Unit 4: Dynamic memory

Programming 2

X

@prog2ua

Degree in Computer Engineering
University of Alicante
2024-2025

1. Memory layout
2. Pointers

3. Usage of pointers
4. References

5. Implementation of a stack

Memory layout

Static memory

* In static memory the size of the data is fixed and known
before running the program

* The variables we have used so far are static:

int 1=0;
char c;
float v£[3]={1.0,2.0,3.0};

i c vi[0] vi[1] Vvf[2]
[0] [10 [20 | 30 |

1000 1002 1004 1006 1008

* Dynamic memory allows storing large volumes of data, the exact
size of which is unknown when implementing the program

» During program execution, the memory usage is adjusted to the
needs at any given time

* In C++, dynamic memory can be implemented using pointers

Memory segments

« Different memory segments are used during the execution of a

program:
Stack » The stack stores the local data of a func-
tion: parameters passed by value and local
variables
Heap * The heap stores dynamic data allocated dur-
ing the execution of the program
Data segment » The data segment stores global variables
and static variables that are initialised by the
programmer
Code segment * The code segment contains executable in-
structions (the code of the program)

Pointers

Definition and declaration

» A pointer stores the memory address where other data is located
* We say that the pointer “points” to that data
» Pointers are declared using the character *

» The data pointed by the pointer belongs to a specific type that
must be indicated when the pointer is declared:

int *intPointer; // Integer pointer

char *charPointer; // Character pointer

int *intPointerArray[20]; // Array of integer pointers
double **doubleRealPointer; // Pointer to real pointer

Pointer operators (1/2)

» The * operator allows accessing the content of the variable
pointed by the pointer

* The & operator allows obtaining the memory address in which a
variable is stored:

int i=3;

int *pi;

pi=&i; // pi contains the memory address of 1

*pi = 11; // Content of pi is 11. Therefore, i = 11

11

pi

Pointer operators (2/2)

* Assuming that i is at memory address 1000 and pi at 1004:

int i=11;

int *pi;

p1i=&1;

cout << pi << endl; // Prints "1000"
cout << *pi << endl; // Prints "I11"
cout << g&pi << endl; // Prints "1004"

11

pi 1000

1004

Declaration with initialisation

* As any other variable, we can initialise a pointer at the time of its
declaration:

int *pi=&i; // pi contains the memory address of 1

* The NULL value can be used to indicate that a pointer does not
point to any valid data:

int *pi=NULL;

* NULL is a constant with value zero. Since C++ 2011 standard,
the constant nul1ptr can be also used as it represents zero as
an address (pointer type)

Exercise 1

Indicate what is the screen output of these code snippets:

int el;

int *pl,*p2;
el=7;
pl=⪙
p2=pl;

el++;

(*p2) +=el;
cout << *pl;

int a=7;

int *p=¢&a;
int **pp=&p;
cout << **pp;

Usage of pointers

Memory allocation and deallocation)

* The new operator allows to dynamically allocate memory during
program execution

* It returns the starting position of the allocated memory
« If there is not enough free memory, it returns NULL
* The address returned by new must be stored in a pointer:

double *pd;
pd=new double; // Allocates memory for a double

if (pd!=NULL) { // Check that memory was allocated
*pd=4.75;
cout << *pd << endl; // Prints "4.75"

pd
[2000 | | [475] \
1000 1002 e 2000 2002

10

Memory allocation and deallocation (2/2)

* The delete operator allows deallocating the memory allocated
by new:

double *pd;
pd=new double; // Allocate memory

delete pd; // Free memory pointed by pd
pd=NULL; // Recommended if pd will be further used

* Whenever new is used to allocate memory, delete must be
used to deallocate it
» Pointers can be reused after deallocation by using new again:

double *pd;
pd=new double; // Allocate memory

delete pd; // Free memory pointed by pd
pd=new double; // Allocate memory again with pd

Pointers and arrays (1/3)

