the ranking score of the
following ones (see Table 4.5). Note in that table, that the result ranked third, has given
a 1/3 value in the classical Borda count configuration because it has been ranked in the
third position, and it has been given a 1/2 in the Nauru variant because repeated results
do not decrease the subsequent positions. This variant has been used for comparing the
results of all methods because not all methods have the same number of setups, and
thus, the comparison using the classical Borda count configuration would not be fair.
Thus, the setup that has obtained the best Borda count in its Nauru variant can be
considered the best in average for all corpora.

The criteria to select a setup as the best one will be its robustness measured with
the Narnu Borda count variant, and the processing times.
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Monophonic results

The plot in Fig. 4.7 describes the performance of the setups of each method in all
monophonic corpora and the behavior in average based on the Borda count. Detailed
results for the monophonic methods are listed in appendix, table E.17 in page 200.

The proposed tree approach is the one that has more setups in the top positions
of that ranking. Besides, it is the most robust for all corpora and the one with the
best trade-off between MRR and time. The results of Uitdenboderg are comparable to
those of trees in terms of time and Borda count. Some methods, like strings or PROMS,
that had given a good performance for a given setup in some corpus, have no setup
performing as well for all corpora. Finally, the fastest methods have been the C-Brahms
and Graphs having, however, the worst performances.

The selected setups of monophonic methods are:

Metric trees pc, heuristic propagation, and Selkow tree edit distance with pruning
level l = 2.

Strings pitv, k = 0.9, rtabs, decoupled, removing rests and leaving non-harmonic tones.

Mongeau-Sankoff pift, k = 0.1, rioi, matrixPitch, removing rests and leaving non-
harmonic tones.

Uitdenboderg String edit distance using the directed-modulo-12 pitch representation.
The best n-gram configuration has been the 4-grams setup.

PROMS r = 8 or r = 4.

C-Brahms P2v6.

Graphs Pinto approach that is the only one used in this manuscript.
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Polyphonic results

Plot in Fig. 4.8 shows the performance of best setups of all methods on the polyphonic
corpora, and the details can be found in appendix, Table E.18. In the polyphonic domain,
the trees approach has had no setup robust enough for giving the best results on all
corpora, even having some configurations that had given the best results for individual
corpora. In any case, the trade-off of time and MRR in average behaves consistently.
The best polyphonic setup for method each is:

Trees Harmonic mean, with l = 2 because it has the best trade-off among all evaluated
corpora and time.

PROMS r = 8 or r = 4.

C-Brahms P2v6, having a Borda count a bit worse than P2v5, it is much faster.
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Figure 4.8: Best precision-at-|class| and times for each method.
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Table 4.6: Preprocessing times.

Method Average preprocessing times per song

Monophonic Polyphonic

PROMS 0.2± 0.1 ms 0.5± 0.4 ms

Graphs 0.6± 0.1 ms

CBrahms 3.6± 0.2 ms 4.1± 0.4 ms

Uitdenboderg 7.0± 0.8 ms

Strings 7.9± 6.8 ms

Trees 293.9± 2.3 ms 37.2± 13.9 ms

4.6.4 Tree construction and comparison parameters analysis

The last phase of the experiments is to analyze in-depth the behavior of each way of
construct and compare trees in order to extract conclusions about the suitability of each
one by themselves alone or in combination in order to look for interesting synergies
among parameters.

Besides studying the suitability for the music comparison task, the performance of
the proposed partially labelled tree distance has been studied.

Preprocessing times

Being the skyline version of the COVERS corpus the one with more realistic input files,
it has been chosen to study the preprocessing times not included in the previous steps
of the experiment (see Table 4.6). These times must be considered only for the first
reading of the corpus used, and as the internal encodings of any representation can be
saved in text files (we have implemented this facility), and the fact that none of the
construction times are bigger than a second, the corpus encoding times can be ignored
for a running end-user application. Anyway, this can be considered the main drawback
of our proposal that should be improved in the future.

Partial edit distance performance

One of the contributions of this work is the partially labelled tree distance. In order to
evaluate its performance, the corpus PASCAL has been used, feeding all algorithms with
several versions of the trees that have been pruned from level l = 1 to l = 6 (which is the
maximum depth found in the corpus), and using as fixed parameters the pitch encoding
pift and the melodic propagation 3. For each pruning level, the average number of nodes
has been extracted to be used as x-axis in the plots.

3We have selected this corpus and parameters for having been used in previous published works by
the author (Bernabeu et al., 2009; Habrard et al., 2008)
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Figure 4.9: Success rates of proposed method compared to classical tree edit distances.

The results plotted in Fig. 4.9a show that the proposed algorithm behaves the best
for non-pruned trees or l = 6 (see results for x > 350). For pruned trees, it behaves also
the best in average.

When working with fully labelled trees (see Fig. 4.9b), the success rates of the
proposed method are comparable to the success rates of the Selkow and the alignment
distance. This alignment distance corresponds to our implementation proposed in
page 105. The original implementation of Jiang (Jiang et al., 1995) led to intractable
times with songs longer than four bars. The plot in Fig. 4.10a shows the theoretical
evolution of computing times of the main tree edit distance algorithms given their time
complexity, and Fig. 4.10b describes the experimental processing times of those distances
in our experiments. The actual times confirm the prediction from the theoretical
complexities, being our proposed algorithm the second fastest one.
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Thus, it seems that the proposed similarity is suitable for its purpose, being able
to compare successfully both trees labelled only at leaves and fully labelled trees better
than the other methods in terms of trade-off between time and success rate.

Monophonic trees

The previous sections have shown that the proposed approach reports good trade-off in
terms of retrieval quality and processing times. In this section, an analysis of the impact
of each parameter of the tree method is performed.

Table 4.7 shows the average behavior of the different parameters in terms of precision-
at-|class| for the different monophonic corpora and ALL representing the merged results.
The values of mean and standard deviations have been obtained from the different
precision-at-|class| for each query of each corpus. The dispersion in the results show
that no parameter can be considered by itself as the best without being combined with
others. However, it seems clear that the tree distance by Valiente is not suitable for the
task.

All the possible combinations of parameters in groups of two and three for each of
the monophonic corpora have been visually analyzed 4. In order to let the reader have a
summary of all tables not included in the manuscript for its excessive length, Fig. 4.11
shows graphically the values contained in those tables. A slight improvement on the
performance in terms of have precision-at-|class| has been detected in pruning levels
from l = 2 to l = 4, and the best trade-off between time and performance is located
in l = 2. The propagation methods None and Partial lead in general worse results,
but for the corpus ICPS in its skyline version, that has a lot of noise coming from the
polyphonic to monophonic reduction, and it does not work well with any propagation
method based in any musicological assumption based on the metrical position of notes.

Regarding the processing times, neither the pitch encoding or the propagation
method alter the comparison algorithm times, as it was expected. The parameters that
do have a deep impact on time are those of pruning level and the similarity or distance
algorithms, as shown above in the review of the performance of the partial edit distance
performance.

Apart from these conclusions, looking at the different combinations of parameters in
the plot, only the inadequate combinations can be detected, i.e., all those painted with
cool colors (blues and greens).

Polyphonic trees

The polyphonic trees have less parameters that can be combined, i.e., only the multiset
distance used to compare the labels of the nodes, and the pruning level. Fig. 4.12
describes the MRR of all combinations between multiset distance and pruning level
for all polyphonic corpora. The plot only shows that there are two multiset distances,
1/Jaccard and the Helliger distance that consistently perform the worst for all cases. For

4The document with the details of each possible combination of parameters can be downloaded from
http://www.dlsi.ua.es/gent/drizo/thesis/metrictreeanalysis.pdf
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Table 4.7: Metric trees precision-at-|class|: all parameters, all corpora

PASCAL 104 VARM ICPS ALL

Pitch

pabs 0.32± 0.08 0.34± 0.07 0.52± 0.14 0.29± 0.08 0.37± 0.13

p21 0.40± 0.11 0.38± 0.09 0.52± 0.13 0.32± 0.08 0.40± 0.13

p40 0.40± 0.11 0.38± 0.09 0.52± 0.13 0.32± 0.08 0.40± 0.13

pc 0.4± 0.2 0.34± 0.13 0.4± 0.2 0.40± 0.11 0.4± 0.2

p12 0.39± 0.12 0.38± 0.08 0.47± 0.14 0.32± 0.07 0.39± 0.12

phdc 0.4± 0.2 0.37± 0.14 0.4± 0.2 0.38± 0.10 0.4± 0.2

pint 0.4± 0.2 0.36± 0.11 0.4± 0.2 0.39± 0.09 0.4± 0.2

pift 0.5± 0.2 0.40± 0.08 0.43± 0.13 0.42± 0.11 0.45± 0.14

Prunning level

l = 1 0.3± 0.2 0.31± 0.09 0.4± 0.2 0.33± 0.09 0.34± 0.13

l = 2 0.5± 0.2 0.40± 0.08 0.50± 0.14 0.37± 0.12 0.43± 0.14

l = 3 0.5± 0.2 0.40± 0.11 0.5± 0.2 0.38± 0.10 0.44± 0.14

l = 4 0.4± 0.2 0.38± 0.10 0.46± 0.14 0.38± 0.10 0.42± 0.14

l = 5 0.4± 0.2 0.36± 0.10 0.47± 0.14 0.34± 0.09 0.39± 0.14

l = 6 0.4± 0.2 0.35± 0.09 0.5± 0.2 0.33± 0.09 0.38± 0.14

Propagation

None 0.29± 0.13 0.31± 0.10 0.4± 0.2 0.39± 0.11 0.36± 0.14

Partial 0.3± 0.2 0.30± 0.09 0.4± 0.2 0.35± 0.10 0.33± 0.13

Heuristic 0.5± 0.2 0.41± 0.09 0.5± 0.2 0.34± 0.10 0.43± 0.14

Melodic 0.5± 0.2 0.39± 0.09 0.5± 0.2 0.35± 0.10 0.4± 0.2

Left 0.5± 0.2 0.39± 0.09 0.50± 0.14 0.34± 0.09 0.43± 0.14

Right 0.42± 0.14 0.39± 0.09 0.40± 0.14 0.37± 0.10 0.39± 0.12

Distance

Align 0.44± 0.14 0.39± 0.07 0.46± 0.11 0.39± 0.09 0.42± 0.11

Partial 0.4± 0.2 0.37± 0.09 0.51± 0.13 0.39± 0.11 0.43± 0.13

Selkow 0.5± 0.2 0.42± 0.08 0.55± 0.12 0.40± 0.09 0.47± 0.13

Shasha 0.4± 0.2 0.41± 0.08 0.47± 0.13 0.33± 0.10 0.41± 0.14

V aliente 0.26± 0.12 0.25± 0.08 0.29± 0.13 0.26± 0.05 0.27± 0.10
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Figure 4.11: Average precision-at-|class| plotted as heat maps for all monophonic
corpora in all possible combination of parameter. The warmer the color (red, orange)
the best precision-at-|class|.
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the other cases no distance, pruning level, or any combination of both can be considered
as the best for the three corpora.
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5
Conclusions, contributions, and future work

This dissertation has introduced a tree representation of music encoded in symbolic
format for similarity computation, and it has been shown to report a good trade-off
between comparison time and accuracy among the presented methods in the explored
corpora.

In order to frame our proposal into the related literature, both the current state of
the art on music similarity measurement, and the different successful uses of the abstract
data type tree for symbolic music processing in other domains, have been explored.

Let us recall the hypothesis introduced in the beginning of the manuscript:

The abstract data type tree seems to be the most suitable for capturing
the temporal and hierarchical structure, and it is adequate for representing
the reduction of a work. Therefore, trees seem to be an adequate data
structure to encode and process music in symbolic format for similarity
computation.

The experiments presented in the previous chapter seem to support that hypothesis.
In the following paragraphs, each of its key concepts, and some other contributions of
this thesis, will be discussed.

· · · suitable for capturing the temporal and hierarchical structure

The proposed representation has shown to be able to represent the rhythmic information
of a musical work in an implicit way based on the metrical structure of common music
period works.

The main advantages over linear structures are the simplicity on representing both
monophonic and polyphonic music in the same kind of structure, and the versatility
of that structure to fit more elaborated information as the musical form or harmony.
Although in a preliminary stage, it should be noted that some experiments that include
harmonic information in the labels of the tree, point that this kind of information can
improve the representation power of trees supported by better accuracy in similarity
computation 1.

1the results raise in VARM corpus until a 100% success rate
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From the experimental tuning point of view, the trees approach has shown to need
less parameters to fit than its linear equivalent, the string representations.

The proposed tree structure has been used successfully for other tasks. For example,
tonality guessing following a bottom-up traversal of polyphonic trees (Rizo et al., 2006b).
This method has been used in this thesis to obtain the tonality for those MIDI files
whose key signature was not present (required for pitch encodings as pift and to perform
a simple pitch spelling for encodings as p21 and p40), and from the results it can be
deduced that this process has performed consistent enough for the task it was designed.
For example, the best setups for the strings in the monophonic COVERS corpus used p21

and p40 encodings, or the best Mongeau and Sankoff setup used the pift pitch encoding.
Another application was automatic composition (Esṕı et al., 2007), where the metrical
trees are used as the way of representing music in symbolic format in a genetic system,
which uses subtree interchanging as crossover operation.

Our approach has two main drawbacks: its tight dependency on the meter structure
of the input source, and its difficulty to represent ties, dots, and syncopations. The first
problem can be overcome through an a priori metrical analysis of the work (Eck and
Casagrande, 2005; Meudic, 2002b). In any case, the experiments show that metrical
information is important for similarity computation: the best setups in the experiments
contained metrical information, PROMS uses bar information in the representation, and
strings have reported its best performance using absolute time as rhythm encoding. The
second drawback, from the representation point of view, has been solved by the addition
of a special symbol that encodes the concept of note continuation. For the comparison
task, it is not a problem as other authors point out (Hanna et al., 2008; Mongeau and
Sankoff, 1990; Pardo and Sanghi, 2005).

One derived problem that comes from the fixed metrical structure is the excessive
growth of trees when very little notes and performance imprecisions are found. This
problem has been addressed by the proposed propagation processes. However, this is
an open research direction, maybe by applying advanced quantization algorithms (Agon
et al., 1994; Cemgil et al., 2000), or by converting the fixed metric tree structure into a
more flexible one, able to respect someway the meter, beat and tactum structure, and
capable of working both with monophonic and polyphonic music.

The last aspect to be improved from the representation point of view is the
substitution of the current root grouping of the trees representing bars by a hierarchical
structure representing the architecture of the musical work.

· · · ready for representing the reduction of a work

Being a process originally designed to fully label the tree from the leaves, the bottom-up
propagation of the labels in the leaves maybe has become the most powerful tool among
all the proposals of this dissertation. The results show that any of the propagations
guided by the metrical structure is valid for comparison task. In other case, after pruning
the trees at the highest levels, the performance rates would decrease. The results also
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show that for corpora with little noise 2 the music theory can help in deciding which
notes are more important to describe the essence of a melody.

After having pruned trees until level two, for the implementation of a real work
retrieval system, the root sequence could be kept and used as a thumbnail of the song.
Thus, a fast indexing system can be built on top of the thumbnail of the songs in the
database.

However, this tool still has to be refined by including more musical knowledge or by
constructing systems able to learn the reduction technique either from examples or by the
use of an optimization algorithm. Furthermore, the polyphonic propagation proposed is
somewhat simplistic and should incorporate the learnings of the monophonic case. The
main difficulty for achieving this objective is the musical analysis preprocess required to
apply the propagation rules to the polyphonic content. The way the propagation in the
tree is performed is a key issue, because it determines the way the song is summarized.
Some experiments using different weights for the node label propagation in the tree,
depending on a number of factors (harmonicity, position in the tree, etc.) are currently
being explored. For example, besides using in the multisets the cardinality based on
the accumulated duration of notes, some tests have been done on using the Krumhansl
tonality vector (Krumhansl, 1990) as proposed in (Müllensiefen and Frieler, 2004b), that,
so far, have given no improvements.

The use of genre information, as that obtained from methods in whose creation the
author has collaborated (Pérez-Sancho et al., 2009), may be a source of data that can
be used to improve the propagation quality.

Finally, one alternative to tackle the polyphonic case is to represent a tree for each
voice and combine the partial results for comparison. However, voice separation is an
open problem (Rafailidis et al., 2008).

Comparison algorithms

The comparison of trees has been performed using a sort of tree distances and a new
similarity measure proposed in this thesis. Only one tree distance among all the explored
methods has demonstrated to be inadequate for our task: the Valiente bottom-up
distance. The reason of its poor results must be explained by the structure of the
compared trees it imposes. Our new proposed implementation of the Jiang alignment
distance has performed as expected, with times similar to the Shasha and Zhang distance
and making it practicable. The other distances have shown to behave correctly for the
similarity computation task, being the Selkow distance the best one. One common issue
for all algorithms, is that the normalization of distances has improved significantly the
results. A new similarity measure to compare partially labelled trees has been proposed
yielding results comparable, and sometimes better, to those of the existing methods,
reporting among the best computation times. Currently, we are beginning to apply this
new algorithm can be applied to other tasks like the comparison of Quad Trees (Finkel
and Bentley, 1974) with promising results.

2VARM and VARP corpora
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Some other tree distances may be applied, and maybe the processing times can be
improved, but from the results obtained it does not seem to have room for better results
with other kind of distances. Maybe, where more research has to be done is on the label
comparison. One thing to be done is to add the propagation information to weight the
label substitution cost.

In this dissertation no fine tuning of edit costs has been presented. The author shows
in (Habrard et al., 2008) that results can be substantially improved by the application
of cost fitting methods like genetic algorithms, or by the use of stochastic distances
in both strings and tree methods, able to learn from a training set the cost matrices.
In that paper the PASCAL corpus was divided into three folds for cross-validation,
and represented with pift pitch encoding with strings without rhythm, and trees using
melodic propagation, no pruning, and Selkow edit distance. An important improvement
of accuracy was obtained using both genetic algorithms and stochastic methods, showing
besides, that the costs learned with the stochastic approach were able to explain the most
common changes between the original theme and the different renderings of it.

The pre-filtering of the nodes in polyphonic trees before comparing, and the use of
an adaptation of our proposed partial tree distance to deal with multi-sets is another
research direction that should be explored. A similar approach that removes non
interesting notes in the MIDI file can be found in (Madsen et al., 2008).

Another work area that is opened is the application of the tree comparison
techniques that are applied now to our metrical and polyphonic trees, to the other tree
representations explored in the state of the art on music tree representation section. In
his work, Alan Marsden expresses the need of an objective application in order to check
the quality of the Shenkerian analysis. The similarity computation is a good candidate
for that.

In order to implement a large-size retrieval system, the simple 1-NN approach used to
evaluate our system is not practicable. Rizo et al. (2006c) proposed a new approximate
nearest neighbor search for non-vector representation of patterns (metrical trees) to
speed up the classification.

Finally, as not taken into account for evaluating our approach, it is worth to note
that the current implementation of our tree construction process, is too slow and should
be improved to build a real retrieval system by debugging the current implementation.

Combination of methods

We have performed an exhaustive exploration of the parameter space for some of the
principal methods of similarity measurement of symbolically encoded music, leading
to a total of 4088 setups, summing up all configurations of the explored methods. The
combination of them is a promising way to definitely reach the best possible results. The
author has explored (Rizo et al., 2008, 2009a,b) the way of selecting the best ensemble
of setups for the polyphonic similarity task based on choosing the most diverse methods
with best retrieval quality rate.

