
Unit 1: Introduction
Programming 2

Degree in Computer Engineering
University of Alicante
2024-2025

Index

1. Algorithms and program design

2. Compilation

3. Basic elements of C++

4. Debugging

5. Exercises

1

Algorithms and program design

How to make a program

1. Study the problem and the possible solutions
2. Algorithm design on paper
3. Writing the program on the computer
4. Program compilation and error correction
5. Program execution
6. ... and testing (almost) all the possible cases

The process of writing, compiling, executing and testing
has to be iterative, including individual tests on functions
and modules.

2

Recommended methodology for programming

• Study the problem and explore the solutions
• Design the algorithm on paper
• Design the program trying to write many functions with little code
(about 30 lines per function)

• Avoid repeated code by properly using functions
• main should be like the index of a book and allow us to
understand what the program does at a glance

• Compile and test the functions separately: do not wait until
having the whole program written before compiling and testing

3

Compilation

The compilation process

• The compiler converts a source code into an object code
• In Programming 2 we use the GNU C++ compiler to transform
the source code in C++ into an executable program

• The GNU compiler is invoked with the g++ program and admits
numerous arguments:*

• -Wall: shows all the warnings
• -g: adds information for the debugger
• -o: sets the name of the executable
• -std=c++11: uses the 2011 C++ standard
• --version: shows the current version of the compiler

• Example of use:
Terminal
$ g++ -Wall -g prog.cc -o prog

*The complete list of arguments can be accessed by running man g++ on the Linux terminal

4

Basic elements of C++

Structure of a program

#include <standard header files>
...
#include "own header files"
...
using namespace std; // Allows using cout, string...
...
const ... // Constants
...
typedef struct enum ... // Definition of new types
...
// Global variables: FORBIDDEN in Programming 2!!
...
functions ... // Declaration of functions
...
int main() { // Main function
...
}

5

We keep some rules from Programming 1

• No usage of global variables is allowed
• No warnings should appear when compiling the source files for
assignments and exams

• No use of break and continue is allowed within loop structures
• No multiple return statements are allowed in a single function

6

Identifiers

• Identifiers are names of variables, constants and functions
• They must begin with lowercase or uppercase letters, or the
underscore character

• C++ distinguishes between upper and lower case letters:

int group,Group; // These are two different variables

• Identifiers must describe its use:

int numStudents=0;
void visualiseStudents(){...}

• Bad examples:

const int EIGHT=8;
int p,q,r,a,b;
int counter1,counter2; // More usual: int i,j;

7

Reserved words

• In C++ reserved words exist that cannot be used as user-defined
identifiers:

if while for do int friend long auto public union ...

• If we use them as identifiers we will get a compilation error:

int friend=10;

Terminal
error: expected unqualified-id before '=' token

• This type of error messages is not easy to interpret

8

Variables > Definition and types

• Variables may store different types of data
• The type of a variable must be indicated when declared
• Basic data types in C++:

Type Size (in bits)*
int 32
char 8
float 32
double 64
bool 8
void Not a type

• unsigned can be used with int to get positive numbers
(without sign):
int i=3; // Values from -2.147.483.648 to 2.147.483.647
unsigned int j=3; // Values between 0 and 4.294.967.295

*In the x86 architecture
9

Variables > Initialisation

• When a variable is declared, it should be initialised:

int numTeachers=11;

• It is not necessary to initialise it if the first thing done after
declaring the variable is assigning it a value:

int i;
for(i=0;i<25;i++){...}

10

Variables > Scope (1/3)

• The scope of a variable (or constant) is the part of the program in
which the variable can be accessed

• A variable can be used from the moment it is declared and within
the block between curly braces that contains it:

int numBoxes=0;

if(i<10){
// numBoxes can be used here
int numBoxes=100; // Same name but different scope
cout << numBoxes << endl; // Output is 100

}

cout << numBoxes << endl; // Output is 0

11

Variables > Scope (2/3)

• Local variable to a function:
• A variable that is declared within a function
• Usually declared at the beginning of the function, although it can be
introduced at an intermediate point as well:

void print(){
int i=3,j=5; // At the beginning of the function
cout << i << j << endl;
...
int k=7; // At an intermediate point
cout << k << endl;

}

• Global variable:
• A variable declared out of the function scope
• It is recommended not to use global variables (they are dangerous)
• In Programming 2 it is forbidden to use global variables

