Unit 2: The string class

Programming 2

X

@prog2ua

Degree in Computer Engineering
University of Alicante
2024-2025

1. Character arrays in C

2. The string class in C++
3. Type conversions

4. Comparison

5. Exercises

Character arrays in C

Declaration (1/3)

» Character arrays contain a sequence of char elements ending
with the null character ('\0’):

// The compiler automatically puts the '\0' at the end
char str[]="hello";

// Another way of initialising, character by character
char str[]l={'h'","'e", "1","1","0","\O"};

// Missing '\0': not a valid character array

char str[]={'h','o','1','a'};

* Many functions that work with character arrays* look for the '\ 0’
to identify where the array ends

« If there is no "\ 0’ in the array, the result of these functions may
not be as expected

*Such as those defined in the cstring library, as described later

Declaration (2/3)

» Character arrays in C have a fixed size and cannot be resized
after being declared:

char str[10]; // Stores a maximum of 10 elements

» A space must always be reserved to store the null character
("\0"):

char str[10]; // Stores a maximum of 9 characters and
Y\O'

* They can be initialised when declared. In that case, it is not
necessary to set the size:

char str[]= >"; // Size 6 (5 letters + '\0')
char st 2[10]— ello"; // Size 10, but only 6 are used

» Character arrays in C can also be used in C++

Declaration (3/3)

« Common errors when declaring character arrays:

// Array too small to store the string
char str[5]="parallelepiped"; // Compilation error

// Single quotes (') used instead of double gquotes (")
char str['; // Compilation error

1='h
char str[]l='hello"';

// Compilation error

// Size not set and variable not initialised

char str[]; // Compilation error

// Attempt to assign a value with '=' after declaration
char str[10];
str="hello"; // Compilation error

Screen output

» Screen output with cout and cerr as with any of the other basic
data types (int, float, etc.)

« Otput can combine variables, constants and different data types:

char str[]="Mark";

int num=10;

cout << str << " -> " << num; // Output is "Mark -> 10"

Keyboard input > Operator >> (1/2)

» Character arrays can be read from the keyboard, as in other
basic data types, using cin and the operator >>

» There are some differences when reading from the keyboard
with respect to other data types

» Blanks* before the string are ignored:

char str[32];
cin >> str;
// User writes " hello"”

// The str variable stores "hello"

*We mean with "blank” a space, tab or new line ('\n")

Keyboard input > Operator >> (2/2)

* Reading finishes as soon as the first white is found. Therefore,
an entire string containing blanks cannot be read:

char str[32];
cin >> str;

// The user writes "good afternoon”

// The str variable stores "good"

* There is no limit in the number of characters that are read. User
can type a string larger than the array size:

char str[5]1;

cin >> str;

// The user writes "sternocleidomastoid"

// Could overlap memory cells not belonging to the
variable and produce a segmentation fault

Keyboard input > getline (1/4)

» Keyboard input can be also read using cin and the getline
function

« This function allows reading strings with blanks, limiting the
number of characters to be read:

const int SIZE=100;

char str[SIZE];

// str: variable where the characters are stored
// SIZE: number of characters read
cin.getline(str,SIZE);

// If the user enters "good evening"

// the variable str stores "good evening"

* Reads a maximum of SIZE-1 characters or until reaching the
end of the line
* The '"\n"' atthe end of the line is read but not stored in the
variable
» The function adds '\ 0" to the end of what has been read
(therefore only reads SIzE-1 characters) 8

Keyboard input > getline (2/4)

« If the user types more characters than indicated, they remain in
the keyboard buffer and the next reading fails:

char str[10];
cout << ;
cin.getline(str,10);
cout << << str << endl;
cout << ;

cin.getline(str,10);

cout << << str << endl;

Terminal

$ myProgram

String 1: hello everybody
Read 1: hello eve

String 2: Read 2:

Keyboard input > getline (3/4)

» There can be problems when reading from cin combining the
>> operator and the get1ine function:

int num;
char str[100];

cout << ;

cin >> num;

cout <<
cin.getline(str,100);
cout << << str << endl;

Terminal

$ myProgram
Num: 10
Input string: What I read is:

10

Keyboard input > getline (4/4)

* Why is this happening?
» The >> operator reads 10, but stops reading when the first
non-numeric character is found (' \n"' in this case)
» The first thing that get1ine finds in the bufferisa '\n"', so it
finishes reading and does not store anything in str

e Solution:

cin >> num;
cin.ignore(); // Add this line

// Gets '\n' out of buffer
// getline can now be used without issues

The cstring library (1/3)

The cstring library contains a set of functions that facilitate
working with character arrays
The library must be included in the code using it:

#include <cstring>

strlen returns the length (number of characters) of a character
array:

char str[l10]="hello";
cout << strlen(str); // Prints 5

strcpy copies one character array into another. Be careful not
to exceed the size of the target array:

char str[5];

strcpy(str,"cool"); // The string fits into str: 4 + '\0'
= 5 characters

strcpy(str, "house"); // No fitting! Segmentation fault!