For the processing of polyphonic music with monophonic methods that can be later
integrated in those ensembles, the used skyline algorithm can be replaced with a more
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sophisticated preprocess: to extract the melody track following the statistical methods
proposed by the authors in (Rizo et al., 2006a).

Corpora and results analysis

The majority of works that evaluate music similarity only use a single corpus, that may
have a biased representation of what music similarity is. Furthermore, in some cases as
MIREX, contains a subjectively evaluated ranking of prototypes. We propose a different
way of evaluating the different comparison paradigms. On one hand we have gathered
7 different corpora, both monophonic and polyphonic, representing different ways of
conceiving what music similarity is. On the other, a methodology to extract conclusions
on the performance of several algorithms on different nature and size corpora has been
proposed.
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A
Multiset distances

The similarity computation between vectors of features has been widely studied in the
pattern matching and information retrieval literature (Deza and Deza, 2009; Han and
Kamber, 2000; Ryu et al., 1998). In this dissertation we have selected some of the well
known vector distances and in some cases they have been adapted to our problem of
comparing multi-sets in the representation on polyphonic music with trees.

Manhattan, L1∑11
p=0 |vMa [p]− vMb

[p]|
12

(A.1)

Cosine similarity

1−
∑11

p=0 (vMa [p])(vMb
[p])√∑12

i=1 vMa [p]2
∑12

i=1 vMb
[p]2

(A.2)

If the denominator takes a 0 value, the expression returns 1.

Euclidean distance, L2√∑11
p=0 (vMa [p]− vMb

[p])2

12
(A.3)

1/Jaccard coefficient

1−
count11

p=0(vMa [p] > 0 ∧ vMb
[p] > 0)

count11
p=0(vMa [p] > 0 ∨ vMb

[p] > 0)
(A.4)

The possible singular case of 0/0 is solved to 0.
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APPENDIX A. MULTISET DISTANCES

Log distance

Even though the absolute difference between two short notes can be the same as the
difference between two long notes, the perceived difference is not the same. With this
distance we try to reflect that situation.√∑11

p=0 (ln(vMa [p] + 1)− ln(vMb
[p] + 1))2

12
(A.5)

Matching coefficient

1−
count11

p=0(vMa [p] > 0 ∧ vMb
[p] > 0)

12
(A.6)

Multisets distance∑11
p=0min(1, (vMa [p]− vMb

[p])2)

12
(A.7)

Note that the maximum difference between two components of the multiset has been
limited to 1. Initially, unit cost has been assigned to insertion and deletion operations.

Overlap coefficient

count11
p=0(vMa [p] = vMb

[p])

12
(A.8)

Note the equality between floats is performed as |vMa [p]− vMb
[p]| < 0.001

Probabilities The next distances make use of probabilities. We have used the
normalized form of the vectors as an approach to express these probabilities:

∀11
p=0p(vMa [p]) =

vMa [p]∑11
q=0 vMa [q]

(A.9)

Variational distance

11∑
p=0

(p(vMa [p])− p(vMb
[p])) (A.10)

Hellinger distance

1−
∑11

p=0 (p(vMa [p])p(vMb
[p]))

12
(A.11)
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Harmonic Mean

12∑
i=1

p(vMa [p]) p(vMb
[p])

p(vMa [p]) + p(vMb
[p])

(A.12)
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B
Algorithms

B.1 Complete fillTree algorithm

The code in Alg. 8 includes a simple tuple detection to that specified in Alg. 2 of page 85.

Algorithm 7: possibleTuplets
Input: Tree τ
Input: Current meter with b beats at its numerator
Output: Number of subdivisions for tuplet. A 0 value is returned when no possible tuplet will

be detected

if compound (n, d) then
switch depth (τ) do

case 1: return 0;
case 2: return 2;
otherwise return 3;

end

else
switch depth (τ) do

case 1: return 0;
otherwise return 3;

end

end
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Algorithm 8: fillTree (complete version with tuplets)

Input: Subtree tree τ
Data: pendingDuration is the duration still left of the current note to be put in the tree,

isTuplet boolean value that is true if the next notes are forming a tuple, possibleTuplet
possible irregular subdivision to search in order to detect tuplets,
expectedTupleElementDuration is the duration that the next note should have to
belong to a tuple, i is the index of the current note of the sequence S of notes, pi stands
for the pitch of i-th note, and di for its duration, continuation is a boolean value
indicating the next node will be a continuation of previous one.

Output: continuation the same parameter is also an output one
if i ≤ |S| then

if pendingDuration ≥ nodedur(τ) then
label(τ) = (pi, continuation) ;
pendingDuration = pendingDuration− nodedur(τ);
if pendingDuration < kMINDURATION then

i = i+ 1;
if i ≤ |S| then

pendingDuration = di + pendingDuration;
else

pendingDuration = 0;
end
continuation = false;

else
continuation = true;

end

else
if nodedur(τ) ≥ kMINDURATION then

possibleTuple = possibleTuplets(τ);
if pendingDuration 6= 0 then

//0 means no possible tuplet can be detected

expectedTupleElementDuration = nodedur(τ)/possibleTuple;
for j = 1 to possibleTuple do

if di+j 6= expectedTupleElementDuration then
isTuplet = false;

end
if isTuplet then

for j = 1 to possibleTuple do
τ j = createSubTree(τ);
label(τ j) = (pi, continuation) ;
i = i+ 1;
continuation = false;

end

if ¬isTuplet then
//see Alg. 3 in page 85

a = computeArity(τ);
for j = 1 to a do

//createSubTree creates a new child for the given tree

τ j = createSubTree(τ);
fillTree (τ j , i, pendingDuration,continuation);

end

end

end

end
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B.2. COMPLEXITY OF THE PARTIALLY LABELED TREE COMPARISON
ALGORITHM

B.2 Complexity of the partially labeled tree comparison algo-
rithm

The complete development of the partially labeled tree similarity algorithm introduced
in page 109 is developed below:

T (|TA|, |TB|) = c+ T f (|TA| − 1, |TB| − 1)

T f (|TA|, |TB|) =

RA∑
i=1

RB∑
j=1

T (
|TA|
RA

,
|TB|
RB

)

= RA ×RB × T (
|TA|
RA

,
|TB|
RB

)

T (|TA|, |TB|) = c+ T f (|TA| − 1, |TB| − 1)

= c+RA ×RB ×
(
c+ T f (

|TA|
RA
− 1,

|TB|
RB
− 1)

)
= c+RA ×RB ×

(
c+RA ×RB × T

( |TA|RA
− 1

RA
,

|TB |
RB
− 1

RB

))
= c+RA ×RB × c+RA ×RB ×RA ×RB × T

( |TA|RA
− 1

RA
,

|TB |
RB
− 1

RB

)
= c+RA ×RB × c+RA ×RB ×RA ×RB

×
(
c+ T f

( |TA|RA
− 1

RA
− 1,

|TB |
RB
− 1

RB
− 1
))

= c+RA ×RB × c+RA ×RB ×RA ×RB

×
(
c+RA ×RB × T

( |TA|RA
−1

RA
− 1

RA
,

|TB |
RB
−1

RB
− 1

RB

))
= c+RA ×RB × c+ (RA ×RB)2 + (RA ×RB)3

× T
( |TA|RA

−1

RA
− 1

RA
,

|TB |
RB
−1

RB
− 1

RB

)
· · ·

=
n∑
k=0

c× (RA ×RB)k + (RA ×RB)n × T
( |TA|RA

−1

RA
− 1

RA
,

|TB |
RB
−1

RB
− 1

RB

)
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The following condition holds:

T
( |TA|RA

−1

RA
− 1

RA
,

|TB |
RB
−1

RB
− 1

RB

)
< T

( |TA|
R3
A

,
|TB|
R3
B

)

Thus, the previous development can be rewritten as:

T (|TA|, |TB|) =
n∑
k=0

c× (RA ×RB)k + (RA ×RB)n × T
( |TA|
RnA

,
|TB|
RnB

)

This recurrence follows until one of the base cases of sp is hold, i.e., when at least
one of the trees becomes a leaf. As each call removes one level, it can be stated that n =
min(h(TA),h(TB)). Due to the nature of the trees, we can say that h(TA) ≈ logRA

|TA|.
Lets take for example |TA| < |TB|, then n = logRA

|TA|, that transform the recurrence
in:

T (|TA|, |TB|) =

logRA
|TA|∑

k=0

c× (RA ×RB)k + (RA ×RB)logRA
|TA| × T

( |TA|
R

logRA
|TA|

A

,
|TB|

R
logRA

|TA|
B

)

=

logRA
|TA|∑

k=0

c× (RA ×RB)k + (RA ×RB)logRA
|TA| × T

( |TA|
|TA|

,
|TB|

R
logRA

|TA|
B

)

=

logRA
|TA|∑

k=0

c× (RA ×RB)k + (RA ×RB)logRA
|TA| × T

(
1,

|TB|
R

logRA
|TA|

B

)

Following the logarithm base change rules logRA
|TA| =

logRB
|TA|

logRB
RA

:

R
logRA

|TA|
B = R

logRB
|TA|

logRB
RA

B

= R
(logRB

|TA|)× 1
logRB

RA

B

= |TA|(logRB
RA)−1
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Using that equivalence:

T (|TA|, |TB|) =

logRA
|TA|∑

k=0

c× (RA ×RB)k + (RA ×RB)logRA
|TA| × T

(
1,

|TB|
|TA|(logRB

RA)−1

)

=

logRA
|TA|∑

k=0

c× (RA ×RB)k +R
logRA

|TA|
A ×RlogRA

|TA|
B × T

(
1,

|TB|
|TA|(logRB

RA)−1

)

=

logRA
|TA|∑

k=0

c× (RA ×RB)k + |TA| × |TA|(logRB
RA)−1 × T

(
1,

|TB|
|TA|(logRB

RA)−1

)
Lets solve the sum in the first part of the formula:

logRA
|TA|∑

k=0

c× (RA ×RB)k = c×
logRA

|TA|∑
k=0

(RA ×RB)k

= c× (RA ×RB)logRA
|TA|+1 − 1

RA ×RB − 1

= c× R
logRA

|TA|
A ×RlogRA

|TA|
B ×RA ×RB − 1

RA ×RB − 1

= c× |TA| × |TA|
(logRB

RA)−1 ×RA ×RB − 1

RA ×RB − 1

Using that partial result, the complete formula results in:

T (|TA|, |TB|) = c× |TA| × |TA|
(logRB

RA)−1 ×RA ×RB − 1

RA ×RB − 1

+ |TA| × |TA|(logRB
RA)−1 × T

(
1,

|TB|
|TA|(logRB

RA)−1

)
The base class of sp, i.e., when one of the trees consists of only a leaf node, the

algorithm just traverses in pre-order the non leaf tree. Thus, in that case, T (T ) ∈ O(T ).
If the first node to become leaf is TA as we have stated before, the complexity of sp is
the number of nodes that are left in the second tree:

T (|TA|, |TB|) = c× |TA| × |TA|
(logRB

RA)−1 ×RA ×RB − 1

RA ×RB − 1

+ |TA| × |TA|(logRB
RA)−1 × |TB|

|TA|(logRB
RA)−1

= c× |TA| × |TA|
(logRB

RA)−1 ×RA ×RB − 1

RA ×RB − 1
+ |TA| × |TB|

∈ O(|TA| × |TB|)
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B.3 Algorithm for the partially labeled tree comparison algo-
rithm

Algorithm 9: sp

Input: Trees TA and TB
Output: Similarity value
if leaf(TA) ∧ leaf(TB) then

return c(rlabel(TA), rlabel(TB))
else if leaf(TA) ∧ ¬ leaf(TB) then

return −c(rlabel(TA), rlabel(TB)) +
∑rank(TA)

j=1
sp(TA,childj(TB))

rank(TB)

else if ¬ leaf(TA) ∧ leaf(TB) then

return −c(rlabel(TA), rlabel(TB)) +
∑rank(TB)

i=1
sp(childi(TA),TB)

rank(TA)

else

return −c(rlabel(TA), rlabel(TB)) +
sfp(TA,TB)

max(rank(TA),rank(TB))

end

Algorithm 10: sfp

Input: Trees TA and TB
Output: Similarity value
Data: D is a matrix of (rank(TA) + 1)× (rank(TB) + 1) dimension
Data: cins, csus, cdel ∈ R
for i← 0 to rank(T1) do

for j ← 0 to rank(T2) do
if i ≥ 1 then

cdel← D[i− 1][j]
end
if j ≥ 1 then

cins← D[i][j − 1]
end
if i ≥ 1 ∧ j ≥ 1 then

csus← D[i− 1][j − 1] + sp(childi(TA), childj(TB))
end
if i ≥ 1 ∨ j ≥ 1 then

D[i][j]← min(cdel, cins, csus)
end

end
return D[rank(TA)][rank(TB)]

end
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C
Corpora

The names of the songs found in each of the corpora are detailed below. For each song
there are several cover files or variations plus the main prototype, theme or query file.
The complete dataset can be obtained upon request to the author.

C.1 104 (monophonic)

• “Africa” (Toto)

• “Canon in D major (J. Pachelbel)

• “Eine kleine Nachtmusik K. 525, 1st movement (W.A. Mozart)

• “Love theme from The Godfather film” (N. Rota)

• “Help” (The Beatles)

• “Imagine” (John Lennon)

• “Love Story film theme” (F. Lai)

• “Theme from New York, New York” (J. Kander)

• “Love Theme from Titanic” (J. Horner)

• “Unchained melody” (A. North)

C.2 VARM (monophonic)

The following RISM content can be downloaded from RISM at http://www.rism.org.
uk/.

• “Aria with Variations”, RISM ID. no 13931

• “17 Variations sérieuses / pour le Piano”, RISM ID. no 32308 (F. Mendelssohn
Bartholdy)
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• “Minuet (Variations)”, RISM ID. no 34326 (M. Benedetto M)

• “Lesson (Variations)”, RISM ID. no 34344 (M. Coyle)

• “Felton’s Minuet (Variations)”, RISM ID. no 34373 (W. Felton)

• “The Highland Laddie (Variations)”, RISM ID. no 34382 (J. Parry)

• “Theme and variations, K.265” (W.A. Mozart)

• “Sonata K.331, 1st movement theme and variations” (W.A. Mozart)

• “Goldberg variations, BWV 988 (bass voice)” (J.S. Bach)

C.3 Pascal (monophonic)

• “Alouette” (french children song)

• “Macarena” (Los del Rio)

• “Avemaria” (F. Schubert)

• “Ode to joy, from the 9th symphony” (L.V. Beethoven)

• “Boléro” (M.Ravel)

• “Oh! Susanna” (S. Foster)

• “La Cucaracha” (mexican song)

• “Pink Panther” (H. Mancini)

• “La Cumparsita” (G.M. Rodriguez)

• “Silent night” (christmas carol)

• “Frère Jacques” (french children song)

• “Tico-Tico no Fubá” (Zequinha de Abreu)

• “Guantanamera” (José Fernández Dı́az)

• “Toccata and fugue in D minor” (J.S.Bach)

• “Happy birthday” (Patty Hill and Mildred J. Hill)

• “Twinkle twinkle little star” (children song)

• “Jingle bells” (J. Pierpoint)

• “When the Saints Go Marching In” (J.M. Black)

• “Lohengrin, wedding march” (R. Wagner)

• “Yesterday” (The Beatles)
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C.4. ICPS (POLYPHONIC)

C.4 ICPS (polyphonic)

• “Ave Maria” (F. Schubert)

• “Boléro” (M. Ravel)

• “Alouette” (trad.)

• “Happy Birthday” (trad.)

• “Frère Jacques” (trad.)

• “Jingle Bells” (Christmas carol)

• “When The Saints Go Marching In” (jazz standard)

C.5 VARP (polyphonic)

• “Variations on a rococo theme”, Op.33 (P. Tchaikovsky)

• Variations on Bach’s “English suites” BWV 806-808 (suite 1 courante II, suite 2,
3, and 6 sarabande) (anon.)

• “Goldberg variations”, BWV 988 (J.S. Bach)

• “Variations on a theme of Beethoven”, Op. 35 (C. Saint-Saëns)

• Variations on Beethoven’s Quartet Op.18 No.5 (anon.)

• “Diabelli variations”, Op. 120 (L.V. Beethoven)

• “Symphonic variations”, Op.78 (A. Dvořák)

• Variations on Beethoven’s Für Elise (anon.)

• “L’ ecole moderne, Les arpèges”, Op.10 No.9 (H. Wieniawski)

• “Theme and variations for horn and piano”, Op.10 (J. Labor)

• “Theme and variations for guitar” (S. Ravitz)

• Rock variations on Pachelbel’s cannon (anon.)

• “Symphonic Studies”, Op.13 (R. Schumann)

C.6 INET (polyphonic)

This corpus contains songs by 10cc, Cher, 4 non blondes, Coldplay, AC/DC, Collective
Soul, ABBA, Daft Punk, Darude, Aha, Depeche Mode, Dido, All4One, Dire Straits,
Aphaville, Village People, Beatles, Bee Gees, Bob Marley, and Bruce Springsteen.

171



APPENDIX C. CORPORA

C.7 COVERS (polyphonic)

This corpus is the subset of a larger POP genre MIDI files database of all the songs
that have at least two different renderings each one. The sub-genres found are 60’s,
Fiesta, New wave, Pop Latin, Reggae, Soul, 90s, New age, Pop-American, Pop-Standard,
Singers.