12

Variables > Scope (3/3)

• Example of collateral effect when using a global variable:

#include <iostream>
using namespace std;
int counter=10; // Global variable

void countDown(void){
while(counter>0){
cout << counter << " ";
counter--;

}
cout << endl;

}

int main(){
countDown();
countDown(); // Prints nothing

}

13

Constants

• Constants have a fixed value (that cannot be changed) during
the whole execution of the program

• They are declared by adding const before the data type:
const int MAXSTUDENTS=600;
const double PI=3.141592;
const char FAREWELL[]="Goodbye";

• Useful to define values that are used in multiple points of a
program, and which do not change their values (such as the size
of an array or a chess board)

Type Examples
int 123 017* 1010101
float/double 123.7 .123 1e1 1.231E-12
char 'a' '1' ';' '\n' '\0' '\''
char[] (string) "" "hello" "double: \""
bool true false

*A constant value starting with a zero is treated as an octal number
14

Data types > Conversion (1/2)

• Implicit type conversion: automatically done by the compiler

Types Examples
char → int int a='A'+2; // a is 67
int → float float pi=1+2.141592;
float → double double halfPi=pi/2.0;
bool → int int b=true; // b is 1
int → bool bool c=77212; // c is true

• Explicit type conversion: defined by the programmer using the
cast operator (writing the data type in parentheses)

char theC=(char)('A'+2); // theC is 'C'
int integerPi=(int)pi; // integerPi is 3

15

Data types > Conversion (2/2)

• Sometimes, if the cast is not done, the compiler displays a
warning complaining about the comparison of different data types

• It is important not to ignore warnings
• When comparing an integer (int) with an unsigned integer
(unsigned int) a warning occurs:

int num=5;
char str[]="Hello";

if(num<strlen(str)){ // strlen returns an unsigned int
// The warning can be avoided with a cast:
// if((unsigned)num<strlen(str))

}

Terminal
warning: comparison between signed and unsigned integer...

16

Data types > Definition of new types

• In C++ new types can be defined using typedef:

typedef int integer;
integer i,j;

// logic and boolean are equivalent to bool
typedef bool logic,boolean;

• It is possible to declare an array as a new data type:

typedef char tStr[50]; // tStr is an array of chars

• In C++ names that appear after struct, class, and union are
also types

17

Data Types > Checks

• In C++, you can check whether a variable is alphanumeric (a
digit or a letter) using the isalnum() function:

int isalnum(int c);

• It returns true if it is, and false otherwise
• The ctype library must be included in the code to use it:

#include <ctype.h>
...
if(isalnum(c)) { // Check if 'c' is alphanumeric
cout << c << " is alphanumeric";

}
else {
cout << c << " is not alphanumeric";

}

18

Increment and decrement operators

• The ++ and -- operators are used to increase or decrease the
value of an integer variable in one unit

• Preincrement/predecrement: increases/decreases the variable
before considering its value
int i=3,j=3;
int k=++i; // k is 4, i is 4
int l=--j; // l is 2, j is 2

• Postincrement/postdecrement: increases/decreases the variable
after considering its value
int i=3,j=3;
int k=i++; // k is 3, i is 4
int l=j--; // l is 3, j is 2

• It is recommended that these operators are used isolated:
i++; // Equivalent to ++i
j=(i++)+(--i); // ??

19

Arithmetic expressions (1/2)

• Arithmetic expressions are formed by operands (int, float
and double) and arithmetic operators (+ - * /):

float i=4*5.7+3; // i is 25.8

• char and bool operands are implicitly converted to integer:

int i=2+'a'; // i is 99

• If two integers are divided, the result is an integer:

cout << 7/2; // Output is 3

• If we want the result of the integer division to be a real value, we
must make a cast to float or double:

cout << (float)7/2; // Output is 3.5
cout << (float)(7/2); // Watch out! Output is 3

20

Arithmetic expressions (2/2)

• The % operator (modulus) returns the remainder after integer
division:
cout << 30%7; // Output is 2

• Operators precedence:*

++ (increment) -- (decrement) ! (negation) - (unary minus)
* (product) / (division) % (modulus)
+ (sum) - (substraction)

• If in doubt, use brackets:
cout << 2+3*4; // Output is 14

// * has higher precedence than +
cout << 2+(3*4); // Output is 14
cout << (2+3)*4; // Output is 20

