
Unit 3: Files
Programming 2

Degree in Computer Engineering
University of Alicante
2024-2025

Index

1. Introduction

2. Text files

3. Binary files

1

Introduction

What is a file (1/3)

• Data we have worked with so far is stored in the main memory of
the computer (RAM)

• The size of the main memory is limited (a few Gigabytes)
• All data is deleted when the program ends (volatile memory)

2

What is a file (2/3)

• Files are the way in which C++ allows accessing to the
information stored in disk (secondary storage)

• Files are dynamic structures: their size may vary during the
execution of the program according to the data they store

• There are two types of files depending on how the information is
stored inside: text files and binary files

3

What is a file (3/3)

• There are two ways to access a file:
• Sequential access: reads/writes the elements of the file in order,
starting from the beginning and one after the other

• Direct access (or random): Read/write directly in any position of the
file, without traversing the previous ones

4

Text files

Definition (1/2)

• Text files are also called files with format
• A text file stores the information as a character sequence
• For example, the integer value 19 is saved in a text file as the
characters 1 and 9

• Examples of text files: C++ source code, a web page (HTML) or
a file created with a text editor

• The most common read/write mode used in text files is the
sequential access

5

Definition (2/2)

• Text files contain only printable characters: those whose ASCII
code is greater or equal to 32

• Each character is assigned an ASCII code for its storage in
memory:

6

Declaration of variables

• Files are just another data type in C++
• The fstream library has to be included in the code to work with
files:

#include <fstream>

• There are three basic data types to work with files, depending on
what you want to do with them:*

ifstream fileRead; // Read only
ofstream fileWrite; // Write only
fstream fileReadWrite; // Read and write

*It is unusual to use the fstream type with text files

7

Opening and closing (1/4)

• A file variable (logical file) must be associated with a real file in
the system (physical file) in order to be able to read/write in it

• The file must be opened with open to establish the relationship
between the variable and the physical file:

ifstream file; // Read from file
file.open("myFile.txt");
// Now we can read from "myFile.txt"

• The file name can be passed as a character array or as a
string:*

char fileName[]="myFile.txt";
file.open(fileName);

*Using string is available from C++ 2011 version onward

8

Opening and closing (2/4)

• A second parameter can be passed to open specifying the file’s
opening mode:

• Read: ios::in
• Write: ios::out
• Read/write: ios::in | ios::out
• Append: ios::out | ios::app

ifstream fr;
ofstream fw;
// Open for reading only
fr.open("myFile.txt",ios::in);
// Open for adding information at the end
fw.open("myFile.txt",ios::out|ios::app);

9

Opening and closing (3/4)

• If a file that already exists is opened for writing (ios::out) all its
contents are deleted

• If the file is opened with ios:app the content is not deleted, and
the new information is added at the end

• If the file does not exist, a new one is created with an initial size
of 0

10

Opening and closing (4/4)

• By default, ifstream is opened for reading and ofstream for
writing

• The file can be opened at declaration:
ifstream fr("myFile.txt"); // By default ios::in
ofstream fw("myFile.txt"); // By default ios::out

• Before reading/writing, check with is_open whether the file was
correctly opened (true) or not (false)

• After finishing working with a file, it must be released with close:
ifstream fr("myFile.txt");
if(fr.is_open()){
// Now we can work with the file
...
fr.close(); // Close the file

}
else // Show opening error

11

Reading with operator >> (1/3)

• Reading a file allows retrieving information saved in disk and
loading it in the main memory of the computer

• The operator >> can be used to read from files as we did
previously with cin to read from keyboard

• Loop to read a file character by character:

ifstream fr("myFile.txt")
if(fr.is_open()){
char c; // Could be int, float, ...
while(fr >> c){ // Read while there are characters
cout << c;

}
fr.close()

}
else{
cout << "Error opening file" << endl;

}

12

Reading with operator >> (2/3)

• The operator >> discards blanks in the file, as when reading from
cin

• The get function can be used to read character by character
without discarding blanks:

ifstream fr("myFile.txt");
if(fr.is_open()){
char c;
while(fr.get(c)){
cout << c;

}
fr.close();

}
else{
cout << "Error opening file" << endl;

}

13

Reading with operator >> (3/3)

• The operator >> can be used to read files containing different
data types

• For example, given a file that contains in each line a string and
two integers (e.g. Hello 1032 124):

ifstream fr("myFile.txt");
if(fr.is_open()){
string s;
int num1,num2;
while(fr >> s){ // Read the string
fr >> num1; // Read the first integer
fr >> num2; // Read the second integer
cout << s << "," << num1 << "," << num2 << endl;

}
fr.close()

}
...