They are listed below: Association, Beatles, Bee Gees, Bobby Darin, Box Tops,
Connie Francis, Frankie Valli, Hermans Hermits, Lovin Spoonful, Neil Sedaka, Paul
Anka, Shadows, Spencer Davis Group, The Mammas and the Pappas, Three Dog
Night, Ace of Base, All Saints, Anastacia, Aqua, B*Witched, Backstreet Boys, Boyz
II Men, Boyzone, Britney Spears, Christina Aguilera, Destiny’s Child, Fine Young
Cannibals, Geri Halliwell, Hanson, ’N Sync, Pink, Right Said Fred, S Club 7, Savage
Garden, Spice Girls, Sugababes, Take that, Usher, West Life, Venga Boys, Enigma,
Enya, Frank Mills, Jean Michel Jarre, Kitaro, Aha, B-52’s, Bangles, Berlin, Cars,
Cyndi Lauper, Depeche Mode, Duran Duran, Eurythmics, Falco, Frankie Goes to
Hollywood, Howard Jones, Human League, INXS, Katrina and the Waves, Level 42,
Madness, Men At Work, Orchestral Manouvers Dark, Simple Minds, Spandau Ballet,
Tears for Fears, The Knack, Wham, Yazoo, Alan Jackson, Anne Murray, B. J. Thomas,
Garth Brooks, John Anderson, John M. Montgomery, Kenny Rogers, Little Texas,
Peter Paul and Mary, Sammy Kershaw, Shania Twain, Tracy Byrd, Gloria Estefan,
Morris Albert, Ricky Martin, Abba, Alphaville, Annie Lennox, Barbra Streisand, Barry
Manilow, Bette Midler, Boonie Tyler, Bruce Hornsby, Captain and Tennille, Carpenters,
Celine Dion, Cher, David Gates, Eric Carmen, George Michael, Glenn Medeiros, Irene
Cara, Jamiroquai, Jennifer Warnes, Johnny Rivers, Kim Carnes, Kylie Minogue, Lisa
Stansfield, Madonna, Michael Jackson, Michael Sembello, Pet Shop Boys, Renato Zero,
Richard Marx, Rick Astley, Robert Palmer, Roxette, Seal, Simon and Garfunkel, Tom
Jones, Wet Wet, Bob Marley, Eddie Grant, Inner Circle, Johnny Nash, Shaggy, UB40,
Al Stewart, America, Arlo Guthrie, Art Garfunkel, Billy Joel, Boz Scaggs, Bread,
Carly Simon, Carole King, Cat Stevens, Chris Rea, Christopher Cross, Dan Fogelberg,
Dido, Don Mc Lean, Donovan, Elton John, George Harrison, Gerry Rafferty, Gilbert
O’Sullivan, Harry Nilsson, James Taylor, Janis Ian, Jim Croce, Jimmy Buffett, John
Denver, John Lennon, Joni Mitchell, Leo Sayer, Neil Diamond, Nelly Furtado, Paul
Young, Sinead O’Connor, Van Morrison, Des’ree, Lionel Richie, Mariah Carey, Natalie
Cole, Sade, Whitney Houston.
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D
Examples of trees

D.1 Examples of tree construction for different meters

The following figures show examples of construction of metrical trees for the main meters.
In the figures, the shaded nodes are those containing a continuation note.
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D.1. EXAMPLES OF TREE CONSTRUCTION FOR DIFFERENT METERS
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APPENDIX D. EXAMPLES OF TREES
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D.1. EXAMPLES OF TREE CONSTRUCTION FOR DIFFERENT METERS
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E
Experiment results

E.1 Setup selection results for monophonic methods

Table E.1: Selected setups for method Metric trees

Setup Borda count PaC Time

1 pc. l = 2. Heuristic prop.. Partial 3.0 0.5 28
2 phdc. l = 2. Heuristic prop.. Partial 3.0 0.5 28
3 phdc. l = 2. Left prop.. Partial 3.0 0.5 28
4 pitv. l = 2. Left prop.. Partial 3.0 0.5 28
5 pitv. l = 2. Melodic prop.. Partial 3.0 0.5 28
6 pc. l = 2. Heuristic prop.. Selkow 3.0 0.5 42
7 pc. l = 2. Left prop.. Selkow 3.0 0.5 42
8 phdc. l = 2. Heuristic prop.. Selkow 3.0 0.5 42
9 phdc. l = 2. Left prop.. Selkow 3.0 0.5 42

10 phdc. l = 2. No prop.. Selkow 3.0 0.4 42
11 pitv. l = 2. Left prop.. Selkow 3.0 0.5 42
12 pitv. l = 2. Melodic prop.. Selkow 3.0 0.5 42
13 pitv. l = 2. No prop.. Selkow 3.0 0.4 42
14 pitv. l = 2. Right prop.. Selkow 3.0 0.5 42
15 pift. l = 2. Heuristic prop.. Selkow 3.0 0.5 42
16 phdc. l = 3. Left prop.. Partial 3.0 0.6 122
17 pc. l = 3. Heuristic prop.. Partial 3.0 0.5 123
18 phdc. l = 3. Melodic prop.. Partial 3.0 0.5 123
19 pitv. l = 3. Melodic prop.. Partial 3.0 0.5 123
20 phdc. l = 2. Melodic prop.. Shasha 3.0 0.5 129
21 pift. l = 2. Melodic prop.. Shasha 3.0 0.5 129
22 pc. l = 2. Heuristic prop.. Shasha 3.0 0.5 130
23 pc. l = 2. Left prop.. Shasha 3.0 0.5 130
24 phdc. l = 2. Heuristic prop.. Shasha 3.0 0.6 130
25 phdc. l = 2. Left prop.. Shasha 3.0 0.6 130
26 pift. l = 2. Heuristic prop.. Shasha 3.0 0.5 130
27 pitv. l = 2. Right prop.. Shasha 3.0 0.5 131
28 phdc. l = 3. Melodic prop.. Selkow 3.0 0.6 145
29 pitv. l = 3. Melodic prop.. Selkow 3.0 0.6 145

continued on next page
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continued from previous page
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30 pift. l = 3. Melodic prop.. Selkow 3.0 0.5 145
31 pc. l = 3. Left prop.. Selkow 3.0 0.6 146
32 pc. l = 3. Right prop.. Selkow 3.0 0.5 146
33 phdc. l = 3. Right prop.. Selkow 3.0 0.5 146
34 pitv. l = 3. Heuristic prop.. Selkow 3.0 0.6 146
35 pitv. l = 3. Left prop.. Selkow 3.0 0.6 146
36 pift. l = 3. Left prop.. Selkow 3.0 0.5 146
37 phdc. l = 2. No prop.. Align 3.0 0.4 155
38 pitv. l = 2. Heuristic prop.. Align 3.0 0.5 165
39 pitv. l = 2. Melodic prop.. Align 3.0 0.5 165
40 pitv. l = 2. Right prop.. Align 3.0 0.5 165
41 pift. l = 2. Melodic prop.. Align 3.0 0.5 165
42 pitv. l = 4. Left prop.. Partial 3.0 0.5 346
43 pitv. l = 4. Melodic prop.. Partial 3.0 0.5 346
44 pift. l = 4. Melodic prop.. Partial 3.0 0.5 346
45 pabs. l = 4. No prop.. Selkow 3.0 0.4 367
46 phdc. l = 4. Melodic prop.. Selkow 3.0 0.6 367
47 pitv. l = 4. Heuristic prop.. Selkow 3.0 0.5 367
48 pitv. l = 4. Melodic prop.. Selkow 3.0 0.5 367
49 pift. l = 4. Heuristic prop.. Selkow 3.0 0.6 367
50 pitv. l = 4. Right prop.. Selkow 3.0 0.5 368
51 pift. l = 3. No prop.. Shasha 3.0 0.4 707
52 pift. l = 5. No prop.. Selkow 3.0 0.4 714
53 phdc. l = 5. Left prop.. Selkow 3.0 0.5 715
54 pift. l = 5. Left prop.. Selkow 3.0 0.5 715
55 pc. l = 5. Heuristic prop.. Selkow 3.0 0.5 716
56 phdc. l = 5. Heuristic prop.. Selkow 3.0 0.5 716
57 phdc. l = 5. Melodic prop.. Selkow 3.0 0.5 718
58 pift. l = 5. Melodic prop.. Selkow 3.0 0.5 718
59 pitv. l = 5. Right prop.. Selkow 3.0 0.5 720
60 pc. l = 3. Heuristic prop.. Shasha 3.0 0.5 734
61 pc. l = 3. Melodic prop.. Shasha 3.0 0.5 734
62 phdc. l = 3. Melodic prop.. Shasha 3.0 0.5 734
63 pift. l = 3. Melodic prop.. Shasha 3.0 0.6 734
64 pc. l = 3. Left prop.. Shasha 3.0 0.5 736
65 pc. l = 3. Right prop.. Shasha 3.0 0.5 736
66 phdc. l = 3. Left prop.. Shasha 3.0 0.6 736
67 pitv. l = 3. Right prop.. Shasha 3.0 0.5 736
68 pift. l = 3. Right prop.. Shasha 3.0 0.5 736
69 pitv. l = 5. Heuristic prop.. Partial 3.0 0.5 745
70 pitv. l = 5. Left prop.. Partial 3.0 0.5 747
71 pift. l = 5. Melodic prop.. Partial 3.0 0.5 749
72 pift. l = 3. No prop.. Align 3.0 0.5 925
73 pc. l = 3. Left prop.. Align 3.0 0.5 973
74 phdc. l = 3. Left prop.. Align 3.0 0.5 973
75 phdc. l = 3. Heuristic prop.. Align 3.0 0.5 1007
76 pitv. l = 6. Heuristic prop.. Selkow 3.0 0.5 1222
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77 pitv. l = 6. Heuristic prop.. Partial 3.0 0.5 1417
78 pitv. l = 4. Left prop.. Shasha 3.0 0.5 2862
79 pitv. l = 4. Heuristic prop.. Shasha 3.0 0.5 2880
80 phdc. l = 4. Left prop.. Align 3.0 0.5 4061
81 pc. l = 5. Melodic prop.. Align 3.0 0.4 12809
82 pitv. l = 5. Melodic prop.. Align 3.0 0.5 12809
83 pift. l = 5. Melodic prop.. Align 3.0 0.5 12809
84 pc. l = 5. Left prop.. Align 3.0 0.4 12821
85 pift. l = 5. Left prop.. Align 3.0 0.5 12821

86 phdc. l = 2. Melodic prop.. Partial 4.0 0.5 28
87 phdc. l = 2. Melodic prop.. Selkow 4.0 0.6 42
88 pitv. l = 3. Left prop.. Partial 4.0 0.5 122
89 pift. l = 3. Left prop.. Partial 4.0 0.5 122
90 phdc. l = 3. Heuristic prop.. Partial 4.0 0.6 123
91 pitv. l = 3. Heuristic prop.. Partial 4.0 0.5 123
92 pift. l = 3. Melodic prop.. Partial 4.0 0.5 123
93 pitv. l = 2. Melodic prop.. Shasha 4.0 0.5 129
94 pitv. l = 2. Heuristic prop.. Shasha 4.0 0.6 130
95 pitv. l = 2. Left prop.. Shasha 4.0 0.6 130
96 pift. l = 2. Left prop.. Shasha 4.0 0.5 130
97 pc. l = 3. Melodic prop.. Selkow 4.0 0.6 145
98 phdc. l = 3. Heuristic prop.. Selkow 4.0 0.5 146
99 phdc. l = 3. Left prop.. Selkow 4.0 0.6 146

100 pift. l = 3. Heuristic prop.. Selkow 4.0 0.5 146
101 phdc. l = 2. Left prop.. Align 4.0 0.5 165
102 pc. l = 4. Heuristic prop.. Partial 4.0 0.6 346
103 pc. l = 4. Left prop.. Partial 4.0 0.5 346
104 phdc. l = 4. Heuristic prop.. Partial 4.0 0.5 346
105 phdc. l = 4. Left prop.. Partial 4.0 0.5 346
106 pift. l = 4. Left prop.. Partial 4.0 0.5 346
107 pc. l = 4. Melodic prop.. Selkow 4.0 0.5 367
108 phdc. l = 4. Heuristic prop.. Selkow 4.0 0.6 367
109 pift. l = 4. Melodic prop.. Selkow 4.0 0.5 367
110 pc. l = 4. Left prop.. Selkow 4.0 0.5 368
111 phdc. l = 4. Left prop.. Selkow 4.0 0.5 368
112 pitv. l = 4. Left prop.. Selkow 4.0 0.5 368
113 pift. l = 4. Right prop.. Selkow 4.0 0.5 368
114 pc. l = 5. Left prop.. Selkow 4.0 0.5 715
115 pitv. l = 5. Left prop.. Selkow 4.0 0.5 715
116 pitv. l = 5. Heuristic prop.. Selkow 4.0 0.5 716
117 pc. l = 5. Melodic prop.. Selkow 4.0 0.5 718
118 pitv. l = 5. Melodic prop.. Selkow 4.0 0.5 718
119 phdc. l = 3. Heuristic prop.. Shasha 4.0 0.6 734
120 pitv. l = 3. Heuristic prop.. Shasha 4.0 0.6 734
121 pitv. l = 3. Melodic prop.. Shasha 4.0 0.6 734
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122 phdc. l = 3. Right prop.. Shasha 4.0 0.5 736
123 pitv. l = 3. Left prop.. Shasha 4.0 0.6 736
124 phdc. l = 5. Heuristic prop.. Partial 4.0 0.5 745
125 phdc. l = 5. Left prop.. Partial 4.0 0.5 747
126 pift. l = 5. Left prop.. Partial 4.0 0.5 747
127 pc. l = 3. Melodic prop.. Align 4.0 0.5 975
128 phdc. l = 3. Melodic prop.. Align 4.0 0.5 975
129 phdc. l = 6. Heuristic prop.. Selkow 4.0 0.5 1222
130 phdc. l = 6. Heuristic prop.. Partial 4.0 0.5 1417
131 pitv. l = 5. Heuristic prop.. Align 4.0 0.5 12802
132 pitv. l = 5. Left prop.. Align 4.0 0.5 12821

Table E.2: Selected setups for method C-BRAHMS

Setup Borda count PaC Time

1 P1 1.9 0.0 0
2 P2v6 2.2 0.2 8
3 P2v5 2.8 0.2 68
4 P2 2.7 0.2 123
5 P3 2.7 0.2 742

Table E.3: Selected setups for method PROMS

Setup Borda count PaC Time

1 r =4 4.0 0.4 99
2 r =8 4.0 0.4 193
3 r =12 4.0 0.4 272
4 r =16 4.0 0.4 393
5 r =20 4.0 0.4 477
6 r =24 4.0 0.4 503
7 r =28 4.0 0.4 785

Table E.4: Selected setups for method Uitdenboderg

Setup Borda count PaC Time

1 2-grams 2.3 0.6 1
2 3-grams 2.4 0.6 2
3 4-grams 2.5 0.6 5
4 Edit distance 2.3 0.7 70
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Table E.5: Selected setups for method Strings

Setup Borda count PaC Time

1 phdc. k = 0.1. rtabs. decoupled. withoutRests. withNHT 4.0 0.7 83
2 phdc. k = 0.1. rtabs. decoupled. withRests. withNHT 4.0 0.6 83
3 phdc. k = 0.3. rtabs. decoupled. withRests. withNHT 4.0 0.6 83
4 pitv. k = 0.1. rtabs. decoupled. withoutRests. withNHT 4.0 0.7 83
5 pitv. k = 0.1. rtabs. decoupled. withRests. withNHT 4.0 0.7 83
6 pitv. k = 0.9. rtabs. decoupled. withoutRests. withNHT 4.0 0.7 83
7 pift. k = 0.1. rtabs. decoupled. withoutRests. withNHT 4.0 0.7 83
8 pift. k = 0.1. rtabs. decoupled. withRests. withNHT 4.0 0.7 83
9 pift. k = 0.3. rtabs. decoupled. withoutRests. withNHT 4.0 0.7 83

10 pift. k = 0.5. rtabs. decoupled. withoutRests. withNHT 4.0 0.7 83
11 pift. k = 0.5. rtabs. decoupled. withRests. withNHT 4.0 0.7 83
12 pift. k = 0.7. rtabs. decoupled. withoutRests. withNHT 4.0 0.7 83
13 pift. k = 0.7. rtabs. decoupled. withRests. withNHT 4.0 0.7 83
14 pift. k = 0.9. rtabs. decoupled. withoutRests. withNHT 4.0 0.7 83
15 pift. k = 0.9. rtabs. decoupled. withRests. withNHT 4.0 0.7 83
16 phdc. k = 0.3. rtabs. decoupled. withoutRests. withNHT 4.0 0.7 84
17 phdc. k = 0.5. rtabs. decoupled. withoutRests. withNHT 4.0 0.7 84
18 phdc. k = 0.5. rtabs. decoupled. withRests. withNHT 4.0 0.6 84
19 phdc. k = 0.7. rtabs. decoupled. withoutRests. withNHT 4.0 0.7 84
20 phdc. k = 0.7. rtabs. decoupled. withRests. withNHT 4.0 0.4 84
21 phdc. k = 0.9. rtabs. decoupled. withRests. withNHT 4.0 0.7 84
22 pitv. k = 0.3. rtabs. decoupled. withoutRests. withNHT 4.0 0.7 84
23 pitv. k = 0.3. rtabs. decoupled. withRests. withNHT 4.0 0.7 84
24 pitv. k = 0.5. rtabs. decoupled. withoutRests. withNHT 4.0 0.7 84
25 pitv. k = 0.5. rtabs. decoupled. withRests. withNHT 4.0 0.7 84
26 pitv. k = 0.7. rtabs. decoupled. withoutRests. withNHT 4.0 0.7 84
27 pitv. k = 0.7. rtabs. decoupled. withRests. withNHT 4.0 0.7 84
28 pitv. k = 0.9. rtabs. decoupled. withRests. withNHT 4.0 0.7 84
29 pift. k = 0.3. rtabs. decoupled. withRests. withNHT 4.0 0.7 84
30 pc. k = 0.3. rtabs. decoupled. withoutRests. withNHT 4.0 0.7 85
31 pc. k = 0.9. rtabs. decoupled. withoutRests. withNHT 4.0 0.7 85
32 phdc. k = 0.9. rtabs. decoupled. withoutRests. withNHT 4.0 0.7 85
33 pc. k = 0.7. rtabs. decoupled. withRests. withNHT 4.0 0.6 86
34 pc. k = 0.5. rtabs. decoupled. withRests. withNHT 4.0 0.6 87
35 pc. k = 0.7. rtabs. decoupled. withoutRests. withNHT 4.0 0.7 87
36 p12. k = 0.7. rtabs. decoupled. withRests. withNHT 4.0 0.6 87
37 pc. k = 0.3. rtabs. decoupled. withRests. withNHT 4.0 0.6 88
38 pc. k = 0.9. rtabs. decoupled. withRests. withNHT 4.0 0.6 88
39 p12. k = 0.1. rtabs. decoupled. withRests. withNHT 4.0 0.6 88
40 p12. k = 0.5. rtabs. decoupled. withRests. withNHT 4.0 0.6 88
41 p12. k = 0.9. rtabs. decoupled. withRests. withNHT 4.0 0.6 88
42 p12. k = 0.3. rtabs. decoupled. withoutRests. withNHT 4.0 0.7 89
43 p12. k = 0.7. rtabs. decoupled. withoutRests. withNHT 4.0 0.7 89
44 p12. k = 0.1. rtabs. decoupled. withoutRests. withNHT 4.0 0.7 90
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45 p12. k = 0.3. rtabs. decoupled. withRests. withNHT 4.0 0.6 90
46 p12. k = 0.5. rtabs. decoupled. withoutRests. withNHT 4.0 0.7 90
47 p12. k = 0.9. rtabs. decoupled. withoutRests. withNHT 4.0 0.7 90
48 pc. k = 0.5. rtabs. decoupled. withoutRests. withNHT 4.0 0.7 92
49 p40. k = 0.9. rtabs. coupled. withoutRests. withNHT 4.0 0.6 105
50 phdc. k = 0.9. rtabs. coupled. withRests. withNHT 4.0 0.6 105
51 pift. k = 0.9. rtabs. coupled. withoutRests. withNHT 4.0 0.6 105
52 pift. k = 0.9. rtabs. coupled. withRests. withNHT 4.0 0.6 105
53 p21. k = 0.9. rtabs. coupled. withRests. withNHT 4.0 0.6 106
54 p40. k = 0.9. rtabs. coupled. withRests. withNHT 4.0 0.6 106
55 pitv. k = 0.9. rtabs. coupled. withoutRests. withNHT 4.0 0.6 106
56 pitv. k = 0.9. rtabs. coupled. withRests. withNHT 4.0 0.6 106
57 phdc. k = 0.9. rtabs. coupled. withoutRests. withNHT 4.0 0.6 107
58 pc. k = 0.9. rtabs. coupled. withoutRests. withNHT 4.0 0.6 108
59 pc. k = 0.9. rtabs. coupled. withRests. withNHT 4.0 0.6 110
60 p12. k = 0.9. rtabs. coupled. withRests. withNHT 4.0 0.6 111
61 p12. k = 0.9. rtabs. coupled. withoutRests. withNHT 4.0 0.6 113

