
Unit 2: The string class
Programming 2

Degree in Computer Engineering
University of Alicante
2024-2025



Index

1. Character arrays in C

2. The string class in C++

3. Type conversions

4. Comparison

5. Exercises

1



Character arrays in C



Declaration (1/3)

• Character arrays contain a sequence of char elements ending
with the null character (’\0’):

// The compiler automatically puts the '\0' at the end
char str[]="hello";
// Another way of initialising, character by character
char str[]={'h','e','l','l','o','\0'};
// Missing '\0': not a valid character array
char str[]={'h','o','l','a'};

• Many functions that work with character arrays* look for the ’\0’
to identify where the array ends

• If there is no ’\0’ in the array, the result of these functions may
not be as expected

*Such as those defined in the cstring library, as described later

2



Declaration (2/3)

• Character arrays in C have a fixed size and cannot be resized
after being declared:

char str[10]; // Stores a maximum of 10 elements

• A space must always be reserved to store the null character
('\0'):

char str[10]; // Stores a maximum of 9 characters and
'\0'

• They can be initialised when declared. In that case, it is not
necessary to set the size:

char str[]="hello"; // Size 6 (5 letters + '\0')
char str2[10]="hello"; // Size 10, but only 6 are used

• Character arrays in C can also be used in C++

3



Declaration (3/3)

• Common errors when declaring character arrays:

// Array too small to store the string
char str[5]="parallelepiped"; // Compilation error

// Single quotes (') used instead of double quotes (")
char str[]='h'; // Compilation error
char str[]='hello'; // Compilation error

// Size not set and variable not initialised
char str[]; // Compilation error

// Attempt to assign a value with '=' after declaration
char str[10];
str="hello"; // Compilation error

4



Screen output

• Screen output with cout and cerr as with any of the other basic
data types (int, float, etc.)

• Otput can combine variables, constants and different data types:

char str[]="Mark";
int num=10;

cout << str << " -> " << num; // Output is "Mark -> 10"

5



Keyboard input > Operator >> (1/2)

• Character arrays can be read from the keyboard, as in other
basic data types, using cin and the operator >>

• There are some differences when reading from the keyboard
with respect to other data types

• Blanks* before the string are ignored:

char str[32];
cin >> str;
// User writes " hello"
// The str variable stores "hello"

*We mean with ”blank” a space, tab or new line ('\n')

6



Keyboard input > Operator >> (2/2)

• Reading finishes as soon as the first white is found. Therefore,
an entire string containing blanks cannot be read:

char str[32];
cin >> str;
// The user writes "good afternoon"
// The str variable stores "good"

• There is no limit in the number of characters that are read. User
can type a string larger than the array size:

char str[5];
cin >> str;
// The user writes "sternocleidomastoid"
// Could overlap memory cells not belonging to the

variable and produce a segmentation fault

7



Keyboard input > getline (1/4)

• Keyboard input can be also read using cin and the getline
function

• This function allows reading strings with blanks, limiting the
number of characters to be read:
const int SIZE=100;
char str[SIZE];
// str: variable where the characters are stored
// SIZE: number of characters read
cin.getline(str,SIZE);
// If the user enters "good evening"
// the variable str stores "good evening"

• Reads a maximum of SIZE-1 characters or until reaching the
end of the line

• The '\n' at the end of the line is read but not stored in the
variable

• The function adds '\0' to the end of what has been read
(therefore only reads SIZE-1 characters) 8



Keyboard input > getline (2/4)

• If the user types more characters than indicated, they remain in
the keyboard buffer and the next reading fails:

char str[10];
cout << "String 1: ";
cin.getline(str,10);
cout << "Read 1: " << str << endl;
cout << "String 2: ";
cin.getline(str,10);
cout << "Read 2: " << str << endl;

Terminal
$ myProgram
String 1: hello everybody
Read 1: hello eve
String 2: Read 2:

9



Keyboard input > getline (3/4)

• There can be problems when reading from cin combining the
>> operator and the getline function:

int num;
char str[100];

cout << "Num: ";
cin >> num;
cout << "Input string: " ;
cin.getline(str,100);
cout << "What I read is: " << str << endl;

Terminal
$ myProgram
Num: 10
Input string: What I read is:

10



Keyboard input > getline (4/4)

• Why is this happening?
• The >> operator reads 10, but stops reading when the first
non-numeric character is found ('\n' in this case)

• The first thing that getline finds in the buffer is a '\n', so it
finishes reading and does not store anything in str

• Solution:

...
cin >> num;
cin.ignore(); // Add this line

// Gets '\n' out of buffer
// getline can now be used without issues
...

11



The cstring library (1/3)

• The cstring library contains a set of functions that facilitate
working with character arrays

• The library must be included in the code using it:
#include <cstring>

• strlen returns the length (number of characters) of a character
array:
char str[10]="hello";
cout << strlen(str); // Prints 5

• strcpy copies one character array into another. Be careful not
to exceed the size of the target array:
char str[5];
strcpy(str,"cool"); // The string fits into str: 4 + '\0'

= 5 characters
strcpy(str,"house"); // No fitting! Segmentation fault!