14

Reading by lines

• The getline function can be used to read a whole line of a file,
just as when reading from cin:

ifstream fr("myFile.txt");
if(fr.is_open()){
string s;
while(getline(fr,s)){
cout << s << endl;

}
fr.close();

}
else{
cout << "Error opening file" << endl;

}

15

Detecting the end of file

• The eof method indicates whether the end of the file has been
reached

• This occurs when there are no more data to read:

ifstream fr;
...
while(!fr.eof()){
// Read using any of the previous methods

}

• When trying to read data outside the file, the methods return
true

• After reading the last valid data in the file, the method still returns
false

• It is necessary to do an additional reading to make eof to return
true

16

Writing with operator <<

• The operator << can be used to write to file, similarly to how we
use cout to write on screen:

ofstream fw("myFile.txt");
if(fw.is_open()){
int num=10;
string s="Hello, world";
fw << "An integer: " << num << endl;
fw << "A string: " << s << endl;
fw.close();

}
else{
cout << "Error opening file" << endl;

}

17

Exercises (1/6)

Exercise 1 Write a program that reads a file file.txt and prints on
screen the lines of the file containing the string Hello.

18

Exercise (2/6)

Exercise 2

Write a program that reads a file file.txt and writes in another file
FILE.TXT the content of the input file with all its letters in uppercase.

Example:

file.txt FILE.TXT
Hello, world.
How are you?
Bye, bye...

HELLO, WORLD.
HOW ARE YOU?
BYE, BYE...

19

Exercises (3/6)

Exercise 3

Write a program that reads two text files, f1.txt and f2.txt,
writing on screen the lines that differ in each file, inserting < if the line
belongs to f1.txt and > if it belongs to f2.txt.

Example:

f1.txt f2.txt
hello, world.
how are you?
bye, bye...

hello, world.
how is it going?
bye, bye...

The output should read:

< how are you?
> how is it going?

20

Exercises (4/6)

Exercise 4

Develop a function endFile that receives two parameters: the first
one is a positive integer n and the second one is the name of a text
file. The function must show on screen the last n lines of the file.

Example:

endFile(3,"strings.txt")

with several words
oneword
maaaany words, many, many...

21

Exercises (5/6)

Exercise 4 (continue)

There are two solutions:

1. Using brute force: read the file to count the number of lines and
then read it again to write the final n lines. Problem: what if there
are 100000000000000 lines?

2. Use an array of strings that always stores the n last lines of the
file (although at the beginning there are less than n lines)

22

Exercises (6/6)

Exercise 5

Consider two text files, f1.txt and f2.txt, in which each line is a
series of numbers, separated by :. Each line is sorted by the first
number, from lowest to highest, in the two files. Write a program that
reads the two files, line by line, and writes in a file f3.txt the lines
common to both files.

Example:

f1.txt f2.txt f3.txt
10:4543:23
15:1:234:67
17:188:22
20:111:22

10:334:110
12:222:222
15:881:44
20:454:313

10:4543:23:334:110
15:1:234:67:881:44
20:111:22:454:313

23

Binary files

Definition (1/2)

• Also called files without format
• They store information in the same way as it is stored in the main
memory of the computer

• For example, the integer (char) value 19 is saved to file as the
sequence 00010011

• Functions used to read and write binary files are different to
those used for text files

• Both sequential and direct access are commonly used with
binary files

• Reading and writing is faster than with text files (there is no
conversion to character data)

• Binary files usually require less disk space than their equivalent
text files

24

Definition (2/2)

• It is very usual to store each item in the file using a struct:

struct TStudent{
char name[100];
int group;
float avgMark;

};

• Using direct access, the n record of the file can be accessed
without having to read the previous n-1 records

25

Declaration of variables

• Variables are declared as in text files:

#include <fstream> // Required to work with files

ifstream fileRead; // Read only
ofstream fileWrite; // Write only
fstream fileReadWrite; // Read and write

26

Opening and closing

• Binary files must be opened setting the opening mode to
ios::binary:

• Read: ios::in | ios::binary
• Write: ios::out | ios::binary
• Read/write: ios::in | ios::out | ios::binary
• Append: ios::out | ios::app | ios::binary

ifstream fileRead;
ofstream fileWrite;
// Open to read only in binary mode
fileRead.open("myFile.dat",ios::in | ios::binary);
// Open to write only in binary mode
fileWrite.open("myFile.dat",ios::out | ios::binary);
// Abbreviated form
fstream fileReadWrite("myFile.dat",ios::binary)

• As with text files, it can be checked whether the file is open with
is_open and release it with close

27

Reading (1/3)