Table E.6: Selected setups for method Mongeau and Sankoff

Setup Borda count PaC Time

1 pift. k = 0.1. rdabs. matrixPitch. withoutRests. withNHT 4.0 0.6 128
2 pift. k = 0.1. rdabs. matrixPitch. withRests. withNHT 4.0 0.6 128
3 pift. k = 0.1. rioi. matrixPitch. withoutRests. withNHT 4.0 0.6 128
4 pift. k = 0.5. rdabs. matrixPitch. withoutRests. withNHT 4.0 0.6 128
5 pift. k = 0.5. rdabs. matrixPitch. withRests. withNHT 4.0 0.6 128
6 pift. k = 0.5. rioi. matrixPitch. withRests. withNHT 4.0 0.6 128
7 pift. k = 0.1. rioi. matrixPitch. withRests. withNHT 4.0 0.6 129

E.2 Setup selection results for polyphonic methods

Table E.7: Selected setups for method Trees

Setup Borda count PaC Time

5 Hellinger distance. l = 2. 0.4 0.6 153
2 Cosine similarity. l = 2. 0.3 0.6 101

15 Multisets distance. l = 4. 0.7 0.5 2083
20 Multisets distance. l = 3. 1.5 0.5 499
3 Multisets distance. l = 2. 0.7 0.5 103

12 Hellinger distance. l = 3. 0.3 0.5 694
10 Cosine similarity. l = 3. 0.3 0.5 528
9 Manhattan (L1). l = 3. 0.4 0.5 509
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1 Overlap coefficient. l = 2. 0.3 0.5 97
21 Cosine similarity. l = 4. 1.2 0.5 2159
19 Manhattan (L1). l = 2. 1.0 0.5 105
16 Hellinger distance. l = 4. 0.4 0.5 2731
14 Manhattan (L1). l = 4. 0.3 0.5 1970
7 Overlap coefficient. l = 3. 0.2 0.5 505
8 Euclidean distance (L2). l = 3. 0.2 0.5 507

11 Probabilities. l = 3. 0.2 0.5 693
4 Probabilities. l = 2. 0.2 0.5 133
6 Log distance. l = 2. 0.6 0.5 348

13 Log distance. l = 3. 0.4 0.5 1607
17 Log distance. l = 4. 0.4 0.5 6137
18 Log distance. l = 1. 1.0 0.5 26

Table E.8: Selected setups for method PROMS

Setup Borda count PaC Time

2 r =12 0.8 0.6 272
5 r =4 1.3 0.6 99
1 r =8 0.8 0.6 193
6 r =16 1.7 0.6 393
7 r =24 1.5 0.6 503
3 r =20 0.8 0.6 477
4 r =28 0.8 0.5 785

Table E.9: Selected setups for method C-BRAHMS

Setup Borda count PaC Time

3 P2v6 2.5 0.5 8
4 P2v5 2.3 0.5 68
2 P3 1.5 0.2 742
5 P2 2.3 0.5 123
1 P1 1.4 0.0 0
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E.3 Monophonic COVERS results

Table E.10: COVER Skyline results of selected methods

Method (and setups) MRR PaC Time

C-BRAHMS:
P2 0.20± 0.05 0.11± 0.04 19± 7
P2v5 0.21± 0.05 0.12± 0.04 1.02± 0.11
P2v6 0.20± 0.05 0.11± 0.03 0.051± 0.010

Graphs
Pinto 0.17± 0.03 0.08± 0.03 6± 8

PROMS:
PR, r =4 0.59± 0.04 0.44± 0.05 120± 120
PR, r =8 0.59± 0.04 0.45± 0.06 200± 200

String:
p21, k0.9, rtabs, coupled, withRests, withNHT 0.47± 0.06 0.34± 0.06 90± 40
p40, k0.9, rtabs, coupled, withoutRests, withNHT 0.47± 0.06 0.34± 0.06 75± 7
p40, k0.9, rtabs, coupled, withRests, withNHT 0.47± 0.06 0.34± 0.06 100± 60
pc, k0.3, rtabs, decoupled, withoutRests, withNHT 0.46± 0.06 0.33± 0.07 100± 200
pc, k0.3, rtabs, decoupled, withRests, withNHT 0.46± 0.06 0.33± 0.07 59± 6
pc, k0.5, rtabs, decoupled, withoutRests, withNHT 0.46± 0.06 0.33± 0.07 61± 7
pc, k0.5, rtabs, decoupled, withRests, withNHT 0.46± 0.06 0.33± 0.07 70± 20
pc, k0.7, rtabs, decoupled, withoutRests, withNHT 0.46± 0.06 0.33± 0.07 61± 8
pc, k0.7, rtabs, decoupled, withRests, withNHT 0.46± 0.06 0.33± 0.07 59± 6
pc, k0.9, rtabs, coupled, withoutRests, withNHT 0.47± 0.06 0.34± 0.06 100± 60
pc, k0.9, rtabs, coupled, withRests, withNHT 0.47± 0.06 0.34± 0.06 75± 8
pc, k0.9, rtabs, decoupled, withoutRests, withNHT 0.46± 0.06 0.33± 0.07 59± 5
pc, k0.9, rtabs, decoupled, withRests, withNHT 0.46± 0.06 0.33± 0.07 60± 4
p12, k0.1, rtabs, decoupled, withoutRests, withNHT 0.45± 0.06 0.32± 0.07 80± 20
p12, k0.1, rtabs, decoupled, withRests, withNHT 0.45± 0.06 0.32± 0.07 47± 7
p12, k0.3, rtabs, decoupled, withoutRests, withNHT 0.45± 0.06 0.32± 0.07 60± 20
p12, k0.3, rtabs, decoupled, withRests, withNHT 0.45± 0.06 0.32± 0.07 50± 20
p12, k0.5, rtabs, decoupled, withoutRests, withNHT 0.45± 0.06 0.32± 0.07 51± 9
p12, k0.5, rtabs, decoupled, withRests, withNHT 0.45± 0.06 0.32± 0.07 50± 12
p12, k0.7, rtabs, decoupled, withoutRests, withNHT 0.45± 0.06 0.32± 0.07 48± 7
p12, k0.7, rtabs, decoupled, withRests, withNHT 0.45± 0.06 0.32± 0.07 90± 90
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p12, k0.9, rtabs, coupled, withoutRests, withNHT 0.47± 0.06 0.34± 0.06 90± 30
p12, k0.9, rtabs, coupled, withRests, withNHT 0.47± 0.06 0.34± 0.06 77± 12
p12, k0.9, rtabs, decoupled, withoutRests, withNHT 0.45± 0.06 0.32± 0.07 60± 20
p12, k0.9, rtabs, decoupled, withRests, withNHT 0.45± 0.06 0.32± 0.07 50± 10
phdc, k0.1, rtabs, decoupled, withoutRests, withNHT 0.46± 0.06 0.33± 0.07 80± 50
phdc, k0.1, rtabs, decoupled, withRests, withNHT 0.46± 0.06 0.33± 0.07 61± 7
phdc, k0.3, rtabs, decoupled, withoutRests, withNHT 0.46± 0.06 0.33± 0.07 60± 5
phdc, k0.3, rtabs, decoupled, withRests, withNHT 0.46± 0.06 0.33± 0.07 70± 30
phdc, k0.5, rtabs, decoupled, withoutRests, withNHT 0.46± 0.06 0.33± 0.07 60± 7
phdc, k0.5, rtabs, decoupled, withRests, withNHT 0.46± 0.06 0.33± 0.07 61± 7
phdc, k0.7, rtabs, decoupled, withoutRests, withNHT 0.46± 0.06 0.33± 0.07 100± 200
phdc, k0.7, rtabs, decoupled, withRests, withNHT 0.46± 0.06 0.33± 0.07 61± 8
phdc, k0.9, rtabs, coupled, withoutRests, withNHT 0.47± 0.06 0.34± 0.06 77± 10
phdc, k0.9, rtabs, coupled, withRests, withNHT 0.47± 0.06 0.34± 0.06 90± 50
phdc, k0.9, rtabs, decoupled, withoutRests, withNHT 0.46± 0.06 0.33± 0.07 80± 60
phdc, k0.9, rtabs, decoupled, withRests, withNHT 0.46± 0.06 0.33± 0.07 80± 50
pitv, k0.1, rtabs, decoupled, withoutRests, withNHT 0.46± 0.06 0.33± 0.07 62± 9
pitv, k0.1, rtabs, decoupled, withRests, withNHT 0.46± 0.06 0.33± 0.07 60± 5
pitv, k0.3, rtabs, decoupled, withoutRests, withNHT 0.46± 0.06 0.33± 0.07 70± 40
pitv, k0.3, rtabs, decoupled, withRests, withNHT 0.46± 0.06 0.33± 0.07 59± 5
pitv, k0.5, rtabs, decoupled, withoutRests, withNHT 0.46± 0.06 0.33± 0.07 59± 6
pitv, k0.5, rtabs, decoupled, withRests, withNHT 0.46± 0.06 0.33± 0.07 58± 5
pitv, k0.7, rtabs, decoupled, withoutRests, withNHT 0.46± 0.06 0.33± 0.07 100± 200
pitv, k0.7, rtabs, decoupled, withRests, withNHT 0.46± 0.06 0.33± 0.07 70± 40
pitv, k0.9, rtabs, coupled, withoutRests, withNHT 0.47± 0.06 0.34± 0.06 75± 5
pitv, k0.9, rtabs, coupled, withRests, withNHT 0.47± 0.06 0.34± 0.06 75± 7
pitv, k0.9, rtabs, decoupled, withoutRests, withNHT 0.46± 0.06 0.33± 0.07 59± 5
pitv, k0.9, rtabs, decoupled, withRests, withNHT 0.46± 0.06 0.33± 0.07 59± 5
pift, k0.1, rtabs, decoupled, withoutRests, withNHT 0.46± 0.06 0.33± 0.07 100± 110
pift, k0.1, rtabs, decoupled, withRests, withNHT 0.46± 0.06 0.33± 0.07 60± 5
pift, k0.3, rtabs, decoupled, withoutRests, withNHT 0.46± 0.06 0.33± 0.07 100± 70
pift, k0.3, rtabs, decoupled, withRests, withNHT 0.46± 0.06 0.33± 0.07 61± 8
pift, k0.5, rtabs, decoupled, withoutRests, withNHT 0.46± 0.06 0.33± 0.07 60± 6
pift, k0.5, rtabs, decoupled, withRests, withNHT 0.46± 0.06 0.33± 0.07 59± 5
pift, k0.7, rtabs, decoupled, withoutRests, withNHT 0.46± 0.06 0.33± 0.07 61± 7
pift, k0.7, rtabs, decoupled, withRests, withNHT 0.46± 0.06 0.33± 0.07 80± 60
pift, k0.9, rtabs, coupled, withoutRests, withNHT 0.47± 0.06 0.34± 0.06 77± 7
pift, k0.9, rtabs, coupled, withRests, withNHT 0.47± 0.06 0.34± 0.06 120± 140
pift, k0.9, rtabs, decoupled, withoutRests, withNHT 0.46± 0.06 0.33± 0.07 60± 6
pift, k0.9, rtabs, decoupled, withRests, withNHT 0.46± 0.06 0.33± 0.07 61± 9

M.Sankoff:
pift, k0.1, rdabs, matrixPitch, withoutRests, withNHT 0.46± 0.05 0.33± 0.06 98± 9
pift, k0.1, rdabs, matrixPitch, withRests, withNHT 0.46± 0.05 0.33± 0.06 120± 40
pift, k0.1, rioi, matrixPitch, withoutRests, withNHT 0.46± 0.05 0.33± 0.06 140± 90
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pift, k0.1, rioi, matrixPitch, withRests, withNHT 0.46± 0.05 0.33± 0.06 120± 30
pift, k0.5, rdabs, matrixPitch, withoutRests, withNHT 0.45± 0.05 0.32± 0.05 140± 90
pift, k0.5, rdabs, matrixPitch, withRests, withNHT 0.45± 0.05 0.32± 0.05 120± 30
pift, k0.5, rioi, matrixPitch, withRests, withNHT 0.45± 0.05 0.32± 0.05 110± 30

Trees:
pc, l = 2, Heuristic prop., Partial 0.49± 0.04 0.35± 0.04 26± 9
pc, l = 2, Heuristic prop., Selkow 0.51± 0.02 0.38± 0.02 34± 3
pc, l = 2, Heuristic prop., Shasha 0.51± 0.02 0.38± 0.02 120± 40
pc, l = 2, Left prop., Selkow 0.50± 0.02 0.37± 0.02 34± 4
pc, l = 2, Left prop., Shasha 0.51± 0.02 0.38± 0.02 120± 40
pc, l = 3, Heuristic prop., Partial 0.48± 0.04 0.35± 0.04 110± 20
pc, l = 3, Left prop., Selkow 0.49± 0.03 0.36± 0.04 119± 8
pc, l = 3, Melodic prop., Selkow 0.49± 0.03 0.35± 0.04 150± 40
pc, l = 3, Right prop., Selkow 0.43± 0.04 0.29± 0.05 119± 8
phdc, l = 2, Heuristic prop., Partial 0.51± 0.04 0.37± 0.03 25± 8
phdc, l = 2, Heuristic prop., Selkow 0.50± 0.03 0.37± 0.04 36± 6
phdc, l = 2, Heuristic prop., Shasha 0.50± 0.04 0.37± 0.04 120± 50
phdc, l = 2, Left prop., Align 0.32± 0.04 0.19± 0.04 200± 300
phdc, l = 2, Left prop., Partial 0.51± 0.04 0.37± 0.03 25± 9
phdc, l = 2, Left prop., Selkow 0.50± 0.03 0.37± 0.04 34± 3
phdc, l = 2, Left prop., Shasha 0.50± 0.03 0.37± 0.04 120± 40
phdc, l = 2, Melodic prop., Partial 0.50± 0.03 0.36± 0.03 25± 9
phdc, l = 2, Melodic prop., Selkow 0.50± 0.03 0.37± 0.03 36± 7
phdc, l = 2, Melodic prop., Shasha 0.49± 0.03 0.36± 0.04 120± 40
phdc, l = 2, No prop., Align 0.26± 0.05 0.15± 0.04 150± 70
phdc, l = 2, No prop., Selkow 0.31± 0.06 0.19± 0.05 34± 3
phdc, l = 3, Heuristic prop., Partial 0.50± 0.04 0.36± 0.03 130± 50
phdc, l = 3, Heuristic prop., Selkow 0.48± 0.04 0.34± 0.05 126± 10
phdc, l = 3, Left prop., Partial 0.50± 0.04 0.36± 0.03 110± 20
phdc, l = 3, Left prop., Selkow 0.48± 0.04 0.34± 0.05 128± 14
phdc, l = 3, Melodic prop., Partial 0.49± 0.03 0.36± 0.03 110± 20
phdc, l = 3, Melodic prop., Selkow 0.47± 0.04 0.33± 0.05 120± 7
phdc, l = 3, Right prop., Selkow 0.41± 0.04 0.27± 0.04 119± 7
pitv, l = 2, Heuristic prop., Align 0.27± 0.04 0.16± 0.04 160± 70
pitv, l = 2, Heuristic prop., Shasha 0.42± 0.04 0.30± 0.04 120± 50
pitv, l = 2, Left prop., Partial 0.46± 0.04 0.32± 0.05 25± 7
pitv, l = 2, Left prop., Selkow 0.43± 0.04 0.31± 0.04 36± 8
pitv, l = 2, Left prop., Shasha 0.42± 0.04 0.30± 0.04 300± 400
pitv, l = 2, Melodic prop., Align 0.26± 0.04 0.15± 0.04 160± 70
pitv, l = 2, Melodic prop., Partial 0.46± 0.04 0.33± 0.05 27± 8
pitv, l = 2, Melodic prop., Selkow 0.42± 0.03 0.29± 0.02 36± 6
pitv, l = 2, Melodic prop., Shasha 0.42± 0.03 0.29± 0.03 130± 60
pitv, l = 2, No prop., Selkow 0.31± 0.05 0.19± 0.05 34± 4
pitv, l = 2, Right prop., Align 0.24± 0.03 0.13± 0.03 160± 70
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pitv, l = 2, Right prop., Selkow 0.37± 0.03 0.23± 0.02 35± 3
pitv, l = 2, Right prop., Shasha 0.36± 0.04 0.23± 0.04 120± 50
pitv, l = 3, Heuristic prop., Partial 0.44± 0.04 0.30± 0.04 110± 20
pitv, l = 3, Heuristic prop., Selkow 0.40± 0.05 0.27± 0.04 120± 7
pitv, l = 3, Left prop., Partial 0.44± 0.04 0.30± 0.04 100± 20
pitv, l = 3, Left prop., Selkow 0.40± 0.05 0.26± 0.04 120± 7
pitv, l = 3, Melodic prop., Partial 0.43± 0.04 0.29± 0.04 110± 20
pitv, l = 3, Melodic prop., Selkow 0.39± 0.04 0.26± 0.04 120± 8
pift, l = 2, Heuristic prop., Selkow 0.47± 0.05 0.34± 0.05 35± 6
pift, l = 2, Heuristic prop., Shasha 0.47± 0.05 0.34± 0.05 110± 40
pift, l = 2, Left prop., Shasha 0.47± 0.05 0.34± 0.06 130± 50
pift, l = 2, Melodic prop., Align 0.32± 0.05 0.20± 0.04 160± 70
pift, l = 2, Melodic prop., Shasha 0.47± 0.05 0.35± 0.05 110± 40
pift, l = 3, Heuristic prop., Selkow 0.47± 0.05 0.34± 0.06 130± 20
pift, l = 3, Left prop., Partial 0.35± 0.05 0.23± 0.05 100± 20
pift, l = 3, Left prop., Selkow 0.47± 0.05 0.34± 0.06 119± 7
pift, l = 3, Melodic prop., Partial 0.35± 0.05 0.23± 0.04 100± 20
pift, l = 3, Melodic prop., Selkow 0.46± 0.05 0.33± 0.06 119± 7

UM:
Uitdenboderg, alg, n, gramn, 2, grams 0.11± 0.03 0.06± 0.02 3± 2
Uitdenboderg, 3-grams 0.19± 0.04 0.11± 0.03 5± 3
Uitdenboderg, 4-grams 0.27± 0.06 0.16± 0.04 13± 13
Uitdenboderg, Edit distance 0.17± 0.03 0.10± 0.03 70± 50

E.4 Polyphonic COVERS results

Table E.11: COVER results of selected methods

Method (and setups) MRR PaC Time

C-BRAHMS:
P2 0.23± 0.04 0.12± 0.04 190± 20
P2v5 0.26± 0.04 0.15± 0.03 51± 7
P2v6 0.25± 0.05 0.15± 0.04 3.9± 0.6

PROMS:
PR, r =12 0.68± 0.04 0.54± 0.04 180± 12
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PR, r =16 0.67± 0.04 0.54± 0.05 230± 20
PR, r =20 0.49± 0.04 0.34± 0.04 270± 20
PR, r =24 0.67± 0.04 0.54± 0.05 320± 20
PR, r =28 0.38± 0.05 0.24± 0.04 390± 20
PR, r =4 0.68± 0.04 0.56± 0.04 83± 7
PR, r =8 0.69± 0.04 0.55± 0.03 132± 8