* There is a close relationship between pointers and arrays

« An array variable is indeed a pointer to the first element of the
array:

int vec[5]1={4,5,2,8,12};
cout << vec << endl; // Prints the memory address

// of the first element of the array
cout << *vec << endl; // Prints "4"

» The array variable always points to the first element of the array
and cannot be modified

12

Pointers and arrays (2/3)

» Pointers can be used as shortcuts to elements of an array:

int vec[20];

int *pVec=vec; // Both are integer pointers
*pVec=58; // Equivalent to vec[0]=58;
pVec=& (vec[7]);

*pVec=117; // Equivalent to vec[7]=117;

13

Pointers and arrays (3/3)

» Pointers can also be used to create dynamic arrays
 To allocate memory for a dynamic array, square brackets are
used to specify the size

» To deallocate all the allocated memory it is also necessary to use
(empty) brackets:

int *pv;
pv=new int[10]; // Allocated memory for 10 integers
pv[0]1=585; // Access as with a static array

delete [] pv; // Deallocate all the allocated memory

14

Pointers defined with typedef

» As shown in Unit 1, new data types can be defined with
typedef:

typedef int integer;
integer a,b; // Equivalent to int a,b;

To get a clearer code, pointers can be defined with typedef:

typedef int *tIntegerPointer;
tIntegerPointer pi; // Integer pointer type

// Do not use * when declared

15

Pointers to structures

* When a pointer points to a struct, the —-> operator can be used
to access its fields:

struct TStructure{
char c¢;
int 1i;

bi

typedef TStructure *TStructurePointer;

TStructurePointer ps;
ps=new TStructure;

ps->c='a'; // Equivalent to (*ps).c='a';
ps->i=88; // Equivalent to (*ps).i=88;

16

Pointers as parameters to functions (1/2)

* A pointer, as any other variable, can be passed as a parameter
by value or by reference to a function:

void funcValue (int *p){ // Parameter by value

p=NULL;
}

void funcReference (int *&p){ // Parameter by reference

p=NULL;
}
int main() {
int i1=0;
int *p=&i;
funcvValue (p) ;
// p stills pointing to i
funcReference (p) ;
// p 1s NULL

17

Pointers as parameters to functions (2/2)

* Previous example using typedef:

typedef int* tIntegerPointer;

void funcValue (tIntegerPointer p) {

p=NULL;
}

void funcReference (tIntegerPointer &p) {

p=NULL;

}

int main () {
int 1=0;
tIntegerPointer p=&i;
funcValue (p) ;

funcReference (p) ;

18

Common errors (1/2)

* Not releasing dynamically allocated memory:

void func () {
int *pInteger=new int;
*pInteger=8;

return; // Error! Missed delete pInteger;

Using a pointer that points to nowhere:

int *pInteger;

*pInteger=7; // Error! pInteger not initialised

19

Common errors (2/2)

* Using a pointer after deallocating memory:

int *p, *g;

p=new int;

q=p;
delete p;
*qg=7; // Error! Memory already deallocated

Deallocating memory not allocated with new:

int *pIntegetr=&i;
delete plInteger; // Error! Points to static memory

20

Exercise 2

Given the following structure:

struct tClient{
char name[32];
int age;

bi

Write a program for reading a client (only one) from a binary file. The
program must allocate the structure in dynamic memory using a
pointer, print its content and finally deallocate the memory.