*From highest to lower precedence. The operators of a row have the same precedence

21

Relational expressions (1/3)

• Relational expressions allow comparisons between values
• Operators: == (equal), != (different), >= (greater or equal), >
(greater), <= (less or equal) and < (less)

• If operand types are not equal, they are (implicitly) converted to
the most general type:

if(2<3.4){...} // Converted to: if(2.0<3.4)

• Operands are grouped two by two from left to right: a < b < c
must be coded as a<b && b<c

• The result is 0 if the comparison is false and different from 0 if it
is true*

*In the GCC compiler it is 1, but the C++ standard does not impose this

22

Relational expressions (2/3)

23

Relational expressions (3/3)

24

Logical expressions

• The logical expressions allow to operate boolean values and
obtain a new boolean value

• Operators: ! (negation), && (logical and) and || (logical or)
• Precedence: ! > && > ||

if(a || b && c){...} // Equivalent to: if(a || (b && c))

• Short-circuit evaluation:
• If the left operand of && is false, the right operand is not evaluated
(false && whatever is always false)

• If the left operand of || is true, the right operand is not evaluated
(true || whatever is always true)

25

Input and output

• Screen output with cout:

int i=7;
cout << i << endl; // Outputs 7 and a line break (endl)

• Error (screen) output with cerr:

int i=7;
cerr << i << endl; // Outputs 7 and a line break (endl)

• Keyboard input with cin:*

int i;
cin >> i; // Stores in i a number written with the

keyboard

*More details in Unit 2

26

Flow control > if

• Flow control structures evaluate a conditional expression (true
or false) and select the following instruction to execute
depending on the result

• if evaluates a condition and takes one path or another:

int num=0;
cin >> num; // Read a number

if(num<5){ // If num is lower than 5 then execute this
cout << "The number is lower than five";

}
else{ // If not, execute this one
cout << "The number is greater or equal than five";

}

27

Flow control > while

• while executes instructions as long as the condition is true:
int i=10;
while(i>=0){
cout << i << endl; // Does a countdown from 10 to 0
i--; // Forgetting to decrease implies an infinite loop

}

• Caution when using || within the condition, because the two
parts must be false to finish the loop:
while(i<length || !found){
// The two conditions must be false to finish the loop

}

• Usually we will need && instead of ||:
while(i<length && !found){
// Finishes the loop when either condition is false

}

28

Flow control > do-while

• do-while executes the body at least once:
int i=0;
do{ // Shows the value of i at least once
cout << "i is: " << i << endl;
i++;

}while(i<10);

29

Flow control > for

• for is equivalent to while :

for(initialisation;condition;completion){
// Instructions

}

initialisation;
while(condition){
// Instructions
completion;

}

• Provides a more elegant and compact syntax than while:

for(int i=10;i>=0;i--){
cout << i << endl; // Counts down from 10 to 0

}

30

Flow control > switch

• switch allows selecting between several options:

char option;
cin >> option; // Reads a character from keyboard

switch(option){
case 'a': cout << "Option A" << endl;

break; // Exits the switch
case 'b': cout << "Option B" << endl;

break;
case 'c': cout << "Option C" << endl;

break;
default: cout << "Another option" << endl;

}

• The expression in the switch (option in the previous example)
has to be int or char (otherwise a compilation error is emitted)

31

Arrays and matrices (1/3)

• Arrays (or vectors) store multiple values in a single variable in
contiguous memory locations

• These values can be of any type, including our own data types
• When declaring an array, its size (the number of elements it
stores) must be specified by means of constants or variables:

// Size defined by constants
const int MAXSTUDENTS=100;
int students[MAXSTUDENTS]; // Can store 100 integers
bool fullGroups[5]; // Can store 5 booleans

// Size defined by variables (not recommended)
int numElements;
cin >> numElements; // Users can input any number
float listMarks[numElements];

32

Arrays and matrices (2/3)

• When initialising an array at declaration, it is not necessary to
indicate its size:
int numbers[]={1,3,5,2,5,6,1,2};

• Assignment and access to values through the [] operator:
const int SIZE=10;
int vec[SIZE];
vec[0]=7;
vec[SIZE-1]=vec[SIZE-2]+1; // vec[9]=vec[8]+1;

• If an array has size SIZE, the first element is located in position
0 and the last one in position SIZE-1

• A runtime error may occur when trying to read or write in an out
of bounds position:
int vec[5];
vec[5]=7; // May occur a runtime error