Trees:
1, Cosine similarity, l = 1 0.61± 0.00 0.52± 0.00 2.8± 0.2
1, Cosine similarity, l = 2 0.62± 0.00 0.53± 0.00 47± 2
1, Cosine similarity, l = 3 0.62± 0.00 0.52± 0.00 246± 14
1, Cosine similarity, l = 4 0.62± 0.01 0.53± 0.01 1070± 50
Euclidean distance, l = 1 0.43± 0.01 0.31± 0.02 2.5± 0.2
Euclidean distance, l = 2 0.44± 0.01 0.33± 0.02 44± 2
Euclidean distance, l = 3 0.43± 0.01 0.33± 0.02 229± 14
Euclidean distance, l = 4 0.44± 0.01 0.32± 0.03 1010± 70
Harmonic mean, l = 1 0.60± 0.01 0.51± 0.00 4.0± 0.2
Harmonic mean, l = 2 0.61± 0.00 0.53± 0.00 65± 3
Harmonic mean, l = 3 0.61± 0.01 0.52± 0.01 330± 20
Harmonic mean, l = 4 0.62± 0.01 0.52± 0.00 1380± 70
Hellinger distance, l = 1 0.49± 0.05 0.36± 0.04 3.8± 0.3
Hellinger distance, l = 2 0.47± 0.04 0.36± 0.04 62± 5
Hellinger distance, l = 3 0.46± 0.03 0.35± 0.04 320± 30
Hellinger distance, l = 4 0.47± 0.03 0.36± 0.03 1340± 100
Jackard coefficient, l = 1 0.48± 0.01 0.37± 0.01 2.6± 0.2
Jackard coefficient, l = 2 0.51± 0.03 0.41± 0.02 44± 2
Jackard coefficient, l = 3 0.52± 0.03 0.43± 0.02 226± 13
Jackard coefficient, l = 4 0.52± 0.03 0.43± 0.03 970± 50
Log distance, l = 1 0.63± 0.02 0.55± 0.01 13.3± 0.7
Log distance, l = 2 0.63± 0.03 0.56± 0.02 182± 8
Log distance, l = 3 0.62± 0.03 0.54± 0.01 820± 50
Log distance, l = 4 0.62± 0.03 0.53± 0.01 3330± 130
Manhattan, l = 1 0.57± 0.01 0.46± 0.01 2.35± 0.14
Manhattan, l = 2 0.56± 0.00 0.45± 0.04 41± 2
Manhattan, l = 3 0.56± 0.00 0.45± 0.04 214± 13
Manhattan, l = 4 0.57± 0.01 0.45± 0.01 950± 50
Matching coefficient, l = 1 0.45± 0.01 0.32± 0.01 2.49± 0.13
Matching coefficient, l = 2 0.50± 0.03 0.40± 0.04 40.2± 1.1
Matching coefficient, l = 3 0.50± 0.06 0.39± 0.07 208± 10
Matching coefficient, l = 4 0.50± 0.06 0.40± 0.05 910± 40
Multiset distance, l = 1 0.54± 0.01 0.41± 0.01 2.4± 0.2
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Multiset distance, l = 2 0.55± 0.01 0.45± 0.04 41± 2
Multiset distance, l = 3 0.55± 0.00 0.43± 0.02 215± 14
Multiset distance, l = 4 0.56± 0.01 0.45± 0.01 950± 50
Overlap coefficient, l = 1 0.51± 0.01 0.39± 0.02 2.5± 0.2
Overlap coefficient, l = 2 0.54± 0.03 0.44± 0.01 43± 2
Overlap coefficient, l = 3 0.56± 0.02 0.44± 0.01 226± 14
Overlap coefficient, l = 4 0.56± 0.04 0.44± 0.03 980± 50
Variational distance, l = 1 0.40± 0.03 0.28± 0.02 3.8± 0.2
Variational distance, l = 2 0.40± 0.04 0.29± 0.03 63± 3
Variational distance, l = 3 0.40± 0.04 0.28± 0.04 330± 20
Variational distance, l = 4 0.39± 0.04 0.27± 0.04 1360± 70

E.5 MIREX results

Table E.12: MIREX ADR results for method Metric trees

Setup ADR Time

phdc, l = 3, Left prop., Selkow 0.5 0.54
phdc, l = 3, Heuristic prop., Selkow 0.5 0.54
pitv, l = 2, Left prop., Shasha 0.5 0.53
pitv, l = 3, Left prop., Partial 0.5 0.53
pift, l = 3, Heuristic prop., Selkow 0.5 0.52
pift, l = 2, Left prop., Shasha 0.5 0.52
pitv, l = 2, Melodic prop., Shasha 0.5 0.51
pitv, l = 2, Heuristic prop., Shasha 0.5 0.51
pift, l = 3, Left prop., Partial 0.5 0.50
pitv, l = 3, Heuristic prop., Partial 0.5 0.49
pift, l = 3, Melodic prop., Partial 0.5 0.49
pc, l = 3, Melodic prop., Selkow 0.5 0.46
phdc, l = 2, Melodic prop., Selkow 0.4 0.43
phdc, l = 3, Heuristic prop., Partial 0.4 0.41
phdc, l = 2, Melodic prop., Partial 0.4 0.41
phdc, l = 2, Left prop., Align 0.4 0.36

Table E.13: MIREX ADR results for method PROMS

Setup ADR Time

PR, r =8 0.5 0.53
PR, r =4 0.5 0.52
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Table E.14: MIREX ADR results for method Uitdenboderg

Setup ADR Time

Uitdenboderg, alg, string, Edit distance, distance, 112 0.7 0.68
Uitdenboderg, alg, n, gramn, 4, grams 0.7 0.65
Uitdenboderg, alg, n, gramn, 3, grams 0.6 0.63
Uitdenboderg, alg, n, gramn, 2, grams 0.5 0.51

Table E.15: MIREX ADR results for method Strings

Setup ADR Time

pift, k0. 9, rtabs, decoupled, withoutRests, withNHT 0.6 0.62
pift, k0. 7, rtabs, decoupled, withoutRests, withNHT 0.6 0.62
pift, k0. 5, rtabs, decoupled, withoutRests, withNHT 0.6 0.62
pift, k0. 3, rtabs, decoupled, withoutRests, withNHT 0.6 0.62
pift, k0. 1, rtabs, decoupled, withoutRests, withNHT 0.6 0.62
pitv, k0. 9, rtabs, decoupled, withoutRests, withNHT 0.6 0.62
pitv, k0. 7, rtabs, decoupled, withoutRests, withNHT 0.6 0.62
pitv, k0. 5, rtabs, decoupled, withoutRests, withNHT 0.6 0.62
pitv, k0. 3, rtabs, decoupled, withoutRests, withNHT 0.6 0.62
pitv, k0. 1, rtabs, decoupled, withoutRests, withNHT 0.6 0.62
phdc, k0. 9, rtabs, decoupled, withoutRests, withNHT 0.6 0.62
phdc, k0. 7, rtabs, decoupled, withoutRests, withNHT 0.6 0.62
phdc, k0. 5, rtabs, decoupled, withoutRests, withNHT 0.6 0.62
phdc, k0. 3, rtabs, decoupled, withoutRests, withNHT 0.6 0.62
phdc, k0. 1, rtabs, decoupled, withoutRests, withNHT 0.6 0.62
pc, k0. 9, rtabs, decoupled, withoutRests, withNHT 0.6 0.62
pc, k0. 7, rtabs, decoupled, withoutRests, withNHT 0.6 0.62
pc, k0. 5, rtabs, decoupled, withoutRests, withNHT 0.6 0.62
pc, k0. 3, rtabs, decoupled, withoutRests, withNHT 0.6 0.62
p12, k0. 9, rtabs, decoupled, withoutRests, withNHT 0.6 0.62
p12, k0. 7, rtabs, decoupled, withoutRests, withNHT 0.6 0.62
p12, k0. 5, rtabs, decoupled, withoutRests, withNHT 0.6 0.62
p12, k0. 3, rtabs, decoupled, withoutRests, withNHT 0.6 0.62
p12, k0. 1, rtabs, decoupled, withoutRests, withNHT 0.6 0.62
p40, k0. 9, rtabs, coupled, withoutRests, withNHT 0.6 0.62
pift, k0. 9, rtabs, coupled, withoutRests, withNHT 0.6 0.62
pitv, k0. 9, rtabs, coupled, withoutRests, withNHT 0.6 0.62
phdc, k0. 9, rtabs, coupled, withoutRests, withNHT 0.6 0.62
pc, k0. 9, rtabs, coupled, withoutRests, withNHT 0.6 0.62
p12, k0. 9, rtabs, coupled, withoutRests, withNHT 0.6 0.62
p40, k0. 9, rtabs, coupled, withRests, withNHT 0.6 0.58
p21, k0. 9, rtabs, coupled, withRests, withNHT 0.6 0.58
pift, k0. 9, rtabs, coupled, withRests, withNHT 0.6 0.58
pitv, k0. 9, rtabs, coupled, withRests, withNHT 0.6 0.58
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phdc, k0. 9, rtabs, coupled, withRests, withNHT 0.6 0.58
pc, k0. 9, rtabs, coupled, withRests, withNHT 0.6 0.58
p12, k0. 9, rtabs, coupled, withRests, withNHT 0.6 0.58
pift, k0. 9, rtabs, decoupled, withRests, withNHT 0.6 0.58
pift, k0. 7, rtabs, decoupled, withRests, withNHT 0.6 0.58
pift, k0. 5, rtabs, decoupled, withRests, withNHT 0.6 0.58
pift, k0. 3, rtabs, decoupled, withRests, withNHT 0.6 0.58
pift, k0. 1, rtabs, decoupled, withRests, withNHT 0.6 0.58
pitv, k0. 9, rtabs, decoupled, withRests, withNHT 0.6 0.58
pitv, k0. 7, rtabs, decoupled, withRests, withNHT 0.6 0.58
pitv, k0. 5, rtabs, decoupled, withRests, withNHT 0.6 0.58
pitv, k0. 3, rtabs, decoupled, withRests, withNHT 0.6 0.58
pitv, k0. 1, rtabs, decoupled, withRests, withNHT 0.6 0.58
phdc, k0. 9, rtabs, decoupled, withRests, withNHT 0.6 0.58
phdc, k0. 7, rtabs, decoupled, withRests, withNHT 0.6 0.58
phdc, k0. 5, rtabs, decoupled, withRests, withNHT 0.6 0.58
phdc, k0. 3, rtabs, decoupled, withRests, withNHT 0.6 0.58
phdc, k0. 1, rtabs, decoupled, withRests, withNHT 0.6 0.58
pc, k0. 9, rtabs, decoupled, withRests, withNHT 0.6 0.58
pc, k0. 7, rtabs, decoupled, withRests, withNHT 0.6 0.58
pc, k0. 5, rtabs, decoupled, withRests, withNHT 0.6 0.58
pc, k0. 3, rtabs, decoupled, withRests, withNHT 0.6 0.58
p12, k0. 9, rtabs, decoupled, withRests, withNHT 0.6 0.58
p12, k0. 7, rtabs, decoupled, withRests, withNHT 0.6 0.58
p12, k0. 5, rtabs, decoupled, withRests, withNHT 0.6 0.58
p12, k0. 3, rtabs, decoupled, withRests, withNHT 0.6 0.58
p12, k0. 1, rtabs, decoupled, withRests, withNHT 0.6 0.58

Table E.16: MIREX ADR results for method Mongeau and Sankoff

Setup ADR Time

pift, k0. 5, rdabs, matrixPitch, withoutRests, withNHT 0.6 0.58
pift, k0. 1, rdabs, matrixPitch, withoutRests, withNHT 0.5 0.55
pift, k0. 1, rioi, matrixPitch, withoutRests, withNHT 0.5 0.54
pift, k0. 5, rdabs, matrixPitch, withRests, withNHT 0.5 0.54
pift, k0. 5, rioi, matrixPitch, withRests, withNHT 0.5 0.53
pift, k0. 1, rdabs, matrixPitch, withRests, withNHT 0.5 0.53
pift, k0. 1, rioi, matrixPitch, withRests, withNHT 0.5 0.53

E.6 Global monophonic results
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Table E.17: Global monophonic results. ‘TA’ stands for trees, ‘UM’ for Uitdenboderg, ‘PR’ for PROMS, ‘S’ for strings, ‘MS’
for Monguea-Sankoff, and ’MRX’ stands for MIREX and ’B.C’ for Borda count

Setup PSCL 104 VARM ICPS MRX COVERS Avg. Time B.C.
TA:pc. l = 2. Left prop.. Shasha 1.0 0.7 0.7 1.0 0.4 0.51± 0.02 0.7± 0.3 120± 40 2.6
TA:pc. l = 2. Heuristic prop.. Shasha 1.0 0.8 0.7 1.0 0.4 0.51± 0.02 0.7± 0.3 120± 40 2.6
TA:pc. l = 2. Heuristic prop.. Selkow 1.0 0.7 0.7 1.0 0.4 0.51± 0.02 0.7± 0.3 34± 3 2.6
TA:phdc. l = 2. Melodic prop.. Selkow 1.0 0.8 0.8 1.0 0.4 0.50± 0.03 0.8± 0.3 36± 7 2.5
UM:Uitdenboderg. Edit distance 1.0 0.9 0.7 0.9 0.7 0.17± 0.03 0.7± 0.3 69± 8 2.4
TA:phdc. l = 3. Left prop.. Selkow 1.0 0.8 0.8 1.0 0.5 0.48± 0.04 0.8± 0.2 128± 14 2.4
TA:phdc. l = 3. Heuristic prop.. Selkow 1.0 0.8 0.8 1.0 0.5 0.48± 0.04 0.8± 0.2 126± 10 2.4
TA:phdc. l = 2. Melodic prop.. Shasha 1.0 0.8 0.8 1.0 0.4 0.49± 0.03 0.8± 0.3 120± 40 2.4
TA:phdc. l = 2. Left prop.. Shasha 1.0 0.8 0.8 1.0 0.5 0.50± 0.03 0.8± 0.2 120± 40 2.4
TA:phdc. l = 2. Left prop.. Selkow 1.0 0.8 0.8 1.0 0.4 0.50± 0.03 0.8± 0.2 34± 3 2.4
TA:phdc. l = 2. Heuristic prop.. Shasha 1.0 0.8 0.8 1.0 0.4 0.50± 0.04 0.8± 0.2 120± 50 2.4
TA:phdc. l = 2. Heuristic prop.. Selkow 1.0 0.8 0.8 1.0 0.4 0.50± 0.03 0.8± 0.2 36± 6 2.4
TA:pc. l = 2. Left prop.. Selkow 1.0 0.7 0.7 1.0 0.4 0.50± 0.02 0.7± 0.3 34± 4 2.4
TA:phdc. l = 3. Right prop.. Selkow 0.9 0.9 0.8 1.0 0.5 0.41± 0.04 0.8± 0.2 119± 7 2.3
TA:phdc. l = 3. Melodic prop.. Selkow 1.0 0.8 0.8 1.0 0.5 0.47± 0.04 0.8± 0.2 120± 7 2.3
TA:pc. l = 3. Melodic prop.. Selkow 1.0 0.8 0.7 1.0 0.5 0.49± 0.03 0.8± 0.2 150± 40 2.3
TA:pc. l = 3. Left prop.. Selkow 1.0 0.8 0.8 1.0 0.5 0.49± 0.03 0.8± 0.2 119± 8 2.3
TA:phdc. l = 2. Left prop.. Align 1.0 0.9 0.6 1.0 0.4 0.32± 0.04 0.7± 0.3 200± 300 2.2
TA:phdc. l = 2. Left prop.. Partial 1.0 0.8 0.8 0.9 0.4 0.51± 0.04 0.7± 0.2 25± 9 2.1
TA:phdc. l = 2. Melodic prop.. Partial 1.0 0.9 0.8 0.9 0.4 0.50± 0.03 0.7± 0.2 25± 9 2.0
UM:Uitdenboderg. 4-grams 1.0 0.9 0.4 0.7 0.7 0.27± 0.06 0.7± 0.3 13± 13 1.9
UM:Uitdenboderg. 3-grams 1.0 0.9 0.5 0.7 0.6 0.19± 0.04 0.7± 0.3 5± 3 1.9
TA:pitv . l = 3. Melodic prop.. Selkow 1.0 0.9 0.9 1.0 0.6 0.39± 0.04 0.8± 0.3 120± 8 1.9
TA:phdc. l = 3. Left prop.. Partial 1.0 0.8 0.8 0.9 0.4 0.50± 0.04 0.7± 0.2 110± 20 1.9
TA:phdc. l = 3. Melodic prop.. Partial 1.0 0.8 0.7 0.9 0.4 0.49± 0.03 0.7± 0.2 110± 20 1.8
TA:pc. l = 3. Heuristic prop.. Partial 1.0 0.7 0.6 0.9 0.3 0.48± 0.04 0.7± 0.3 110± 20 1.8
TA:pc. l = 2. Heuristic prop.. Partial 1.0 0.7 0.6 0.9 0.3 0.49± 0.04 0.7± 0.3 26± 9 1.8
TA:phdc. l = 2. Heuristic prop.. Partial 1.0 0.8 0.8 0.9 0.4 0.51± 0.04 0.7± 0.2 25± 8 1.7
TA:pc. l = 3. Right prop.. Selkow 0.9 0.9 0.8 1.0 0.5 0.43± 0.04 0.8± 0.3 119± 8 1.7
TA:pitv . l = 3. Left prop.. Selkow 1.0 0.8 0.8 1.0 0.5 0.40± 0.05 0.8± 0.2 120± 7 1.5
TA:pitv . l = 2. Heuristic prop.. Align 1.0 0.8 0.8 0.9 0.4 0.27± 0.04 0.7± 0.3 160± 70 1.5
TA:phdc. l = 3. Heuristic prop.. Partial 1.0 0.7 0.8 0.9 0.4 0.50± 0.04 0.7± 0.2 130± 50 1.5
TA:pitv . l = 3. Heuristic prop.. Selkow 1.0 0.8 0.8 1.0 0.5 0.40± 0.05 0.8± 0.2 120± 7 1.4
TA:pitv . l = 2. Left prop.. Partial 1.0 0.8 0.8 0.8 0.5 0.46± 0.04 0.7± 0.2 25± 7 1.4
TA:pitv . l = 2. Melodic prop.. Align 1.0 0.8 0.8 0.9 0.4 0.26± 0.04 0.7± 0.3 160± 70 1.3
PR:PR. r =8 0.9 0.7 0.9 0.6 0.5 0.59± 0.04 0.7± 0.2 200± 200 1.3
MS:pift. k0.1. rioi. matrixPitch. withoutRests. withNHT 0.9 0.8 1.0 0.7 0.5 0.46± 0.05 0.7± 0.2 140± 90 1.3
UM:Uitdenboderg. 2-grams 1.0 0.8 0.6 0.7 0.5 0.11± 0.03 0.6± 0.3 1.14± 0.03 1.2
TA:pitv . l = 2. Right prop.. Align 0.9 0.8 0.8 1.0 0.4 0.24± 0.03 0.7± 0.3 160± 70 1.2
PR:PR. r =4 0.9 0.7 0.8 0.5 0.5 0.59± 0.04 0.7± 0.2 110± 130 1.2
TA:pitv . l = 2. No prop.. Selkow 0.7 0.6 0.7 1.0 0.4 0.31± 0.05 0.6± 0.3 34± 4 1.1
TA:phdc. l = 2. No prop.. Selkow 0.7 0.6 0.7 1.0 0.3 0.31± 0.06 0.6± 0.3 34± 3 1.1
TA:phdc. l = 2. No prop.. Align 0.8 0.7 0.7 1.0 0.3 0.26± 0.05 0.6± 0.3 150± 70 1.1
CBRAHMS:cbrahmsqp26 0.3 0.6 0.8 1.0 0.6 0.20± 0.05 0.6± 0.3 0.051± 0.010 1.1