12



The cstring Library (2/3)

• strcmp compares two strings in lexicographical order*, returning
1 if str1>str2, 0 if str1==str2, and -1 if str1<str2:

char str1[]="root";
char str2[]="river";
cout << strcmp(str1,str2) << endl; // Prints 1
cout << strcmp(str2,str1) << endl; // Prints -1
cout << strcmp(str1,str1) << endl; // Prints 0

• strcat appends the content of one string to the end of another.
There must be enough space in the destination string:

char str[10]="hello";
strcat(str,", wo"); // Total 10 characters (fits)
strcat(str,"rld"); // Adds 3 more (no longer fits!)

*Order followed by words in a dictionary

13



The cstring Library (3/3)

• The functions strncmp, strncpy, and strncat compare,
copy, or concatenate only the first n characters:

char str[8];
strncpy(str,"hello, world",5); // Only copies "hello"
str[5]='\0'; // Does not add the '\0' automatically

// We need to add it manually

char str1[8]="help";
char str2[8]="hello";
// Only compares the first two characters
cout << strncmp(str1,str2,2) << endl; // Prints 0

char str1[50]="Hello, ";
char str2[]="wonderful world";
strncat(str1,str2,9); // str1 will be "Hello, wonderful"

14



Conversion to int and float

• To transform a character array to int or float the functions
atoi or atof can be used

• These functions are defined in the library cstdlib:

#include <cstdlib> // Required when atoi/atof are used

char str[]="100";
int num=atoi(str); // num is 100

char str2[]="10.5";
float num2=atof(str2); // num2 is 10.5

15



The string class in C++



Definition (1/2)

• Character arrays in C can be used in C++, but C++ also has the
string class* that allows working more easily and flexibly with
character strings:

// Declaration of a string variable
string s; // No need to set the string size
// Declaration with initialisation
string s2="Alicante";
// Declaration of a constant
const string GREET="hello";

*More information on what a “class” is in Unit 5

16



Definition (2/2)

• A string has a variable size and can dynamically grow
depending on the storage needs of the program:

string s="hello"; // Stores 5 characters
s="hello everybody"; // Stores 15 characters*
s="ok"; // Stores 2 characters

• No need to worry about the '\0'
• The passing of parameters (value and reference) is done as with
any basic data type:

void myFunction(string s1,string &s2){
// s1 is passed by value
// s2 is passed by reference

}

*A white space counts as any other character

17



Screen output

• Screen output with cout and cerr as with character arrays in C:

string s="Mark";
int num=10;

cout << s << " -> " << num; // Prints "Mark -> 10"

18



Keyboard input > Operator >>

• cin and the >> operator can be used to read from keyboard in
the same way as with character arrays in C

• Blanks before the string are ignored and reading finishes when
the first blank is found:

string s;
cin >> s;
// User writes " hello"
// The s variable stores "hello"
...
// User writes "good afternoon"
// The s variable stores "good"

19



Keyboard input > getline (1/2)

• As with character arays, the function getline can be used to
read string variables

• Reading strings containing blanks is possible in this case:

string s;
getline(cin,s);
// If the user writes "good afternoon"
// the variable s stores "good afternoon"

• Does not limit the characters read, because with the string
class is not necessary

• Alert! The syntax changes with respect to character arrays in C

20



Keyboard input > getline (2/2)

• If the >> operator and getline are combined while reading,
there is the same problem as with character arrays in C*

• By default, getline reads until it finds the newline character
('\n')

• An additional parameter can be passed to indicate that the
function must read up to a specific character:

string s;
// Reads until finding the first comma
getline(cin,s,',');
// Reads until finding the first square bracket
getline(cin,s,'[');

*The solution is the same proposed in slide 11

21



Extracting words from a string

• Words can be easily extracted from a string by using the
stringstream class:

#include <sstream> // Required when using stringstream
...
stringstream ss("Hello cruel world 666");
string s;

// Each iteration of the loop reads until reaching a
blank

while(ss>>s){ // Extracts words one by one
cout << "Word: " << s << endl;

}

22



string methods (1/3)

• Since string is a class, methods are called by putting a dot
after the name of the variable

• length returns the number of characters in the string:

// unsigned int length()
string s="hello, world";
cout << s.length(); // Prints 12

• find returns the position in which a substring appears within a
string:

// size_t find(const string &s,unsigned int pos=0)
cout << s.find("world"); // Prints 7
// If the substring is not found returns string::npos

23



string methods (2/3)

• replace substitutes a string (or part of it) with another one:
// string& replace(unsigned int pos,unsigned int len,

const string &s)
string s="hello world";
s.replace(0,5,"hola"); // s is "hola world"

• erase allows removing part of a string:
// string& erase(unsigned int pos=0,unsigned int len=

string::npos);
string s="hello world";
s.erase(4,3); // s is "hellorld"

