
Unit 4: Dynamic memory
Programming 2

Degree in Computer Engineering
University of Alicante
2024-2025

Index

1. Memory layout

2. Pointers

3. Usage of pointers

4. References

5. Implementation of a stack

1

Memory layout

Static memory

• In static memory the size of the data is fixed and known
before running the program

• The variables we have used so far are static:

int i=0;
char c;
float vf[3]={1.0,2.0,3.0};

i c vf[0] vf[1] vf[2]
0 1.0 2.0 3.0

1000 1002 1004 1006 1008

2

Dynamic memory

• Dynamic memory allows storing large volumes of data, the exact
size of which is unknown when implementing the program

• During program execution, the memory usage is adjusted to the
needs at any given time

• In C++, dynamic memory can be implemented using pointers

3

Memory segments

• Different memory segments are used during the execution of a
program:

Stack • The stack stores the local data of a func-
tion: parameters passed by value and local
variables

Heap • The heap stores dynamic data allocated dur-
ing the execution of the program

Data segment • The data segment stores global variables
and static variables that are initialised by the
programmer

Code segment • The code segment contains executable in-
structions (the code of the program)

4

Pointers

Definition and declaration

• A pointer stores the memory address where other data is located
• We say that the pointer “points” to that data
• Pointers are declared using the character *
• The data pointed by the pointer belongs to a specific type that
must be indicated when the pointer is declared:

int *intPointer; // Integer pointer
char *charPointer; // Character pointer
int *intPointerArray[20]; // Array of integer pointers
double **doubleRealPointer; // Pointer to real pointer

5

Pointer operators (1/2)

• The * operator allows accessing the content of the variable
pointed by the pointer

• The & operator allows obtaining the memory address in which a
variable is stored:

int i=3;
int *pi;
pi=&i; // pi contains the memory address of i
*pi = 11; // Content of pi is 11. Therefore, i = 11

6

Pointer operators (2/2)

• Assuming that i is at memory address 1000 and pi at 1004:

int i=11;
int *pi;
pi=&i;
cout << pi << endl; // Prints "1000"
cout << *pi << endl; // Prints "11"
cout << &pi << endl; // Prints "1004"

7

Declaration with initialisation

• As any other variable, we can initialise a pointer at the time of its
declaration:

int *pi=&i; // pi contains the memory address of i

• The NULL value can be used to indicate that a pointer does not
point to any valid data:

int *pi=NULL;

• NULL is a constant with value zero. Since C++ 2011 standard,
the constant nullptr can be also used as it represents zero as
an address (pointer type)

8

Exercises

Exercise 1

Indicate what is the screen output of these code snippets:

int e1;
int *p1,*p2;
e1=7;
p1=&e1;
p2=p1;
e1++;
(*p2)+=e1;
cout << *p1;

int a=7;
int *p=&a;
int **pp=&p;
cout << **pp;

9

Usage of pointers

Memory allocation and deallocation (1/2)

• The new operator allows to dynamically allocate memory during
program execution

• It returns the starting position of the allocated memory
• If there is not enough free memory, it returns NULL
• The address returned by new must be stored in a pointer:

double *pd;
pd=new double; // Allocates memory for a double
if(pd!=NULL){ // Check that memory was allocated
*pd=4.75;
cout << *pd << endl; // Prints "4.75"

}

pd
2000 4.75
1000 1002 … 2000 2002

10

Memory allocation and deallocation (2/2)

• The delete operator allows deallocating the memory allocated
by new:
double *pd;
pd=new double; // Allocate memory
...
delete pd; // Free memory pointed by pd
pd=NULL; // Recommended if pd will be further used

• Whenever new is used to allocate memory, delete must be
used to deallocate it

• Pointers can be reused after deallocation by using new again:
double *pd;
pd=new double; // Allocate memory
...
delete pd; // Free memory pointed by pd
pd=new double; // Allocate memory again with pd
...