continued on next page
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continued from previous page
Setup PSCL 104 VARM ICPS MRX COVERS Avg. Time B.C.
TA:pitv . l = 2. Left prop.. Shasha 1.0 0.8 0.9 0.9 0.5 0.42± 0.04 0.8± 0.2 300± 400 1.0
TA:pitv . l = 2. Left prop.. Selkow 1.0 0.8 0.9 0.9 0.5 0.43± 0.04 0.7± 0.2 36± 8 1.0
TA:pitv . l = 2. Melodic prop.. Shasha 1.0 0.9 0.9 0.8 0.5 0.42± 0.03 0.8± 0.2 130± 60 0.9
TA:pitv . l = 2. Melodic prop.. Selkow 1.0 0.8 0.9 0.8 0.5 0.42± 0.03 0.7± 0.2 36± 6 0.9
TA:pitv . l = 2. Heuristic prop.. Shasha 1.0 0.8 0.9 0.9 0.5 0.42± 0.04 0.7± 0.2 120± 50 0.9
TA:pitv . l = 3. Heuristic prop.. Partial 1.0 0.8 0.8 0.8 0.5 0.44± 0.04 0.7± 0.2 110± 20 0.8
MS:pift. k0.1. rioi. matrixPitch. withRests. withNHT 0.9 0.8 0.9 0.7 0.5 0.46± 0.05 0.7± 0.2 120± 30 0.8
MS:pift. k0.1. rdabs. matrixPitch. withRests. withNHT 1.0 0.8 0.9 0.7 0.5 0.46± 0.05 0.7± 0.2 120± 40 0.8
TA:pitv . l = 3. Left prop.. Partial 1.0 0.7 0.8 0.8 0.5 0.44± 0.04 0.7± 0.2 100± 20 0.7
TA:pitv . l = 2. Right prop.. Shasha 0.9 0.9 0.8 0.9 0.5 0.36± 0.04 0.7± 0.2 120± 50 0.7
TA:pitv . l = 2. Right prop.. Selkow 0.9 0.9 0.8 0.9 0.4 0.37± 0.03 0.7± 0.2 35± 3 0.7
TA:pitv . l = 2. Melodic prop.. Partial 1.0 0.8 0.9 0.7 0.5 0.46± 0.04 0.7± 0.2 27± 8 0.7
TA:pift. l = 3. Heuristic prop.. Selkow 1.0 0.9 0.7 0.9 0.5 0.47± 0.05 0.7± 0.2 130± 20 0.6
S:pitv . k0.9. rtabs. decoupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 59± 5 0.6
S:pitv . k0.5. rtabs. decoupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 59± 6 0.6
S:pitv . k0.3. rtabs. decoupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 70± 40 0.6
S:pitv . k0.1. rtabs. decoupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 62± 9 0.6
S:pift. k0.7. rtabs. decoupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 61± 7 0.6
S:pift. k0.5. rtabs. decoupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 60± 6 0.6
S:pift. k0.3. rtabs. decoupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 100± 70 0.6
S:pift. k0.1. rtabs. decoupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 100± 110 0.6
S:phdc. k0.9. rtabs. decoupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 80± 60 0.6
S:phdc. k0.7. rtabs. decoupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 100± 200 0.6
S:phdc. k0.5. rtabs. decoupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 60± 7 0.6
S:phdc. k0.3. rtabs. decoupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 60± 5 0.6
S:pc. k0.9. rtabs. decoupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 59± 5 0.6
S:pc. k0.7. rtabs. decoupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 61± 8 0.6
S:pc. k0.5. rtabs. decoupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 61± 7 0.6
MS:pift. k0.5. rioi. matrixPitch. withRests. withNHT 1.0 0.9 0.9 0.7 0.5 0.45± 0.05 0.7± 0.2 110± 30 0.6
TA:pitv . l = 3. Melodic prop.. Partial 1.0 0.8 0.8 0.8 0.5 0.43± 0.04 0.7± 0.2 110± 20 0.5
TA:pift. l = 3. Melodic prop.. Selkow 1.0 0.9 0.8 0.9 0.5 0.46± 0.05 0.7± 0.2 119± 7 0.5
TA:pift. l = 3. Left prop.. Selkow 1.0 0.9 0.7 0.9 0.5 0.47± 0.05 0.7± 0.2 119± 7 0.5
TA:pift. l = 2. Left prop.. Shasha 1.0 0.7 0.7 0.9 0.5 0.47± 0.05 0.7± 0.2 130± 50 0.5
TA:pift. l = 2. Heuristic prop.. Shasha 1.0 0.7 0.7 0.9 0.5 0.47± 0.05 0.7± 0.2 110± 40 0.5
TA:pift. l = 2. Heuristic prop.. Selkow 1.0 0.8 0.7 0.9 0.5 0.47± 0.05 0.7± 0.2 35± 6 0.5
S:pitv . k0.9. rtabs. decoupled. withRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 59± 5 0.5
S:pitv . k0.9. rtabs. coupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.47± 0.06 0.7± 0.2 75± 5 0.5
S:pitv . k0.9. rtabs. coupled. withRests. withNHT 1.0 0.8 0.7 0.8 0.6 0.47± 0.06 0.7± 0.2 75± 7 0.5
S:pitv . k0.7. rtabs. decoupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.45± 0.06 0.7± 0.2 100± 200 0.5
S:pitv . k0.7. rtabs. decoupled. withRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 70± 40 0.5
S:pitv . k0.5. rtabs. decoupled. withRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 58± 5 0.5
S:pitv . k0.3. rtabs. decoupled. withRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 59± 5 0.5
S:pitv . k0.1. rtabs. decoupled. withRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 60± 5 0.5
S:pift. k0.9. rtabs. decoupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.45± 0.06 0.7± 0.2 57± 9 0.5
S:pift. k0.9. rtabs. decoupled. withRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 61± 9 0.5
S:pift. k0.9. rtabs. coupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.47± 0.06 0.7± 0.2 77± 7 0.5
S:pift. k0.9. rtabs. coupled. withRests. withNHT 1.0 0.8 0.7 0.8 0.6 0.47± 0.06 0.7± 0.2 120± 140 0.5
S:pift. k0.7. rtabs. decoupled. withRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 80± 60 0.5
S:pift. k0.5. rtabs. decoupled. withRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 59± 5 0.5
S:pift. k0.3. rtabs. decoupled. withRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 61± 8 0.5

continued on next page
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continued from previous page
Setup PSCL 104 VARM ICPS MRX COVERS Avg. Time B.C.
S:pift. k0.1. rtabs. decoupled. withRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 60± 5 0.5
S:phdc. k0.9. rtabs. decoupled. withRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 80± 50 0.5
S:phdc. k0.9. rtabs. coupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.47± 0.06 0.7± 0.2 77± 10 0.5
S:phdc. k0.9. rtabs. coupled. withRests. withNHT 1.0 0.8 0.7 0.8 0.6 0.47± 0.06 0.7± 0.2 90± 50 0.5
S:phdc. k0.7. rtabs. decoupled. withRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 61± 8 0.5
S:phdc. k0.5. rtabs. decoupled. withRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 61± 7 0.5
S:phdc. k0.3. rtabs. decoupled. withRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 70± 30 0.5
S:phdc. k0.1. rtabs. decoupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.45± 0.06 0.7± 0.2 85± 9 0.5
S:phdc. k0.1. rtabs. decoupled. withRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 61± 7 0.5
S:pc. k0.9. rtabs. decoupled. withRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 60± 4 0.5
S:pc. k0.9. rtabs. coupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.47± 0.06 0.7± 0.2 100± 60 0.5
S:pc. k0.9. rtabs. coupled. withRests. withNHT 1.0 0.8 0.7 0.8 0.6 0.47± 0.06 0.7± 0.2 75± 8 0.5
S:pc. k0.7. rtabs. decoupled. withRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 59± 6 0.5
S:pc. k0.5. rtabs. decoupled. withRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 70± 20 0.5
S:pc. k0.3. rtabs. decoupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.45± 0.06 0.7± 0.2 100± 140 0.5
S:pc. k0.3. rtabs. decoupled. withRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.46± 0.06 0.7± 0.2 59± 6 0.5
S:p40. k0.9. rtabs. coupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.47± 0.06 0.7± 0.2 75± 7 0.5
S:p40. k0.9. rtabs. coupled. withRests. withNHT 1.0 0.8 0.7 0.8 0.6 0.47± 0.06 0.7± 0.2 100± 60 0.5
S:p21. k0.9. rtabs. coupled. withRests. withNHT 1.0 0.8 0.7 0.8 0.6 0.47± 0.06 0.7± 0.2 90± 40 0.5
S:p12. k0.9. rtabs. decoupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.45± 0.06 0.7± 0.2 60± 20 0.5
S:p12. k0.9. rtabs. coupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.47± 0.06 0.7± 0.2 90± 30 0.5
S:p12. k0.9. rtabs. coupled. withRests. withNHT 1.0 0.8 0.7 0.8 0.6 0.47± 0.06 0.7± 0.2 77± 12 0.5
S:p12. k0.7. rtabs. decoupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.45± 0.06 0.7± 0.2 48± 7 0.5
S:p12. k0.5. rtabs. decoupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.45± 0.06 0.7± 0.2 51± 8 0.5
S:p12. k0.3. rtabs. decoupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.45± 0.06 0.7± 0.2 60± 20 0.5
S:p12. k0.1. rtabs. decoupled. withoutRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.45± 0.06 0.7± 0.2 80± 20 0.5
MS:pift. k0.5. rdabs. matrixPitch. withoutRests. withNHT 1.0 0.8 0.8 0.7 0.6 0.45± 0.05 0.7± 0.2 140± 90 0.5
MS:pift. k0.5. rdabs. matrixPitch. withRests. withNHT 1.0 0.8 0.9 0.7 0.5 0.45± 0.05 0.7± 0.2 120± 30 0.5
G:Pinto 1.0 0.6 0.2 0.7 0.2 0.17± 0.03 0.5± 0.3 1.92± 0.12 0.5
TA:pift. l = 3. Left prop.. Partial 1.0 0.8 0.7 0.9 0.5 0.35± 0.05 0.7± 0.2 100± 20 0.4
TA:pift. l = 2. Melodic prop.. Shasha 1.0 0.7 0.8 0.9 0.5 0.47± 0.05 0.7± 0.2 110± 40 0.4
S:p12. k0.9. rtabs. decoupled. withRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.45± 0.06 0.7± 0.2 50± 10 0.4
S:p12. k0.7. rtabs. decoupled. withRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.45± 0.06 0.7± 0.2 90± 90 0.4
S:p12. k0.5. rtabs. decoupled. withRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.45± 0.06 0.7± 0.2 50± 12 0.4
S:p12. k0.3. rtabs. decoupled. withRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.45± 0.06 0.7± 0.2 50± 20 0.4
S:p12. k0.1. rtabs. decoupled. withRests. withNHT 1.0 0.8 0.8 0.8 0.6 0.45± 0.06 0.7± 0.2 47± 7 0.4
MS:pift. k0.1. rdabs. matrixPitch. withoutRests. withNHT 1.0 0.8 0.8 0.7 0.5 0.46± 0.05 0.7± 0.2 150± 20 0.4
TA:pift. l = 3. Melodic prop.. Partial 1.0 0.8 0.7 0.9 0.5 0.35± 0.05 0.7± 0.2 100± 20 0.3
TA:pift. l = 2. Melodic prop.. Align 1.0 0.7 0.8 0.9 0.4 0.32± 0.05 0.7± 0.3 160± 70 0.3
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E.7. GLOBAL POLYPHONIC RESULTS

E.7 Global polyphonic results

Table E.18: Global polyphonic results. The time corresponds to that obtained with the
COVERS corpus.

Setup ICPS INET VARP COVERS Avg. Time Borda count
PROMS:r =8 0.6 0.8 0.7 0.69± 0.04 0.71± 0.05 132± 8 1.7
PROMS:r =4 0.5 0.8 0.7 0.68± 0.04 0.67± 0.10 83± 7 1.7
PROMS:r =16 0.7 0.7 0.9 0.67± 0.04 0.74± 0.09 230± 20 1.7
PROMS:r =28 1.0 0.7 0.8 0.38± 0.05 0.7± 0.3 390± 20 1.4
CBRAHMS:P2v5 1.0 0.6 0.8 0.26± 0.04 0.7± 0.3 45± 3 1.4
CBRAHMS:P2v6 1.0 0.6 0.8 0.25± 0.05 0.7± 0.3 3.48± 0.13 1.3
PR:r =12 0.7 0.7 0.8 0.68± 0.04 0.72± 0.03 180± 12 1.1
PR:r =24 0.8 0.7 0.8 0.67± 0.04 0.74± 0.07 320± 20 1.0
PR:r =20 0.7 0.7 0.8 0.49± 0.04 0.69± 0.14 270± 20 1.0
Trees::Overlap coefficient. l = 3. 0.9 0.6 0.7 0.56± 0.02 0.7± 0.2 226± 14 0.8
Trees::Multiset distance. l = 4. 0.9 0.6 0.7 0.57± 0.03 0.7± 0.2 950± 50 0.8
Trees::Manhattan. l = 3. 0.9 0.6 0.7 0.57± 0.03 0.7± 0.2 214± 13 0.8
Trees::Manhattan. l = 2. 0.9 0.6 0.7 0.57± 0.03 0.7± 0.2 41± 2 0.8
Trees::Log distance. l = 4. 0.9 0.6 0.5 0.63± 0.03 0.7± 0.2 3330± 130 0.8
Trees::Log distance. l = 3. 0.9 0.6 0.5 0.63± 0.03 0.7± 0.2 820± 50 0.8
Trees::Log distance. l = 2. 0.9 0.6 0.5 0.63± 0.03 0.7± 0.2 182± 8 0.8
Trees::Harmonic mean. l = 4. 0.9 0.6 0.6 0.60± 0.02 0.7± 0.2 1380± 70 0.8
Trees::Harmonic mean. l = 3. 0.9 0.7 0.7 0.60± 0.03 0.7± 0.2 330± 20 0.8
Trees::Harmonic mean. l = 2. 0.9 0.7 0.7 0.60± 0.03 0.72± 0.14 65± 3 0.8
Trees::Cosine similarity. l = 4. 0.9 0.6 0.6 0.60± 0.03 0.7± 0.2 1070± 50 0.8
Trees::Cosine similarity. l = 3. 0.9 0.7 0.6 0.60± 0.03 0.7± 0.2 246± 14 0.8
Trees::Cosine similarity. l = 2. 0.9 0.7 0.7 0.60± 0.03 0.72± 0.14 47± 2 0.8
Trees::Variational distance. l = 3. 0.9 0.5 0.7 0.44± 0.04 0.7± 0.2 330± 20 0.7
Trees::Variational distance. l = 2. 0.9 0.5 0.7 0.44± 0.04 0.7± 0.2 63± 3 0.7
Trees::Overlap coefficient. l = 2. 0.9 0.6 0.7 0.56± 0.02 0.7± 0.2 43± 2 0.7
Trees::Multiset distance. l = 3. 0.9 0.6 0.7 0.57± 0.03 0.7± 0.2 215± 14 0.7
Trees::Multiset distance. l = 2. 0.9 0.6 0.7 0.56± 0.03 0.7± 0.2 41± 2 0.7
Trees::Manhattan. l = 4. 0.9 0.6 0.7 0.57± 0.03 0.7± 0.2 950± 50 0.7
Trees::Euclidean distance. l = 3. 0.9 0.6 0.7 0.47± 0.04 0.7± 0.2 229± 14 0.7
Trees::Log distance. l = 1. 0.9 0.7 0.6 0.64± 0.04 0.68± 0.13 13.3± 0.7 0.6
CBRAHMS:P2 0.9 0.5 0.7 0.23± 0.04 0.6± 0.3 178.9± 1.4 0.6
CBRAHMS:P3 0.4 0.3 0.3 0.12± 0.02 0.26± 0.10 1140± 110 0.2
CBRAHMS:P1 0.0 0.1 0.0 0.0± 0.0 0.03± 0.05 0.0025± 0.0005 0.2
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F
Resumen en castellano

Introducción

Actualmente, la disponibilidad de grandes cantidades de música almacenadas en
formatos digitales en colecciones públicas y privadas crea problemas para su organización
y para localizar información en ellas. Se hace necesaria la existencia de herramientas
capaces de clasificar y permitir al usuario la búsqueda de música por contenido.
Éstas pertenecen al dominio del reconocimiento de formas en lo que se conoce como
Recuperación de Información Musical o MIR.

Nuestro trabajo se enmarca en este dominio, en concreto en la representación de
información musical y su comparación. En esta tesis se propone una nueva representación
de música codificada en formato simbólico mediante el uso de árboles y un conjunto de
métodos para la evaluación de la similitud entre dos piezas musicales usando dicha
representación.

El uso de estos métodos de comparación resuelve el problema de la clasificación
musical basada en el contenido, en particular la localización de duplicados o trabajos
similares y la búsqueda de un contenido musical. Las aplicaciones de éstos abarcan desde
tareas de estudio y análisis en musicoloǵıa hasta la detección de plagios.

La comunidad MIR suele categorizar los datos musicales en audio digital, metadatos,
partituras impresas y representaciones simbólicas. El primero incluye todos los formatos
de ficheros que almacenan grabaciones reales de información sonora tras su digitalización
en formatos bien conocidos como los wav, aiff, off o mp3. Estos ficheros pueden contener
cualquier tipo de sonido, desde el ruido de un coche hasta música, de forma que si
se pretende analizar musicalmente los ficheros, previamente es necesario inferir esa
información musical desde los datos en bruto. Los metadatos contienen información
referente a la pieza musical como son el intérprete, compositor y t́ıtulo. Por partitura
impresa entendemos cualquier representación gráfica que una persona puede leer pero
que para un ordenador es simplemente una imagen. Finalmente, las representaciones
simbólicas incluyen partituras en formatos digitales que contienen información acerca de
notas, claves, pentagramas, que deben ser convertidas en una partitura impresa por un
programa de notación musical para que puedan ser léıdas por una persona. La música
se puede representar también por la grabación de una interpretación en un formato
simbólico. Como ejemplo de estos formatos son MusicXML (Good and Actor, 2003),
SCORE (Selfridge-Field, 1997), kern (Huron, 2002) o GUIDO (Hoos et al., 1998). En
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este tipo de formatos se almacenan las operaciones que generan la música, como son el
inicio y fin de notas, su volumen, o la intensidad con la que se ha pulsado la tecla de un
piano. El formato más extendido es el SMF (MID, 1996).

En esta tesis estamos interesados en las dos representaciones simbólicas porque
queremos investigar en información de similitud musical empleando términos musicales
como notas, grados, etc..., y los datos simbólicos son los más cercanos a este tipo de
información.

Hoy en d́ıa, los métodos de similitud musical se dividen básicamente en aquellos que
trabajan con música monofónica y los que son capaces de procesar contenido musical
polifónico, directamente, o convirtiéndolo previamente en monofónico.