21

References

nces (1/4)

» C++ reference variables are actually pointers but with a lighter
syntax (syntactic sugar)

» There is nothing we can do with references that cannot be done
with pointers

int a=10;

int *b=g&a; // Pointer variable

*b=20;

cout << a << " " << *b; // Prints "20 20"
int &c=a; // Reference variable

c=30;

cout << a << " " << ¢; // Prints "30 30"

* In the previous code, c can be considered as another name for a

22

References (2/4)

» References cannot be NULL and they are always connected to
some data

» Once a reference is initialised, it cannot be changed to refer to
another memory position, but pointers can

+ A reference must be initialised when it is created, but pointers
can be initialised at any time after their declaration

23

References (3/4)

» References simplify the code of functions that have parameters
passed by reference

» The following function gets two parameters passed by reference
using pointers:

void swap (int *x,int *y) {
int temp=*x;
*X:*y;

*y=temp;

int main() {
int a=10,b=20;
swap (&a, &b) ;
cout << a << " " << b; // Prints "20 10"

24

References (4/4)

» The following function is equivalent to the previous one, but
using references instead of pointers:

void swap (int &x,int &vy) {
int temp=x;
X=Yy;
y=temp;

int main () {
int a=10,b=20;
swap (a,b);
cout << a << " " << b; // Prints "20 10"

» This is the sintax we have been using in this course so far

* It is simpler and more user-friendly than the previous example

25

Implementation of a stack

Implementation of a stack (1/6)

» A stack is a data structure widely used in programming
» A stack is a list of elements
* Elements can be added or removed from the stack with one

restriction: the last element added (push) is the element that will
be first removed (pop)

» Examples of stacks in real life

A pile of stacked plates, where the plate on top is the first to be
taken (popped)

» Supermarket shopping trolleys, where you always pick up the last
one left

26

Implementation of a stack (2/6)

+ A stack can be implement by using fixed size arrays, but it will
limit in the number of elements that can be pushed to the stack

» This issue could be (partially) solved by using a very large array,
but if the number of elements in the stack is small, memory will
be wasted

A stack implementation using pointers will allow the memory
requirements to grow or shrink depending on the current number
of elements

» This implementation is based on the idea of linked list

* When a new element is stacked, memory space is dynamically
allocated for a register

» This register contains the data to be saved and a pointer to the last
element in the stack

» There will always be a head pointer to the top of the stack

27

Implementation of a stack (3/6)

* In the following implementation the head pointer is passed as a
parameter to the functions

* It is passed by reference when a function may change it to point
to another register

« Structure of an element (node) in the stack:

struct Node({
int data; // Information we want to store
struct Node *next; // Pointer to the next node

28

Implementation of a stack (4/6)

» Functions for stacking (push) and unstacking (pop) elements:

void push (Node *ghead,int newData) {
Node *newNode=new Node; // Memory allocation
newNode->data=newData; // Data stored
newNode->next=head; // Point to the last node
head=newNode; // head points to the new node

void pop (Node *&head) {
Node *ptr;
if (head!=NULL) { // Check that there are elements
ptr=head->next; // Second element in the stack
delete head; // Delete the top element
head=ptr; // head points now to the second element

29

Implementation of a stack (5/6)

* Functions to show (display)and empty (destroy) the stack:

void display (Node *head) {

Node *ptr;

ptr=head;

while (ptr!=NULL){ // Go through the whole stack
cout << ptr->data << " "; // Show the data

ptr=ptr->next; // Go to the next element

}
void destroy(Node *&head) {
Node *ptr,*ptr2;
ptr=head;
while (ptr!=NULL){ // Until the whole stack is covered
ptr2=ptr; // Remove the current node
ptr=ptr->next; // Point to the next element
delete ptr2; // Delete the current node
}
head=NULL; // The stack is empty

30

Implementation of a stack (6/6)

« Example of main function using two stacks:

int main () {
// Declare and initialise both stacks
Node *headl=NULL;
Node *head2=NULL;
// Add three elements tot he first stack
push (headl, 3)
push (headl, 1)
push (headl, 7)
1

’

’

display(headl); // Print "7"
pop (headl); // Delete the head

); // Print "1"
destroy (headl); // Empty the first stack
// Add one element to the second stack
push (head2,9) ;
display(head2); // Print "9"
destroy(head2); // Empty the second stack

display (headl

31

	Memory layout
	Pointers
	Usage of pointers
	References
	Implementation of a stack