11

Pointers and arrays (1/3)

• There is a close relationship between pointers and arrays
• An array variable is indeed a pointer to the first element of the
array:

int vec[5]={4,5,2,8,12};
cout << vec << endl; // Prints the memory address

// of the first element of the array
cout << *vec << endl; // Prints "4"

• The array variable always points to the first element of the array
and cannot be modified

12

Pointers and arrays (2/3)

• Pointers can be used as shortcuts to elements of an array:

int vec[20];
int *pVec=vec; // Both are integer pointers
*pVec=58; // Equivalent to vec[0]=58;
pVec=&(vec[7]);
*pVec=117; // Equivalent to vec[7]=117;

13

Pointers and arrays (3/3)

• Pointers can also be used to create dynamic arrays
• To allocate memory for a dynamic array, square brackets are
used to specify the size

• To deallocate all the allocated memory it is also necessary to use
(empty) brackets:

int *pv;
pv=new int[10]; // Allocated memory for 10 integers
pv[0]=585; // Access as with a static array
...
delete [] pv; // Deallocate all the allocated memory

14

Pointers defined with typedef

• As shown in Unit 1, new data types can be defined with
typedef:

typedef int integer;
integer a,b; // Equivalent to int a,b;

• To get a clearer code, pointers can be defined with typedef:

typedef int *tIntegerPointer;
tIntegerPointer pi; // Integer pointer type

// Do not use * when declared

15

Pointers to structures

• When a pointer points to a struct, the -> operator can be used
to access its fields:

struct TStructure{
char c;
int i;

};
typedef TStructure *TStructurePointer;

TStructurePointer ps;
ps=new TStructure;
ps->c='a'; // Equivalent to (*ps).c='a';
ps->i=88; // Equivalent to (*ps).i=88;

16

Pointers as parameters to functions (1/2)

• A pointer, as any other variable, can be passed as a parameter
by value or by reference to a function:
void funcValue(int *p){ // Parameter by value
...
p=NULL;

}
void funcReference(int *&p){ // Parameter by reference
...
p=NULL;

}
int main(){
int i=0;
int *p=&i;
funcValue(p);
// p stills pointing to i
funcReference(p);
// p is NULL

}

17

Pointers as parameters to functions (2/2)

• Previous example using typedef:

typedef int* tIntegerPointer;
void funcValue(tIntegerPointer p){
...
p=NULL;

}
void funcReference(tIntegerPointer &p){
...
p=NULL;

}
int main(){
int i=0;
tIntegerPointer p=&i;
funcValue(p);
funcReference(p);

}

18

Common errors (1/2)

• Not releasing dynamically allocated memory:

void func(){
int *pInteger=new int;
*pInteger=8;
return; // Error! Missed delete pInteger;

}

• Using a pointer that points to nowhere:

int *pInteger;
*pInteger=7; // Error! pInteger not initialised

19

Common errors (2/2)

• Using a pointer after deallocating memory:

int *p,*q;
p=new int;
...
q=p;
delete p;
*q=7; // Error! Memory already deallocated

• Deallocating memory not allocated with new:

int *pIntegetr=&i;
delete pInteger; // Error! Points to static memory

20

Exercises

Exercise 2

Given the following structure:

struct tClient{
char name[32];
int age;

};

Write a program for reading a client (only one) from a binary file. The
program must allocate the structure in dynamic memory using a
pointer, print its content and finally deallocate the memory.