El término similitud musical es ambiguo o al menos se puede evaluar desde distintos
puntos de vista (Barthelemy and Bonardi, 2001; Byrd and Crawford, 2002; Hofmann-
Engl, 2001; Novello et al., 2006; Selfridge-Field, 1998). Se puede referir al parecido
entre dos ĺıneas melódicas, las coincidencias entre dos patrones ŕıtmicos, o incluso en
la similitud en el contenido armónico. Con el objetivo de desambiguar este concepto
de aqúı en adelante, consideraremos que las canciones más parecidas son las distintas
interpretaciones de una misma pieza musical o aquellas producidas por la forma musical
variación. Esto implica que la similitud se debe medir en función de un compromiso
entre las dimensiones melódica, ŕıtmica, e incluso armónica de las obras comparadas.

En la literatura (Barthelemy and Bonardi, 2001; Grachten et al., 2004; Rolland, 1998;
Selfridge-Field, 1998) se acepta ampliamente que la codificación de la música afecta en
gran medida las capacidades y calidad de los métodos de comparación. Tradicionalmente
en MIR la música simbólica se representa mediante conjuntos de cadenas de tuplas,
donde cada tupla t́ıpicamente contiene información sobre altura, duración y tiempo de
ataque de las notas. Tanto la recuperación de información como la comparación han sido
abordadas mayoritariamente usando técnicas de reconocimiento de formas estructural
sobre cadenas. Han habido otras propuestas, como la geométrica, en la cual se transforma
la melod́ıa en una gráfica obtenida trazando una ĺınea entre notas sucesivas, de forma
que la comparación melódica se convierte en un problema geométrico. En los últimos
años se han introducido nuevas propuestas como la representación mediante grafos o la
comparación usando medidas estad́ısticas.

En esta disertación, presentamos una representación no lineal de la melod́ıa basada
en árboles que expresan la información métrica y ŕıtmica de la música de una manera
natural. Nuestra propuesta para la construcción de árboles se basa en el hecho que las
distintas figuras musicales están diseñadas siguiendo una escala logaŕıtmica: una redonda
tiene una duración del doble de una blanca, la cual dura el doble que una negra, etc.
Esta representación nos dota de una riqueza de posibilidades que los métodos basados
en cadenas y los geométricos no tienen: como la representación impĺıcita del ritmo, más
significado musical y el enfatizado de notas relevantes. Además, los árboles abren un
nueva potencia en la representación musical que permite la fusión en la misma estructura
de datos todas las dimensiones involucradas en la similitud musical: altura, ritmo y
armońıa.
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Antecedentes

Las obras musicales se pueden comprar desde diferentes perspectivas de descripción
y representación. Se pueden comparar solamente el nombre de las canciones usando
técnicas de comparación de cadenas. Se pueden emplear metadatos (Pérez-Garćıa et al.,
2009) más detallados como descriptores de alto nivel como el autor, compás, tonalidad o
la instrumentación. Finalmente, se puede usar el propio contenido musical para medir la
similitud entre canciones. Esta tesis se ciñe a este último caso, la comparación utilizando
solamente contenido musical representado de manera simbólica.

Dependiendo del dominio de la aplicación, se dice que el contenido musical contiene
atributos distintos. En el dominio de la psicoacústica, Levitin (1999) usa altura, ritmo,
tempo, contorno, timbre, presión sonora y localización espacial. En el dominio MIR,
Downie (1999) considera siete facetas: altura, temporal, armónica, t́ımbrica, editorial,
relativa a la textura y bibliográfica. Otros autores incluyen también caracteŕısticas
más elaboradas como la información temática obtenida a partir de datos en bruto (Hsu
et al., 1998). Para la comparación basada en contenido musical, las propiedades más
disponibles directamente son aquellas de altura y ritmo. En esta tesis se usarán estos
dos atributos, incluyendo también en algunos casos información armónica.

En la comparación automatizada de piezas musicales en formato simbólico han habido
dos trabajos que pueden ser considerados como hitos. El primero, por Mongeau and
Sankoff (1990), usaba técnicas de comparación de cadenas (Wagner and Fischer, 1974)
empleadas en bioinformática adaptadas a la comparación musical. El segundo, editado
por Selfridge-Field (1998), revisaba en profundidad los métodos de representación y
técnicas de comparación a la fecha de su edición, mostrando que los algoritmos de
distancia de edición de cadenas eran los más usados para medir la similitud musical,
además de algunos sistemas incipientes basados en representaciones geométricas (Maid́ın,
1998). Desde entonces se han propuesto muchos métodos para comparar la música en
formato simbólico. Sin embargo, el número de representaciones o algoritmos realmente
nuevos es limitado. La aportación de la mayoŕıa de los métodos se fundamenta en
el estudio del gran número de posibles variaciones de aquellos métodos originales,
tanto en la forma de representar simbólicamente la música como en los algoritmos de
reconocimiento de patrones usados.

La forma mediante la que se codifica la música determina la clase de búsquedas que se
pueden llevar a cabo como se establece en algunos trabajos como (Selfridge-Field, 1998)
o (Barthelemy and Bonardi, 2001). A la fecha de la redacción de este documento, hay
básicamente siete tendencias en la representación y comparación de música en formato
simbólico:

• distancias de edición y alineamiento de cadenas usando una variedad de repre-
sentaciones (Grachten et al., 2005; Lemström, 2000; Mongeau and Sankoff, 1990)

• algoritmos basados en n-grams (Doraisamy, 2004; Downie, 1999; Uitdenbogerd,
2002)

• codificaciones de grafos (Pinto and Tagliolato, 2008)
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• medidas de comparación estad́ıstica (Bernabeu et al., 2009; Engelbrecht, 2002;
Habrard et al., 2008)

• sistemas geométricos (Aloupis et al., 2006; Lemström et al., 2008; Tanur, 2005;
Typke, 2007)

• modelos ocultos de Markov (Pardo et al., 2004; Pickens, 2004)

• representaciones mediante árboles (Rizo et al., 2003, 2008)

Comparación musical con árboles

“Uno de los hecho más obvios sobre la experiencia de escuchar prácticamente
cualquier obra musical es que se percibe no meramente una secuencia
arbitraria de notas, sino una especie de estructura temporal en la que se
agrupan las notas en varias clases de unidades.” (Lee, 1985)

“Las reducciones ofrecen una solución tentadora a la comparación
aproximada porque eliminan las diferencias en los detalles de la superficie.
Pero, ¿eliminan los detalles más apropiados?” (Selfridge-Field, 1998)

Estas dos citas soportan la hipótesis en la que basamos nuestra propuesta. El tipo
abstracto de datos árbol parece ser el más adecuado para capturar la estructura temporal
y jerárquica, además de estar preparado para representar la reducción de una obra
musical. Por tanto, los árboles parecen ser el tipo de datos más adecuado para codificar
y procesar la música en formato simbólico para la evaluación de la similitud. A pesar de
lo obvio de esta asunción, no conocemos ningún trabajo previo que haya usado árboles
para comparar música hasta nuestra primera publicación en (Rizo and Iñesta, 2002).

Usos previos de árboles en informática musical

Los árboles śı han sido usados en informática musical para otros fines. El uso más
evidente es la representación de la arquitectura de una obra (Linster, 1992). En el
campo de la percepción musical, con el objeto de describir formalmente la percepción
de ritmos complejos, se han propuesto una serie de gramáticas (Longuet-Higgins,
1978; Martin, 1972; Sundberg and Lindblom, 1992). A pesar de ser un enfoque
interesante, ninguno de estos trabajos especifican una especificación computable. En
cambio, podemos encontrar dos propuestas diseñadas justamente desde un punto de
vista computacional (Bod, 2002) y (Gilbert and Conklin, 2007). En la primera se intenta
inferir una gramática para aprender segmentaciones de un corpus de melod́ıas con frases
separadas manualmente. En la segunda, las melod́ıas monofónicas se analizan en árboles
de análisis sintáctico usando una gramática probabiĺıstica libre de contexto que se usa
para realizar reducciones melódicas, y este análisis se evalúa a través de un problema de
segmentación musical.
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Como medio de representar conceptualmente la música para composición, los árboles
se han usado en (Smaill et al., 1993) y (Balaban, 1996). En (Höthker et al., 2001) se
emplean como medio de describir la naturaleza jerárquica de las codificaciones de altura.
En composición automática, Högberg (2005) propone el uso de transductores de árboles
para generar música.

Durante el final del siglo XIX y el inicio del XX, Heinrich Schenker (1868-1935)
desarrolló un método para analizar composiciones tonales basadas en la estructuración
jerárquica de la música (en (Beach, 1977) se puede encontrar un compendio de sus
publicaciones). Argumentaba que un trabajo musical puede ser en último término
entendido como una serie de elaboraciones que llevan desde una estructura armónica
y melódica básicas a la secuencia real de notas que componen la pieza musical. Para ello
se apoyó en la estructura jerárquica árbol. Sin embargo, dado que sus teoŕıas no fueron
desarrolladas desde un punto de vista formal, no hay una metodoloǵıa computable que
conduzca el análisis de una pieza. En cambio, se deben llevar a cabo varios principios no
deterministas para derivar los sucesivos niveles de reducción del análisis schenkeriano.
Han habido varios intentos para crear sistemas automáticos que realicen este tipo de
análisis: Smoliar (1979), Kassler (1988), Kirlin and Utgoff (2008), y los trabajos
excelentes de Marsden (2001, 2004, 2005, 2007). Sin embargo, aparte de lo ambiguo
en la resolución de ciertos situaciones en las que hay que tomar una decisión para elegir
entre varios análisis posibles, ninguno de estos trabajos han tenido como objetivo la
comparación musical, y por lo que sabemos, no hay un conjunto de datos que garantice
que los análisis realizados con estos métodos valgan para el objetivo de la evaluación de
la similitud.

Una forma similar a Schenker de explicar jerárquicamente las relaciones internas
de una obra musical es la Teoŕıa Generativa de Música Tonal o GTTM (Lerdahl and
Jackendoff, 1983). Inspirada en las gramáticas aplicadas en lingǘıstica, los autores
del GTTM escribieron: “nuestro objetivo es una teoŕıa musical que sea un formato
de descripción de las intuiciones musicales que una persona experimenta al escuchar
música”. Aunque no se define ninguna gramática formal en ese trabajo, śı se especifica
una lista extensa de reglas que intentan explicar lo que se percibe al escuchar una
obra musical, cubriendo desde la percepción del tempo a cómo se estructura una obra
completa, pasando por las dependencias individuales entre notas. Pero como ocurre
con las teoŕıas de Schenker el GTTM no es directamente computable. La mayor parte
de las reglas son ambiguas y entran en colisión en muchos casos. Han habido intentos
de implementación (Hamanaka et al., 2007; Jones et al., 1993), siendo el trabajo de
este último (denominado ATTA) el más activo y prometedor hasta el momento. Sin
embargo, estos sistemas tienen una gran cantidad de parámetros para ajustar, y están
lejos de poder trabajar con piezas completas.

En el contexto de la composición musical asistida por ordenador hay una herramienta
que destaca sobre el resto: OpenMusic (Assayag et al., 1999). Utiliza árboles como una
manera natural de representar la naturaleza jerárquica de la subdivisión de las figuras
musicales y grupetos. Está implementado en LISP donde todo se representa con listas
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o árboles, en la forma de listas de listas. Una secuencia musical se representa mediante
una lista de alturas y un árbol representando duraciones.

Finalmente, los árboles han sido usados no como una forma de representar
música, sino como una estructura de datos intermedia para otros propósitos como la
estructuración de documentos para búsqueda (Blackburn, 2000; Drewes and Högberg,
2007; Skalak et al., 2008).

Representación monofónica de árboles

Una melod́ıa tiene dos dimensiones principales: ritmo y altura. En las representaciones
lineales, estas dimensiones se codifican mediante śımbolos expĺıcitos. Los árboles
ordenados son capaces de representar el tiempo en la propia estructura, haciendo uso del
hecho de que una pieza completa se subdivide jerárquicamente en compases, y que las
duraciones de las notas son múltiplos de unidades básicas de tiempo, principalmente en
subdivisiones binarias y en algunos casos ternarias. El orden de izquierda a derecha de
los nodos de los árboles describe la paso del tiempo. De esta forma, los árboles son menos
sensibles a los códigos usados para representar melod́ıas, pues sólo es necesario establecer
la codificación de altura implicando un número menor de grados de libertad en cuanto
a la codificación que las cadenas. Es más, esta organización jerárquica permite añadir
información adicional como descriptores armónicos a grupos de notas de una manera
natural. Denominamos a esta representación árboles métricos.

En la música occidental, el paso del tiempo se suele dividir regularmente en compases,
tiempos y en subdivisiones de éstos. La duración de los compases depende del tempo
y la métrica. En nuestro modelo, cada compás se representa por un árbol. Cada nota
o silencio se encuentra en un nodo hoja. El orden de izquierda a derecha de las hojas
preserva el orden temporal. El nivel de la hoja en el árbol determina la duración de la
nota representada de forma que el ráız del árbol representa la duración de un compás
completo (una redonda en el caso de un compás 4

4), los nodos hijos de la ráız representan
una subdivisión de esa duración (una blanca en el caso del 4

4), etc. Para esa métrica, si
sólo encontramos una redonda en el compás, el árbol consistirá solamente en un nodo ráız,
pero si tiene dos blancas, ese nodo se partirá en dos nodos hijos. Aśı, recursivamente,
cada nodo del árbol se dividirá en dos (o tres en el caso de las partes de los compases
compuestos) hasta alcanzar el nivel correspondiente a la duración de la nota a codificar.

Durante la construcción del árbol, se crean nodos internos cuando son necesarios
para alcanzar el nivel de hoja apropiado, rellenando el árbol de izquierda a derecha.
Inicialmente, sólo las hojas contienen una etiqueta. Las etiquetas contienen la
representación de altura en cualquiera de las codificaciones posibles (nota MIDI,
intervalo, etc.) pudiendo incorporar incluso información armónica. Una vez el árbol está
construido, se realiza un proceso de propagación de abajo hacia arriba para etiquetar
completamente el árbol.

Un ejemplo de este esquema se representa en la figura F.1. Nótese que en este caso
el compás es un 4

2 y la duración de la ráız es equivalente a una blanca. En el árbol, el
hijo izquierdo de la ráız se ha partido en dos subárboles hasta alcanzar el nivel 3 que
corresponde a la duración de la primera nota (la altura Si se representa por un 11). Para
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representar las duración del silencio y el Sol, codificado por un 7 (ambos duran la octava
parte del compás), se necesita un nuevo subárbol para el árbol a la derecha del anterior,
generando dos nuevas hojas en las que pondremos una etiqueta vaćıa para el silencio y
un 7 para el Sol. El Do negra (0) se inicia en el segundo tiempo del compás, por lo que
es representado en el nivel 2 de acuerdo a su duración.

�
11

� � �
7

�
4
2

� �
0

 

 0

11  

 7

Figure F.1: Ejemplo de construcción del árbol. Las etiquetas son intervalos en número
de semitonos desde Do.

.

La figura F.1 describe cómo se respeta el orden temporal de las notas en la partitura
mediante el recorrido de izquierda a derecha en el árbol. Véase también cómo los tiempos
de ataque y duraciones son representados impĺıcitamente en el árbol, en contraposición
a la codificación expĺıcita del tiempo cuando se emplean cadenas. Además, esta
representación es la misma aunque se cambie la escala de tiempo o la figuración usada.

Para permitir la representación de ritmos no binarios, como aquellos que encontramos
en compases compuestos y grupetos, simplemente subdividimos los nodos de acuerdo a
esas subdivisiones.

La representación de melod́ıas completas nos lleva a emplear un subárbol para cada
compás que es agrupado respetando el orden secuencial de compases en un bosque
ordenado.

Propagación

Dos causas motivan el etiquetado total de los nodos del árbol por medio de la
propagación. Primero, la mayor parte de los algoritmos de comparación de árboles
necesitan que todos los nodos (internos y hojas) estén etiquetados, pero en el proceso de
construcción de árboles métricos solamente las hojas se etiquetan. Usamos un conjunto
de reglas para propagar las etiquetas de las hojas hacia arriba, etiquetando aśı los nodos
internos. La propagación de una etiqueta se decide en base a que la nota en un nodo
es más importante que aquella de su nodo hermano. La importancia de una nota es
relativa a su capacidad para contribuir a la identidad de la melod́ıa.

Segundo, la alta complejidad temporal de las distancias de edición de árboles usadas
para comparar los árboles y de esa forma las melod́ıas, requiere que los árboles sean lo
más pequeños posible. Cuando aparecen notas muy cortas o no se ajustan exactamente
a las subdivisiones binarias o ternarias, los árboles resultantes son muy profundos. Aśı,
las reglas de propagación se acompañan con una acción de poda para borrar ramas poco
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significativas a partir de un nivel dado. Este proceso ayuda a eliminar información poco
relevante que haŕıa la comparación más dif́ıcil, obteniendo árboles reducidos capaces de
mantener las principales caracteŕısticas de la melod́ıa.

La decisión de qué es relevante y qué no es complicada, véase cómo tanto el análisis
schenkeriano como el GTTM tienen problemas para tomar de manera determinista
esta decisión. Nuestro objetivo no es analizar obras, sino decidir qué notas son más
importantes para comparar las canciones de manera computable. Siguiendo estos
principios presentamos dos esquemas de propagación: heuŕıstico y análisis-melódico.
La primera se basa en reglas emṕıricas encontradas tras analizar visualmente obras
junto a variaciones y distintas interpretaciones de las mismas. La segunda usa un
análisis melódico basado en las reglas del análisis tonal para determinar las notas
más importantes. Hemos incluido además dos esquemas simples que emplean sólo la
información de acentos métricos para propagar notas que atacan en tiempo o parte
fuerte propagación-izquierda o débil propagación-derecha.

La figura F.2 muestra un ejemplo de propagación heuŕıstica.
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(a) Una melod́ıa de un compás y su representación empleando etiquetas de
altura (sólo las hojas por ahora) antes de podar y propagar etiquetas.
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(b) Árbol final propagado y con nodos podados (en ĺıneas
discontinuas tras aplicar las reglas de propagación). Se muestra
también la melod́ıa equivalente al árbol podado

Figure F.2: Efecto de la propagación heuŕıstica en una melod́ıa.

Comparación de árboles

Una vez representadas las melod́ıas mediante árboles con las técnicas comentadas
anteriormente, la comparación de esas melod́ıas se lleva a cabo midiendo la similitud
de los árboles que las codifican. Para ello se han usado las distancias clásicas de edición
de árboles (Zhang and Shasha, 1989), distancias de edición restringidas (Selkow, 1977),
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distancias de alineamiento (Jiang et al., 1995), y distancias de abajo-arriba (Valiente,
2001). Para la distancia de alineamiento proponemos una implementación alternativa
a la propuesta por el autor que mejora sustancialmente los tiempos de cálculo.
Adicionalmente, presentamos una nueva distancia diseñada para trabajar con árboles
etiquetados solamente en las hojas (Rizo and Iñesta, 2010) que hace no necesario el
proceso de propagación.

Representación de música polifónica

La metodoloǵıa que acabamos de introducir es capaz de trabajar solamente con música
monofónica. Si las obras de entrada son polifónicas se pueden seguir dos estrategias:
reducir la polifońıa a monofońıa en alguna de las técnicas existentes como es quedarse
siempre con la nota más alta en cada instante, o tratar directamente el contenido
polifónico. Nuestra propuesta usa esta última opción.

Para representar música polifónica, se insertan todas las voces en el mismo árbol
siguiendo las reglas de la representación monofónica. Las etiquetas de los nodos son
ahora conjuntos de notas (véase la figura F.3).