• The function read is used to read data from binary files
• This function receives two parameters: the first one indicates
where is saved the information read from the file, the second one
indicates the amount of information (number of bytes) to be
read:*
TStudent student;
ifstream file;

file.open("myFile.dat",ios::in | ios::binary);
if(file.is_open()){
// In each iteration a TStudent record is read
while (file.read((char *)&student, sizeof(TStudent))){
// Show the name and mark of each student
cout << student.name << ": " << student.mark << endl;

}
file.close();

}

*The function sizeof can be used to get the number of bytes occupied by any data type 28

Reading (2/3)

• The n-th record from the file can be read without having to read
the previous n-1 records (direct access)

• The function seekg allows positioning the reading window at a
specific point in the file

• This function receives two parameters: the first one indicates
how many bytes we want to skip, the second one indicates the
reference point to make the jump
// There is a file with TStudent records
ifstream file("myFile.dat",ios::binary);
TStudent student;
...
// We can read directly the third record
// Skip the first two records
file.seekg(2*sizeof(TStudent),ios::beg);
// Now we can read the third record
file.read((char *)&student,sizeof(TStudent));
...

29

Reading (3/3)

• Possible reference points:
• ios::beg: from the beginning of the file
• ios::cur: from the current position
• ios::end: from the end of the file

• If the first parameter of seekg is a negative number, the reading
window moves towards the beginning of the file:

ifstream file("myFile.dat",ios::binary);
TStudent student;
...
file.seekg(-1*sizeof(TStudent),ios::end);
// Read the last record in the file
file.read((char *)&student,sizeof(TStudent));
...

30

Writing (1/3)

• The function write is used to write to a binary file
• This function receives two parameters: the first one indicates
where the information to be written to the file is stored, the
second one indicates the amount of information (number of
bytes) to be written:

• The syntax is very similar to that of read:
ofstream file("myFile.dat",ios::binary);
TStudent student;

if(file.is_open())
{
strcpy(student.name,"John Doe");
student.avgMark=7.8;
student.group=5;

file.write((const char *)&student,sizeof(TStudent));
file.close();

}
31

Writing (2/3)

• As when reading, the n-th record from the file can be written
without having to write in the previous n-1 records

• The function seekp allows positioning the writing window at a
specific point in the file (seekg is for reading)

• Parameters are the same as for seekg:

ofstream file("myFile.dat",ios::binary);
TStudent student;
...
// Positioning to write in the third record
file.seekp(2*sizeof(TStudent),ios::beg);
file.write((const char *)&student,sizeof(TStudent));
...

• If the position searched with seekp does not exist in the file, the
file is ”enlarged” to write the data

32

Writing (3/3)

• Character arrays must be used instead of string to store
strings in a binary file

• The problem with string is that it is a variable size data type,
thus records including this type would have different sizes

• When using character arrays, it might be necessary to trim the
string to fit in the record before saving it to file:

const int SIZE=20;
char str[SIZE];
string s;
...
strncpy(str,s.c_str(),SIZE-1); // Maximum 19 chars
str[SIZE-1]='\0';

33

Current position

• The current position (in bytes) of the reading window can be
obtained with the tellg function, and the writing window with
tellp

• This can be used, for example, to calculate the number of
records in a file:

ifstream file("myFile.dat",ios::binary);
// Set the reading window at the end of the file
file.seekg(0,ios::end);
// Calculate the number of TStudent records in the file
cout << file.tellg()/sizeof(TStudent) << endl;

34

Exercises (1/3)

Exercise 6

Given a binary file students.dat that stores records with the
following information for each student:

• id: 10 characters array
• surname: 40 characters array
• name: 20 characters array
• group: integer

Write a program that prints on screen the id of all the students
belonging to group 7.

Extension: write a program that exchanges the students in groups 4
and 8 (groups range from 1 to 10).

35

Exercises (2/3)

Exercise 7

Given the file students.dat from the previous exercise, write a
program that converts the name and surname of the fifth student to
uppercase, and then writes it again to file.

Exercise 8

Write a program that creates a file students.dat from the data
stored in a text file students.txt in which each field (id, surname,
etc.) is in a different line. Consider that the id, name and surname
may be longer than the length specified for the binary file, and may
need to be trimmed.

36

Exercises (3/3)

Exercise 9

Write a program that automatically assigns students to 10 possible
groups. Each student is assigned the group that matches the last
number on their id (if the id ends in 0, the group 10 is assigned).
The student data is stored in a file students.dat with the same
structure as in previous exercises.

Assigning groups must be done by reading the file only once, not
storing it into the main memory. At each step, the information
corresponding to a student is read, the group is calculated, and the
record is stored at the same position.

37

	Introduction
	Text files
	Binary files