// The last valid element is vec[4]

33

Arrays and matrices (3/3)

• A matrix is an array in which each position contains another array
• It is necessary to set the size of the two dimensions (rows and
columns):

const int SIZE=10;
char board[SIZE][SIZE]; // Matrix of 10 x 10 elements
int table[5][8]; // Matrix of 5 x 8 elements

• As with arrays, they begin in 0 and end at SIZE-1
• Assignment and access to values through the [] operator:

int matrix[8][10];
matrix[2][3]=7; // Necessary to indicate row and column

• It is possible to use rows of matrices as if they were arrays:

readArray(matrix[4]); // Passes row 4 as an array

34

Character arrays

• Character arrays are vectors containing a sequence of
characters ending with the null character ’\0’:*
char str[]="hello"; // The compiler adds '\0'

"hello" → h e l l o \0

• If not initialised, it is necessary to specify its size:
const int SIZE=10;
char str[SIZE]; // Ok
char str2[]; // Compilation error

• Remember: "a" is a character array and 'a' is a single
character
char str[]="a"; // Ok
char str2[]='a'; // Compilation error

*More details about character arrays in Unit 2

35

Functions > Definition (1/2)

• A function is a block of code that performs a particular task
• They allow us to group common operations in a reusable block
• They can optionally have input parameters and return a value:

returnType functionName(parameter1,parameter2,...){
returnType ret;

instruction1;
instruction2;
...

return ret;
}

• A function should not have much code
• Rule of thumb: if you have to do copy-paste in the code then you
probably need a function

36

Functions > Definition (2/2)

• You can always find a way to use a single return in the body of
a function:
// Not allowed in Programming 2
bool search(int vec[], int n){
for(int i=0;i<SIZE;i++){
if(vec[i]==n)
return true; // First return

}
return false; // Second return

}

// Alternative version with one return
bool search(int vec[],int n){
bool found=false;
for(int i=0;i<SIZE && !found;i++){
if(vec[i]==n)
found=true;

}
return found; // A single return

} 37

Functions > Parameters (1/2)

• Parameters can be passed by value or by reference (with &)
// a and b are passed by value, c by reference
void function(int a,int b,bool &c){
c=a<b; // c keeps this value after the function ends

}

• When passing a parameter by value, the compiler makes a local
copy of it within the function

• If the parameter is a large data type, it is more efficient to pass it
by reference with const:
void function(const string &s){
// The compiler does not copy s, but if
// we try to modify it we get an error

}

• In Programming 2 it is not allowed to pass parameters by
reference if they are not going to be modified, except if it is done
with const as explained above

38

Functions > Parameters (2/2)

• Arrays and matrices are implicitly passed by reference (it is not
necessary to prepend &)

• The name of an array or matrix, without square brackets,
contains the memory address where it is stored*

• When passing an array as a parameter, do not include the size of
the first dimension in the declaration of the function:

void sum(int v[],int m[][SIZE]){
// In m the size of the first dimension is not included
...

}
...
// No brackets are used in the call to the function
sum(v,m);

*More information in Unit 4

39

Functions > Prototypes

• Sometimes it is necessary to use a function before its code
appears (or a function whose code is in another module)*

• In these cases the prototype of the function must be included:
void myFunction(bool,char,double[]); // Prototype

char anotherFunction(){
double vr[20];
// myFunction has not yet been declared
// but we can use it thanks to the prototype
myFunction(true,'a',vr);

}

// Declaration of the function
void myFunction(bool exist,char opt,double vec[]){
...

}

*More information about creating modules in Unit 5

40

Structures

• A structure is a collection of data, which may be of different types
• It is defined with the reserved word struct:

struct Student{ // Defines a new data type Student
int dni;
float mark;

};

• Fields are accessed indicating the name of the variable and the
field, separated by a period (member access operator):

Student a,b;
a.dni=123133; // Assignment to a field
b=a; // Assignment of a complete structure bit by bit

41

Enumerated types

• Enumerated types can be declared with a set of possible values
(enumerators):
// Create a new data type colour
enum colour{black,blue,green,red}; // 4 enumerators

• Variables of this type can take any value from this set of
enumerators:
colour myColour=blue;
if(myColour==green){
cout << "Green!" << endl;