• substr returns a substring of the original string:
// string substr(unsigned int pos=0,unsigned int len=

string::npos) const;
string s="hello world";
string subs=s.substr(2,5); // subs is "llo w"

24



string methods (3/3)

• Example of use:
string a="There is a mug in this kitchen with mugs";
string b="mug";
unsigned int size=a.length(); // Length of a
// Search for the first "mug"
size_t found=a.find(b);
if(found!=string::npos){
cout << "First in: " << found << endl;
// Search for the second "mug"
found=a.find(b,found+b.length());
if(found!=string::npos)
cout << "Second in: " << found << endl;

}
else{
cout << "Word '" << b << "' not found";

}
// Replace the first "mug" with "bottle"
a.replace(a.find(b),b.length(),"bottle");
cout << a << endl;

25



Operators (1/2)

• Comparisons: == (equal), != (different), > (greater), >= (greater
or equal), < (less) and <= (less or equal)
string s1,s2;
cin >> s1; cin >> s2;
if(s1==s2) // Comparison in lexicographical order
cout << "Equal" << endl;

• Assignment of one string to another with the operator =, like any
basic data type:
string s1="hello";
string s2;
s2=s1;

• String concatenation with the operator +:
string s1="hello";
string s2="world";
string s3=s1+","+s2; // s3 is "hello, world"

26



Operators (2/2)

• Access to components with the operator [], as with character
arrays in C:
string s="hello";
char c=s[4]; // s[4] is 'o'
s[0] = 'H';
cout << s << ":" << c << endl ; // Prints "Hello:o"

• Characters cannot be assigned to positions outside the string:
string s;
s[0]='g'; s[1]='o'; s[2]='o'; s[3]='d';
// Does not store anything because s is an empty string

and these positions are not reserved

• Example of traversal of a string character by character:
string s="hello, world";
for(unsigned int i=0;i<s.length(); i++)
s[i]='f'; // Replaces each character with 'f'

27



Type conversions



Conversion between string and character array in C

• A character array in C can be assigned to a string using the
assignment operator (=):

char str[]="hello";
string s;
s=str;

• A string can be assigned to a character array in C using
strcpy and c_str:*

char str[10];
string s="world";
// There must be enough room in str
strcpy(str,s.c_str());

*The c_str method returns a character array in C with the contents of the string

28



Conversion between string and number

• Transform an integer or real number to string:

#include <string> // It is not the same as <cstring>
...
int num=100;
string s=to_string(num);

• Transform a string to integer:*

string s="100";
int num=stoi(s);

• Transform a string to real number:

string s="10.5";
float num=stof(s);

*The functions to_string, stoi and stof are available from C++ 2011 version onward

29



Comparison



Character array in C vs. string

Character array in C string
char str[SIZE]; string s;

char str[]="hello"; string s="hello";

strlen(str) s.length()
cin.getline(str,SIZE); getline(cin,s);

if(!strcmp(str1,str2)){...} if(s1==s2){...}
strcpy(str1,str2); s1=s2;
strcat(str1,str2); s1=s1+s2;

strcpy(str,s.c_str()); s=str;

Ends with '\0' Does not end with '\0'
Fixed allocated size Variable allocated size
Variable used size Used size == allocated size

Can be used with binary files Cannot be used with binary files

30



Exercises



Exercises (1/4)

Exercise 1

Code a function called subString that returns a substring of length
n, starting at position p of other string. Both the argument and the
return value must be string type.

subString("heeello",2,5) // Returns "lo"

Exercise 2

Code a function deleteStringCharacter that, given a string
and a character, deletes all the occurrences of that character in the
string and returns it.

deleteStringCharacter("cocobongo",'o') // Returns "ccbng"

31



Exercises (2/4)

Exercise 3

Code a function searchSubstring that searches the first
occurrence of a substring a inside a string b and returns its position,
or -1 if not found. Both a and b must be string type.

searchSubstring("eel","heeello") // Returns 2

Extensions:

1. Add another parameter to the function that indicates the number of
occurrence to return (if the value is 1 it would work as the original
function)

2. Implement another function that returns the number of occurrences of
the substring in the string

32



Exercises (3/4)

Exercise 4

Code a function encrypt that encodes a string by adding a number
n to the ASCII code of each character, taking into account that the
result must be a character.

For example, if n=3, a is encoded as d, b as e,..., x as a, y as b, and
z as c.

The function must admit lowercase and uppercase letters. Non-letter
characters must not be encoded. The parameter must be string
type.

encrypt("hello, world",3) // Returns "khoor, zruog"

33



Exercises (4/4)

Exercise 5

Write a function isPalindrome that returns true if the string
parameter is a palindrome.

isPalindrome("racecar") // Returns true
isPalindrome("hello, olleh") // Returns false

Exercise 6

Implement a function createPalindrome that adds to a string
the same string but reversed so that the result is a palindrome.

createPalindrome("hello") // Returns "helloolleh"

34


	Character arrays in C
	The string class in C++
	Type conversions
	Comparison
	Exercises