Esta representación es extendida para representar duraciones relativas de notas
mediante el uso de cardinalidades en multisets. Además se desarrolla un mecanismo
de propagación de etiquetas de abajo hacia arriba basado en la unión de estos multisets.

La comparación de árboles polifónicos se realiza de la misma forma que los árboles
monofónicos con la única diferencia que ahora las operaciones de edición deben tener
en cuenta que las etiquetas son un tipo multiset en lugar de contener datos escalares.
Para evaluar el coste de sustitución entre multisets proponemos una serie de distancias
entre vectores como la distancia eucĺıdea, Manhattan, Helliger, etc. que detallamos en
el apéndice A.

Experimentos

Los experimentos han sido diseñados para comprobar la idoneidad de la representación
de árbol propuesta para la tarea de medir la similitud entre obras musicales. Las
distintas formas de codificar la altura de las notas, las propagaciones, formas de comparar
los árboles, y los distintos niveles de poda nos llevan a tener un gran número de
maneras distintas de representar y comparar obras musicales mediante árboles. En
los experimentos, se han probado todas las posibilidades con la intención de descubrir
el impacto de cada componente en el sistema para la tarea prevista.

Dado que no hay una base de datos suficientemente grande en la comunidad
investigadora para comparar los distintas propuestas disponibles en la literatura, se han
compilado varios corpora, tanto monofónicos como polifónicos, enfocados en diferentes
aspectos de la similitud musical.

Nuestra propuesta ha sido comparada con los sistemas que se pueden considerar los
más representativos actualmente. Estos sistemas también tienen un número elevado de
posibles configuraciones que han sido evaluadas exhaustivamente.
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Figure F.3: Ejemplo de música polifónica y su árbol correspondiente

Los experimentos diseñados han seguido los siguientes pasos:

1. El primer paso ha sido seleccionar aquellas configuraciones, tanto de los árboles
como del resto de métodos (cadenas, grafos, etc.), que han obtenido un buen
compromiso entre tiempos de proceso y tasas de acierto comportándose robustos
para todos los tipos de similitud musical representados en los distintos corpora.
Para ello se ha diseñado una metodoloǵıa para la comparación de resultados
teniendo en cuenta el significancia estad́ıstica, desequilibrio en el número de
prototipos en los distintos corpora y los diferentes tipos de contenidos.

2. Tras seleccionar la lista de mejores configuraciones por método, se han aplicado a
un escenario realista.

3. Dados los resultados obtenidos en los anteriores pasos, por cada método se ha
seleccionado la que parece ser la mejor configuración
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4. Finalmente, se ha estudiado el impacto de cada forma de construir y comparar
árboles en la calidad de los resultados anteriores.

Conclusiones

En esta tesis se ha introducido una representación de árboles de música codificada en
formato simbólico para la evaluación de la similitud, y se ha mostrado que ofrece un buen
compromiso entre tiempos de proceso y calidad entre todos los métodos presentados en
los corpora explorados.

Con el propósito de enmarcar nuestra propuesta en la literatura relacionada, se han
revisado tanto los métodos punteros de comparación musical como los usos del tipo
abstracto de datos árbol para el procesado de música simbólica en otros dominios.

Retomemos la hipótesis introducida al principio de este documento:

El tipo abstracto de datos árbol parece ser el más idóneo para capturar
la estructura temporal y jerárquica, y es adecuado para representar la
reducción de una obra musical. Por tanto, los árboles se postulan como
una estructura de datos válida para codificar la música en formato simbólico
para la evaluación automática de la similitud.

Los experimentos presentados parecen corroborar esta hipótesis. La representación
propuesta se ha mostrado capaz de codificar la información ŕıtmica de una obra musical
de manera impĺıcita basada en la estructura métrica, siendo las principales ventajas
respecto estructuras lineales su simplicidad en la representación de música monofónica y
polifónica en el mismo tipo de estructura, y su versatilidad para incorporar información
más elaborada como la forma musical o la armońıa.

La estructura árbol propuesta se ha usado con éxito en otras tareas. Por ejemplo, la
identificación de la tonalidad siguiendo un recorrido de abajo hacia arriba en árboles
polifónicos (Rizo et al., 2006b). Este método ha sido usado en los experimentos
de esta tesis para obtener la tonalidad para aquellos ficheros MIDI cuya tonalidad
estaba ausente, y por los resultados obtenidos se puede deducir que este proceso se
ha comportado lo suficientemente consistente para la tarea para la que fue diseñada.
Otra aplicación ha sido la composición automática (Esṕı et al., 2007), donde los árboles
métricos son usados como una manera de representar la música en un sistema genético,
que emplea el intercambio de árboles en las operaciones de cruce.

Nuestro enfoque tiene dos inconvenientes: su fuerte dependencia de la estructura
métrica de la fuente de entrada, y su dificultad para representar ligaduras, puntillos y
śıncopas. El primer problema se puede solucionar a través de un análisis métrico de
la obra a priori (Eck and Casagrande, 2005; Meudic, 2002b). En cualquier caso, los
resultados experimentales han mostrado que la información métrica es importante para
la evaluación de la similitud. El segundo inconveniente, desde el punto de vista de la
representación, se ha solventado con la adición de un śımbolo especial que codifica el
concepto de continuación. No obstante, para la tarea de comparación musical, esto
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no se puede considerar como desventaja como ha hab́ıan apuntado previamente otros
autores (Hanna et al., 2008; Mongeau and Sankoff, 1990; Pardo and Sanghi, 2005).

Un problema derivado que surge de la estructura métrica fija es el excesivo
crecimiento de los árboles cuando aparecen notas muy cortas e imprecisiones en la
interpretación. Este problema ha sido tratado mediante el proceso de propagación
propuesto. Sin embargo, es una ĺınea de investigación abierta que podŕıa solucionarse
mediante la aplicación de algoritmos avanzados de cuantización (Agon et al., 1994;
Cemgil et al., 2000) o convirtiendo la estructura métrica fija en una más flexible, capaz
de respetar de alguna forma la estructura de compás, tiempos y tactum, y de trabajar
tanto con música monofónica como polifónica.

El último aspecto que puede ser mejorado desde el punto de vista de la representación
es la sustitución del agrupamiento actual de los árboles que representan compases por
una estructura jerárquica codificando la estructura formal o de arquitectura de la obra
musical.

La comparación de los árboles se ha realizado utilizando una serie de distancias de
edición y se ha propuesto una nueva medida de similitud entre árboles que actualmente
también estamos comenzando a aplicar en otros dominios diferentes al musical. También
se ha propuesta una nueva implementación de una distancia de alineamiento clásica que
hace el algoritmo practicable en el tiempo. Aunque se podŕıan probar más distancias,
y los tiempos de proceso podŕıan mejorar, por los resultados obtenidos parece que la
calidad de recuperación musical no tiene muchas más posibilidades de mejora con el
cambio de distancia. Śı se puede estudiar más en profundidad la adición de la información
de la propagación para ponderar el coste de sustitución.

En esta tesis no hemos empleado ningún sistema de ajuste automático de costes de
edición. En (Habrard et al., 2008) mostramos que los resultados se pueden mejorar
sustancialmente con la aplicación de sistemas de ajuste de parámetros como son los
sistemas genéticos, o con el uso de distancias estocásticas tanto en cadenas como en
árboles, capaces de aprender de un conjunto de entrenamiento la matriz de costes de
edición.

El prefiltrado de los nodos en los árboles polifónicos previa a la comparación de los
árboles, y el uso de una versión adaptada a éstos del algoritmo de comparación de árboles
parcialmente etiquetados propuesta es otra ĺınea de trabajo a explorar.

Otro área de trabajo abierta es la aplicación de las técnicas de comparación de árboles
que hemos aplicado a nuestros árboles métricos a otras representaciones arborescentes
como aquellas obtenidas tras el análisis schenkeriano o el GTTM.

Hemos realizado una exploración exhaustiva del espacio de parámetros de algunos de
los principales métodos de evaluación de la similitud existentes hoy en d́ıa, con un total
de 4088 configuraciones distintas. La combinación de éstos es una opción prometedora
a seguir para alcanzar definitivamente los mejores resultados. En (Rizo et al., 2008,
2009a,b) presentamos un procedimiento para seleccionar la mejor combinación de
clasificadores para la tarea de la similitud polifónica basada en la elección de los mejores
métodos que además generan resultados más dispares.
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Para el proceso de música polifónica con métodos monofónicos que además es
integrable en una combinación de clasificadores, el algoritmo que se queda con las notas
más altas en cada momento se puede reemplazar por un preproceso más sofisticado: la
extracción de la pista de la melod́ıa siguiendo procesos estad́ısticos propuesto en (Rizo
et al., 2006a).

Finalmente, la mayoŕıa de los trabajos existentes que evalúan la similitud musical
usan un solo corpus, que seguramente tiene una versión sesgada de lo que la similitud
musical. Es más, en muchos casos, la evaluación se realiza de manera subjetiva. En
esta tesis hemos propuesto una forma diferente de evaluar los distintas paradigmas
de comparación musical. Por una parte hemos recopilado 7 corpora distintos, tanto
monofónicos como polifónicos, representando formas diferentes de concebir lo que es
la similitud musical Por otra parte, hemos diseñado una metodoloǵıa para extraer
conclusiones sobre el comportamiento de los distintos algoritmos en copora de distintos
tamaños y naturaleza.
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Daniel Müllensiefen and Klaus Frieler. Cognitive adequacy in the measurement of
melodic similarity: Algorithmic vs. human judgements. Computing in Musicology,
13:147–176, 2004a. (Cited on pages 20, 21, 24, 26, 35, 48, and 51).
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Glossary

P Note in common music notation sort. 13, 15,
21

α Algorithm: setup or configuration of a
method. xiv, 120, 130, 132

child Node child. 81, 107, 111, 168
compound True if the meter is compound. 83
children Node children. 80, 100, 101, 107, 114

D Set of documents retrieved. 120, 121
depth Node depth. 80, 101, 116
desc Descendants of a node. 81, 83, 102, 103

h Tree height. 80, 83, 116, 166

indel Insertion and deletion cost. 30, 31

label Label contained in a node. 80, 85, 100, 101,
164

leaf True if the node is a leaf. 80, 111, 168
leaves Set of leaves of a tree. 80, 101
l Tree pruning level. 74, 75, 86, 90–92, 116,

125, 137, 138, 140, 142, 144–148, 183–186,
188, 189, 192–195, 198–201

mdur Meter duration. 83, 84

nodedur Node duration. 83

P1 C-Brahms algorithm P1. 55
p12 Pitch class encoding. 14–16, 40
P2 C-Brahms algorithm P2. 55
p21 Base-21 pitch encoding. 14, 16
P2v5 C-Brahms algorithm P2v5. 55
P2v6 C-Brahms algorithm P2v6. 55
P3 C-Brahms algorithm P3. 55
p40 Base-40 pitch encoding. 14, 17
p7 Base-7 pitch encoding. 15
pabs Absolute pitch encoding. 14, 17, 20, 29, 35
par Node parent. 80, 100, 107
pc Pitch contour encoding. 14, 20
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pdm Pitch directed-modulo-12 encoding. 14, 19
phdc Pitch high definition contour encoding. 14,

20, 21
pift Interval from tonic pitch encoding. 14–16, 51,

54, 118
pitv Pitch Interval encoding. 14, 19, 20, 27, 35, 41

Q Corpus of queries. 120

R Set of relevant documents. 120, 121
rank Node arity or rank. 80, 81, 104, 105, 107, 110,

111, 168
rc Contour rhythm encoding. 24
rdabs Absolute duration rhythm encoding. 23–25,

27, 29
rdior IOR discretized rhythm encoding. 41
rhdc High definition contour rhythm encoding. 24,

25, 126
rioi IOI rhythm encoding. 25, 35
rior IOR rhythm encoding. 25, 41
rlabel Label of the root of the tree. 80, 103, 105,

107, 110, 111, 114, 115, 168
root Tree root. 80, 81
rpim Position in measure rhythm encoding. 26
Rr Set of relevant documents retrieved. 120, 121
rtabs Absolute time rhythm encoding. 23

Σp Pitch alphabet. 13, 27, 28, 34
Σr Rhythm alphabet. 27, 28, 34



Acronyms

ADR Average Dynamic Recall. 123, 139, 141

DOP Data-Oriented Parsing. 61
DP Delta Pitch. 19
DTW Dynamic Time Warping. 31, 48

EMD Earth Mover Distance. 39, 56

GTTM Generative Theory of Tonal Music. 67, 68,
77, 86, 95, 207, 210, 214

HMM Hidden Markov Model. 41, 42, 51
HPCP Harmonic Pitch Class Profiles. 48

I/R Implication / Realization Narmour model. 36
IDF Inverse Document Frequency. 37
IOI Inter-Onset Interval. 25, 28, 35, 43, 53
IOR Inter-Onset interval Ratio. 25, 41, 50
IORatio Inter-Onset Interval Ratio. 25
IORr Inter-Onset interval Ratio. 25

MIR Music Information Retrieval. 1, 2, 4, 7, 11,
203–205

MRR Mean Reciprocal Rank. 121, 135–138, 140–
142, 144, 147

NHT Non-Harmonic Tone. 26–29

OMR Optical Music Recognition. 2, 4, 20

PaC Precision-at-class. 121
PIT Pitch Interval in semitones with the previous

note. 19
PR Precision. 121

QBE Query-By-Example. 2, 20
QBH Query-By-Humming. 2, 20, 35
QBM Query-By-Melody. 2
QPI Quantized, Partially Overlapping Intervals.

20

RC Recall. 121
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RR Reciprocal rank. 121

SMF Standard MIDI files. 4, 23, 28, 119, 122, 204

TF Term Frequency. 37

VLDC Variable-Length Doesn’t Care. 98



Index

(δ, γ)-approximate, 33
N -Gram Counting Algorithm, 127
S-Derivation, 101
δ-approximate, 33
n-gram, 36, 37, 44, 50, 119, 125, 127
1/Jaccard, 147

104, 133, 135

Absolute modulo 12, 15
Absolute pitch, 16, 17, 57
Abstraction levels, 19
Accented-note model, 26
Align, 125
All, 147
Allusion, 2
ANOVA, 130

Bag, 115
Bag of words, 50
Band In A Box, 124
Base-12, 15, 16
Base-21, 15, 16
Base-40, 15, 17
Base-7, 15, 16
Beat sequence, 49
Borda Count, 130, 131, 133–135, 141, 142,

144
Bottom-Up, 107

C-Brahms, 55, 125, 134
Center of Effect Generator, 51
Chromagram, 48
Cite, 2
Class, 120
Common music notation, 13, 15
Configuration, 119
Consolidation, 32
Correlation degree, 43
Cosine, 37
Cosine Similarity, 118, 125
Count distinct measure, 37
Coupled, 27, 126
Covers, 124, 128, 135–138, 140, 145

Decoupled, 28, 126, 137
Degree-1 Edit Distance, 106
Deletion, 100
Depth, 80
Digital audio, 4
Diminution, 64
Directional intervals, 19
Discrete accommodation of enharmonic pitches,

14
Division, 64
Documents Retrieved, 120, 121
Dominant, 47

Edit Operation, 99
Elaboration, 64
ESSEN, 61
Euclidean Distance, 118, 125
Evocativeness, 51
Evolutionary, 95, 98

Fanimae, 125, 127
Folded pitch, 15
Forest, 81
Forward algorithm, 42, 51
Fragmentation, 32
Fuzzification, 20

Gaps, 33
Gaussified, 24
Global alignment, 30

Hanson, 19, 38
Harmonic, 26, 48, 53
Harmonic Edit Distance, 48
Harmonic Mean, 118, 125
Height, 80
Helliger, 147
Hellinger Distance, 118, 125
Heuristic, 86, 94, 138, 142

Icps, 133, 135, 147
Implication, 35
Inet, 135
Insertion, 100
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Inter-class, 122
Interleaved, 44, 45
Interval, 19, 20
Interval from a reference note, 15
Interval from key note, 15
Interval from tonic, 15, 16, 28, 51, 54
Interval invariance, 14, 17
Interval invariant, 16
Intra-class, 122
Isolated-Subtree, 107
Isomorphic, 104

Jaccard Coefficient−1, 118

Kaszkiel, 37
Key relative, 15
Kruskal-Wallis, 130

L1, 125
L2, 125
Leaf, 80
Left-Propagation, 86, 95
Level, 80
Levenshtein, 29, 31
Local alignment, 31
Local cost matrix, 31
Log Distance, 118, 125

Manhattan, 118, 125
Mann-Whitney, 130
Matching Coefficient, 118, 125
Matrixpitch, 126, 137, 142
Melodic-Analysis, 86, 95
Metadata, 4
Method, 119
Metric Trees, 133
Mirex, 123, 128, 136, 139
Mongueau-Sankoff, 133
Mono to poly, 44
Monophonic, 43, 129
Monophony, 12
Monopoly, 44
MSM, 55
Multiple viewpoints system, 28
Multiplicity, 115

Multireferenced descriptor, 15
Multiset, 115
Multisets Distance, 118, 125
MusicXML, 4, 203

Name without octave, 15
Nauru, 141
Non-interleaved, 44, 45
None, 125, 147
Not Evolutionary, 95
Not Ordered Trees, 95
Notebits, 45
Numerical scale, 15

Octave invariant, 15
Onset-based, 44, 45, 49
OpenMusic, 68
Optimal Alignment, 104
Optimal warping path, 31
Ordered, 95
Ordered Tree, 81
Overlap Coefficient, 118, 125

Partial, 94
Partial observation vector, 51
Partially Labelled Tree Comparison Algo-

rithm, 109
Pascal, 123, 124, 133, 135, 145
Pitch class, 15, 16, 40, 43, 51, 53
Pitch spectrum, 53
Pivoted cosine, 37
Polyphonic, 5, 129
Precision-at-n, 121
Printed music, 4
Probabilities, 118, 125
PROMS, 53, 133
Prototype, 120
Pruning Level, 86
Pure polyphonic, 43

Qualified contour, 20
Query, 120
Quotiented sequence, 45

Realization, 36



Relabeling, 99
Relevance, 120
Relevant Documents, 120
Relevant Documents Retrieved, 120, 121
Repeated unit time steps, 24
Representation, 119
Rhythm, 21
Rhythm trees, 68
Rhythmical weightings, 24
Right-Propagation, 86, 95

Sankoff, 126
Selkow, 125
Setup, 119, 127
Shasha, 125
SIA(M)ESE, 54, 55
Sibling, 80
Signed intervals, 19
Significance, 128, 130
Simple Local Alignment, 127
Simultaneities, 51
Skyline, 43, 50, 122, 123, 136, 138, 147
Sonorities, 44, 45, 56
Spaces, 104
Spiral Array, 51
Start Match Alignment, 127
String edit distance, 30, 31
String Edit Distances, 133
Subdominant, 47
Subtree, 81
Success Rate, 120
Symbolic format, 4
Symbolic representation, 4

Tempo invariance, 12, 23, 24, 38, 54
Text information retrieval, 36
Theme, 3, 124
Time grids, 24
Tonal Pitch Step Distance, 47
Tonic, 47
Top-Down, 107
Top-Down Distance, 106
Transposition invariance, 12, 17, 19, 24, 31,

35, 38, 39, 44, 45, 48, 54, 55

Uitdenboderg, 134

Valiente, 125
Variational Distance, 118, 125
Variations, 124
Varm, 124, 133, 135
Varp, 124, 135

Withnht, 126, 137
Withoutnht, 126
Withoutrests, 126
Withrests, 126
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