}

• The values of the enumerated types are converted internally to
int and vice versa:
enum animal{cat,dog,monkey,fish};
cout << monkey << endl; // Displays 2 on the screen
// It is the position of monkey in the enumerators

42

STL vectors (1/2)

• The Standard Template Library (STL) is a library of C++ functions
• It provides different data structures and algorithms
• It includes the class vector, which allows us to store elements
of any type, similarly to regular arrays, but without having to
worry about the size:
#include <vector> // Include this whenever vector is used
vector<int> vec; // Declares an integer vector

// Not necessary to indicate its size

• The initial size of a STL vector is 0 and it grows dynamically as
required

• Use push_back to add elements at the end of the vector:*
vec.push_back(12); // Adds 12 at the end of the vector
vec.push_back(8); // Adds 8 after 12

*Since it is a class, its methods are called by putting a point after the name of the variable

43

STL vectors (2/2)

• Access to elements by means of the [] operator:
vec[10]=23; // Similar to regular arrays
cout << vec[8] << endl;

• With size we obtain the number of elements of the vector:
// Traverse all the elements of the vector
for(unsigned int i=0;i<vec.size();i++){
vec[i]=10;

}

• With clear we can delete all the elements and with erase a
specific one:
vec.erase(vec.begin()+3); // Deletes the fourth element
vec.clear(); // Deletes all the elements of the vector

• There are many other functions to work with STL vectors*

*More information at http://www.cplusplus.com/reference/vector/vector/

44

http://www.cplusplus.com/reference/vector/vector/

Arguments (1/4)

• The arguments of a program are used to provide information
(usually options) from the command line

• Their use is very common and allows us to modify the behaviour
of the program:
Terminal
$ ls // Lists the files in a directory
$ ls -a // Lists also hidden files (option ”-a”)
$ ls -a -l // Adds extra information from each file (option ”-l”)

45

Arguments (2/4)

• main is a function and as such it can receive two parameters:
argc and argv

• These parameters allow us to manage arguments passed to the
program through command line:

// Always in this order
int main(int argc,char *argv[]){
...
return 0;

}

• int argc: number of arguments passed to the program
(including also the program name)

• char *argv[]: array of character arrays with the arguments
passed to the program

46

Arguments (3/4)

• Example of use:

int main(int argc,char *argv[]){
for(int i=0;i<argc;i++){
cout << "Arg. " << i << " : " << argv[i] << endl;

}
}

Terminal
$./myProgram -a -h X // Example of call with three parameters
Arg. 0 : ./myProgram
Arg. 1 : -a
Arg. 2 : -h
Arg. 3 : X

• Arguments do not have to start with a hyphen (-) but it is quite a
common practice

47

Argument (4/4)

• It seems easy to manage arguments, but sometimes things can
become complicated

• Users do not always use the same order when introducing
arguments:
Terminal
$ g++ -Wall -o prog prog.cc -g
$ g++ -g -Wall prog.cc -o prog

• There may be errors in the command-line parameters and help
information should be shown to the user

• It is recommended to use a dedicated function to manage the
arguments

48

Debugging

Debugging code in C++ (1/3)

• When there is a runtime error in our code it is sometimes difficult
to locate where the error is

• A debugger is a program that helps to find and correct runtime
errors in the code (bugs)

49

Debugging code in C++ (2/3)

• A debugger allows us, for example, to execute the code line by
line or to see what values the variables have at a certain
execution point

• There are numerous programs that facilitate the task of locating
errors in the code:

• GDB: starts the program, stops it when asked for, and supervises
the content of the variables. If the program has a segmentation
fault, it shows the line of code where the problem is

• Valgrind: detects memory errors (access to components outside an
array, variables used without initialising, pointers that do not point
to an allocated memory area, etc.)

• Other Linux examples: DDD, Nemiver, Electric Fence and DUMA

50

Debugging code in C++ (3/3)

51

Exercises

Exercises

Exercise 1

Implement a program containing a function with the following
prototype: int primeNumber(int n). This function will return the
n-th prime number. The program must print prime numbers on the
screen with the following options:

• -L prints each number on a separate line (by default they are all
printed on the same line)

• -N n prints the n first prime numbers (10 by default)

Execution examples:

Terminal
$ primes -N 5
1 2 3 5 7
$ primes -N -L 5
Error: primes [-L] [-N n]

52

	Algorithms and program design
	Compilation
	Basic elements of C++
	Debugging
	Exercises