12

The cstring Library (2/3)

* strcmp compares two strings in lexicographical order*, returning
1lif stri>str2, 0if strl==str2,and -1 if stri<str2:

char strl[]="root";
char str2[]="river";
cout << strcmp(strl,str2) << endl; // Prints 1
cout << strcmp(str2,strl) << endl; // Prints -1
cout << strcmp(strl,strl) << endl; // Prints 0

* strcat appends the content of one string to the end of another.
There must be enough space in the destination string:

char str[l10]="hello";
strcat (str,", wo"); // Total 10 characters (fits)
strcat(str,"r1ld"); // Adds 3 more (no longer fits!)

*Order followed by words in a dictionary

13

The cstring Library (3/3)

* The functions strncmp, strncpy, and strncat compare,
copy, or concatenate only the first n characters:

char str[8];
strncpy (str, "he 5, world",5); // Only copies "hello"
str[5]="\0"; // Does not add the '\0' automatically

// We need to add it manually

char strl[8]="help";
char str2[8]="hello";
// Only compares the first two characters

cout << strncmp(strl,str2,2) << endl; // Prints 0

char strl1[50]="Hello, ";
char str2[]="wonderful orld";
strncat (strl,str2,9); // strl will be "Hello, wonderful"

14

Conversion to int and float

 To transform a character array to int or float the functions
atoi or atof can be used

» These functions are defined in the library cstdlib:

#include <cstdlib> // Required when atoi/atof are used

char str[]="100";

int num=atoi(str); // num is 100

char str2[]1="10.5";
float num2=atof (str2); // num2 is 10.5

15

The string class in C++

Definition (1/2)

» Character arrays in C can be used in C++, but C++ also has the
string class* that allows working more easily and flexibly with
character strings:

// Declaration of a string variable
string s; // No need to set the string size
// Declaration with initialisation
string s2="Alicante";
// Declaration of a constant

const string GREET="hello";

*More information on what a “class” is in Unit 5

16

Definition (2/2)

* A string has a variable size and can dynamically grow
depending on the storage needs of the program:

string s="hello"; // Stores 5 characters
s="hello everybody"; // Stores 15 characters*
s="ok"; // Stores 2 characters

* No need to worry about the "\ 0"

» The passing of parameters (value and reference) is done as with
any basic data type:

void myFunction(string sl,string &s2) {
// sl is passed by value
// s2 1is passed by reference

*A white space counts as any other character

17

Screen output

» Screen output with cout and cerr as with character arrays in C:

string s="Mark";

’

int num=10;

cout << s << " -> " << num; // Prints "Mark -> 10"

18

Keyboard input > Operator >>

* cin and the >> operator can be used to read from keyboard in
the same way as with character arrays in C

 Blanks before the string are ignored and reading finishes when
the first blank is found:

string s;

cin >> s;

// User writes " hello"”

// The s variable stores "hello"

// User writes "good afternoon"
// The s variable stores "good"

19

Keyboard input > getline (1/2)

» As with character arays, the function get1ine can be used to
read string variables

* Reading strings containing blanks is possible in this case:

string s;
getline(cin,s);

// If the user writes "good afternoon"

// the variable s stores '"good afternoon"

* Does not limit the characters read, because with the string
class is not necessary

 Alert! The syntax changes with respect to character arrays in C

20

Keyboard input > getline (2/2)

* If the >> operator and get1ine are combined while reading,
there is the same problem as with character arrays in C*

* By default, get1ine reads until it finds the newline character
("\n")

» An additional parameter can be passed to indicate that the
function must read up to a specific character:

string s;

// Reads until finding the first comma
getline(cin,s,"',");

// Reads until finding the first square bracket

getline(cin,s,'[");

*The solution is the same proposed in slide 11

21

Extracting words from a string

* Words can be easily extracted from a string by using the
stringstream class:

#include <sstream> // Required when using stringstream

stringstream ss("Hello cruel world 666");

string s;

// Each iteration of the loop reads until reaching a

blank
while (ss>>s){ // Extracts words one by one
cout << "Word: " << s << endl;

22

string methods (1/3)

» Since string is a class, methods are called by putting a dot
after the name of the variable

* length returns the number of characters in the string:

// unsigned int length()
string s="hello, orld";
cout << s.length(); // Prints 12

« find returns the position in which a substring appears within a
string:

// size t find(const string &s,unsigned int pos=0)
cout << s.find("world"); // Prints 7
// If the substring is not found returns string::npos

23

string methods (2/3)

* replace substitutes a string (or part of it) with another one:

// string& replace (unsigned int pos,unsigned int len,
const string &s)

string s="hello world";

s.replace(0,5,"hola"); // s is "hola world"

erase allows removing part of a string:

// string& erase (unsigned int pos=0,unsigned int len=
string::npos) ;

string s="hello world";

s.erase(4,3); // s is "hellorld"

substr returns a substring of the original string:

// string substr(unsigned int pos=0,unsigned int len=
string::npos) const;
string s="hello world";

string subs=s.substr(2,5); // subs is "1lo w"

24

string methods (3/3)

» Example of use:

string a="There is a mug in this kitchen with mugs";
string b="mug";
unsigned int size=a.length(); // Length of a
// Search for the first "mug"
size t found=a.find(b);
if (found!=string: :npos) {

cout << "First in: " << found << endl;

// Search for the second "mug"

found=a.find (b, found+b.length());

if (found!=string: :npos)

cout << "Second in: " << found << endl;

}
else{

cout << "Word '"" << b << "' not found";
}
// Replace the first "mug" with "bottle"
a.replace(a.find(b),b.length(),"bottle");

cout << a << endl;

25

» Comparisons: == (equal), ! = (different), > (greater), >= (greater
or equal), < (less) and <= (less or equal)

string sl,s2;

cin >> sl; cin >> s2;

if (sl==s2) // Comparison in lexicographical order
cout << "Equal" << endl;

» Assignment of one string to another with the operator =, like any
basic data type:

string sl="he " ;
string s2;
s2=sl;

String concatenation with the operator +:

string sl="hello";
"

string s2="world";
string s3=sl+","+s2; // s3 is "hello, world"

26

Operators (2/2)

» Access to components with the operator [], as with character
arrays in C:

string s="hello";
char c=s[4]; // s[4] is 'o'

s[0] = "H";

cout << s << ":" << ¢ << endl ; // Prints "Hello:o"

Characters cannot be assigned to positions outside the string:

string s;

s[0]="g'; s[1]='o'; s[2]="0'; s[3]="d";

// Does not store anything because s 1s an empty string
and these positions are not reserved

Example of traversal of a st ring character by character:

string s="hello, orld";
for (unsigned int i=0;i<s.length(); i++)

s[i]='f'; // Replaces each character with 'f'

27

Type conversions

Conversion between string and character array in C

* A character array in C can be assigned to a string using the
assignment operator (=):

char str[]="hello";

’

string s;

s=str;

* A string can be assigned to a character array in C using
strcpyand c_str:*

char str[10];
string s="world";

// There must be enough room in str
strcpy(str,s.c_str());

*The c_str method returns a character array in C with the contents of the string

28

Conversion between string and number

» Transform an integer or real number to string:

#include <string> // It is not the same as <cstring>

int num=100;

string s=to string(num);

Transform a string to integer:*

string s="100";

int num=stoi (s);

Transform a string to real number:

n1n B

string s= .5";

float num=stof (s);

*The functions to _string, stoi and stof are available from C++ 2011 version onward

29

Comparison

Character array in C vs. string

Character array in C

string

char str[SIZE];
char str[]="hello";

strlen(str)
cin.getline(str,SIZE);
if(!strcmp(strl,str2)){...}
strcpy (strl,str2);

strcat (strl,str2);

strcpy(str,s.c_str());
Ends with "\0"'
Fixed allocated size

Variable used size

Can be used with binary files

string s;
string s="hello";

s.length ()
getline(cin,s);
if(sl==s2){...}
sl=s2;
sl=sl+s2;

s=str;
Does not end with "\0"'
Variable allocated size

Used size == allocated size

Cannot be used with binary files

30

Exercises

Exercises (1/4)

Exercise 1

Code a function called subsString that returns a substring of length
n, starting at position p of other string. Both the argument and the
return value must be string type.

subString ("heeello",2,5) // Returns "lo"

Exercise 2

Code a function deleteStringCharacter that, given a string
and a character, deletes all the occurrences of that character in the
string and returns it.

deleteStringCharacter ("cocobongo",'o') // Returns "ccbng"

31

Exercises (2/4)

Exercise 3

Code a function searchSubstring that searches the first
occurrence of a substring a inside a string b and returns its position,
or -1 if not found. Both a and b must be string type.

searchSubstring ("eel", "heeello") // Returns 2

Extensions:

1. Add another parameter to the function that indicates the number of
occurrence to return (if the value is 1 it would work as the original
function)

2. Implement another function that returns the number of occurrences of
the substring in the string

32

Exercises (3/4)

Exercise 4

Code a function encrypt that encodes a string by adding a number
n to the ASCII code of each character, taking into account that the
result must be a character.

For example, if n=3, a is encoded as d, b as e,..., x as a, y as b, and
Zz as c.

The function must admit lowercase and uppercase letters. Non-letter
characters must not be encoded. The parameter must be string

type.

encrypt ("hello, world",3) // Returns "khoor, zruog"

33

Exercises (4/4)

Exercise 5

Write a function isPalindrome that returns true if the string
parameter is a palindrome.

isPalindrome ("racecar") // Returns true
isPalindrome ("hello, olleh") // Returns false
Exercise 6

Implement a function createPalindrome thataddstoa string
the same string but reversed so that the result is a palindrome.

createPalindrome ("hello") // Returns "helloolleh"

34

	Character arrays in C
	The string class in C++
	Type conversions
	Comparison
	Exercises