21

References

References (1/4)

• C++ reference variables are actually pointers but with a lighter
syntax (syntactic sugar)

• There is nothing we can do with references that cannot be done
with pointers

int a=10;
int *b=&a; // Pointer variable
*b=20;
cout << a << " " << *b; // Prints "20 20"
int &c=a; // Reference variable
c=30;
cout << a << " " << c; // Prints "30 30"

• In the previous code, c can be considered as another name for a

22

References (2/4)

• References cannot be NULL and they are always connected to
some data

• Once a reference is initialised, it cannot be changed to refer to
another memory position, but pointers can

• A reference must be initialised when it is created, but pointers
can be initialised at any time after their declaration

23

References (3/4)

• References simplify the code of functions that have parameters
passed by reference

• The following function gets two parameters passed by reference
using pointers:

void swap(int *x,int *y){
int temp=*x;
*x=*y;
*y=temp;

}

int main(){
int a=10,b=20;
swap(&a,&b);
cout << a << " " << b; // Prints "20 10"

}

24

References (4/4)

• The following function is equivalent to the previous one, but
using references instead of pointers:

void swap(int &x,int &y){
int temp=x;
x=y;
y=temp;

}

int main(){
int a=10,b=20;
swap(a,b);
cout << a << " " << b; // Prints "20 10"

}

• This is the sintax we have been using in this course so far
• It is simpler and more user-friendly than the previous example

25

Implementation of a stack

Implementation of a stack (1/6)

• A stack is a data structure widely used in programming
• A stack is a list of elements
• Elements can be added or removed from the stack with one
restriction: the last element added (push) is the element that will
be first removed (pop)

• Examples of stacks in real life
• A pile of stacked plates, where the plate on top is the first to be
taken (popped)

• Supermarket shopping trolleys, where you always pick up the last
one left

26

Implementation of a stack (2/6)

• A stack can be implement by using fixed size arrays, but it will
limit in the number of elements that can be pushed to the stack

• This issue could be (partially) solved by using a very large array,
but if the number of elements in the stack is small, memory will
be wasted

• A stack implementation using pointers will allow the memory
requirements to grow or shrink depending on the current number
of elements

• This implementation is based on the idea of linked list
• When a new element is stacked, memory space is dynamically
allocated for a register

• This register contains the data to be saved and a pointer to the last
element in the stack

• There will always be a head pointer to the top of the stack

27

Implementation of a stack (3/6)

• In the following implementation the head pointer is passed as a
parameter to the functions

• It is passed by reference when a function may change it to point
to another register

• Structure of an element (node) in the stack:

struct Node{
int data; // Information we want to store
struct Node *next; // Pointer to the next node

};

28

Implementation of a stack (4/6)

• Functions for stacking (push) and unstacking (pop) elements:

void push(Node *&head,int newData){
Node *newNode=new Node; // Memory allocation
newNode->data=newData; // Data stored
newNode->next=head; // Point to the last node
head=newNode; // head points to the new node

}

void pop(Node *&head){
Node *ptr;
if(head!=NULL){ // Check that there are elements
ptr=head->next; // Second element in the stack
delete head; // Delete the top element
head=ptr; // head points now to the second element

}
}

29

Implementation of a stack (5/6)

• Functions to show (display) and empty (destroy) the stack:
void display(Node *head){
Node *ptr;
ptr=head;
while(ptr!=NULL){ // Go through the whole stack
cout << ptr->data << " "; // Show the data
ptr=ptr->next; // Go to the next element

}
}
void destroy(Node *&head){
Node *ptr,*ptr2;
ptr=head;
while(ptr!=NULL){ // Until the whole stack is covered
ptr2=ptr; // Remove the current node
ptr=ptr->next; // Point to the next element
delete ptr2; // Delete the current node

}
head=NULL; // The stack is empty

}

30

Implementation of a stack (6/6)

• Example of main function using two stacks:
int main(){
// Declare and initialise both stacks
Node *head1=NULL;
Node *head2=NULL;
// Add three elements tot he first stack
push(head1,3);
push(head1,1);
push(head1,7);
display(head1); // Print "7"
pop(head1); // Delete the head
display(head1); // Print "1"
destroy(head1); // Empty the first stack
// Add one element to the second stack
push(head2,9);
display(head2); // Print "9"
destroy(head2); // Empty the second stack

}

31

	Memory layout
	Pointers
	Usage of pointers
	References
	Implementation of a stack

