
Eclipse and Junit

David Rizo, Pedro J.
Ponce de León

Contents

Installation

Environment
Workspace

Interface

Projects
Creation

Classes
Importing classes

Class creation

Run
from Eclipse

from a terminal

Debug

Code generation

Unit tests with JUnit

Seminar 2.1

Seminar 2
Eclipse and Junit
PROGRAMMING 3

David Rizo, Pedro J. Ponce de León
Department of Software and Computing Systems

University of Alicante

Eclipse and Junit

David Rizo, Pedro J.
Ponce de León

Contents

Installation

Environment
Workspace

Interface

Projects
Creation

Classes
Importing classes

Class creation

Run
from Eclipse

from a terminal

Debug

Code generation

Unit tests with JUnit

Seminar 2.2

Contents

1 Installation

2 Environment
Workspace
Interface

3 Projects
Creation

4 Classes
Importing classes
Class creation

5 Run
from Eclipse
from a terminal
Debug

6 Code generation

7 Unit tests with JUnit

Eclipse and Junit

David Rizo, Pedro J.
Ponce de León

Contents

Installation

Environment
Workspace

Interface

Projects
Creation

Classes
Importing classes

Class creation

Run
from Eclipse

from a terminal

Debug

Code generation

Unit tests with JUnit

Seminar 2.3

Installation

In Programming 3 we will use version 2022-06 (although later
versions should also work)

• Find it in
https://www.eclipse.org/downloads/packages/

• Download Eclipse IDE for Java Developers
• Uncompress it and run the eclipse program

https://www.eclipse.org/downloads/packages/

Eclipse and Junit

David Rizo, Pedro J.
Ponce de León

Contents

Installation

Environment
Workspace

Interface

Projects
Creation

Classes
Importing classes

Class creation

Run
from Eclipse

from a terminal

Debug

Code generation

Unit tests with JUnit

Seminar 2.4

Workspace

• Eclipse stores all the configuration and projects under a
workspace folder

• When Eclipse starts, you have to choose a location for the
workspace.

• Select a folder in your home directory (in the lab). Eclipse
will create if it does not exist.

• Select File>Switch workspace to change workspace
whenever you want

Eclipse and Junit

David Rizo, Pedro J.
Ponce de León

Contents

Installation

Environment
Workspace

Interface

Projects
Creation

Classes
Importing classes

Class creation

Run
from Eclipse

from a terminal

Debug

Code generation

Unit tests with JUnit

Seminar 2.5

Interface

Tools

1 Projects and
packages

2 Run and debug

3 File explorer

4 Current
workspace

5 Perspective
6 A view: tasks
7 Console

8 Breakpoints, link
to solve errors

9 Errors, warnings,
TO-DO

Eclipse and Junit

David Rizo, Pedro J.
Ponce de León

Contents

Installation

Environment
Workspace

Interface

Projects
Creation

Classes
Importing classes

Class creation

Run
from Eclipse

from a terminal

Debug

Code generation

Unit tests with JUnit

Seminar 2.6

Project creation

• File > New > Java project
• Project name

• A directory cotaining the following sub-directories and files
will be created:

• A folder named src/ for the source code
• A folder named bin/ for the compiled code
• Hidden files .project and .classpath

• These files contain project metadata, such as the JDK version
to be used and the classpath, which will point to the folder
bin.

Eclipse and Junit

David Rizo, Pedro J.
Ponce de León

Contents

Installation

Environment
Workspace

Interface

Projects
Creation

Classes
Importing classes

Class creation

Run
from Eclipse

from a terminal

Debug

Code generation

Unit tests with JUnit

Seminar 2.7

Importing a project
To import a project, select File > Import > General >
Existing Projects into Workspace and choose
Select root directory: or Select archive file:,
depending on wether the project to be imported is in a
directory or in a compressed file.

Task

Download the preconfigured Eclipse project from the
assignments web page and import it into Eclipse. This should
create an Eclipse project with name prog3-base that contains
two source code folders src and test. The first one is where
your code goes. The second one is for testing code.
This project is configured for using . . .

• . . . the preconfigured JDK version (JDK 1.8 in the
computer labs).

• . . . UTF-8 as character encoding for the new source files to
be created.

• . . . Unix-style line breaks (char ’\n’) in the source-code
files.

Eclipse and Junit

David Rizo, Pedro J.
Ponce de León

Contents

Installation

Environment
Workspace

Interface

Projects
Creation

Classes
Importing classes

Class creation

Run
from Eclipse

from a terminal

Debug

Code generation

Unit tests with JUnit

Seminar 2.8

Importing classes

To import external .java files, open the operating-system file
browser, copy the files into the clipboard and paste them into
the package view.

Task

• Add package es.ua.dlsi.prog3.p1 to source folder
src

• Right-click on the folder, then New... -> Package.

• Add, if you have it, the source file Coordinate.java of
the 1st Practical Assignment to the package you have just
created. If, you didn’t have it, move on to next page.

Eclipse and Junit

David Rizo, Pedro J.
Ponce de León

Contents

Installation

Environment
Workspace

Interface

Projects
Creation

Classes
Importing classes

Class creation

Run
from Eclipse

from a terminal

Debug

Code generation

Unit tests with JUnit

Seminar 2.9

Classes

• To create a new class: File > New > Class

• Introduce name, package, and, optionally, if you want an
empty main method to be added

Task

• Create a new class named Coordinate in package
es.ua.dlsi.prog3.p1, and add the private attribute
double[] components. Type /** before their
declaration, hit enter and write the javadoc documentation.

• Create one of the constructors of the class according to
description of the 1st Practical Assignment. Add the
constructor’s documentation as explained above.

• In case your code contains errors, use the hints on the left
edge of the code editor.

Eclipse and Junit

David Rizo, Pedro J.
Ponce de León

Contents

Installation

Environment
Workspace

Interface

Projects
Creation

Classes
Importing classes

Class creation

Run
from Eclipse

from a terminal

Debug

Code generation

Unit tests with JUnit

Seminar 2.10

Run from Eclipse

• Since a particular project may include more than one class
with a main method, the easiest way is to right-click on the
class containing the main method to run and select Run
as > Java application.

• This will create a new run configuration (menu Run >
Run configurations), which can be edited to add
command-line parameters to your program.

Task

• Add a method main to Coordinate. Leave it empty:
public static void main(String[] args) { }

• Run it as described above.

Eclipse and Junit

David Rizo, Pedro J.
Ponce de León

Contents

Installation

Environment
Workspace

Interface

Projects
Creation

Classes
Importing classes

Class creation

Run
from Eclipse

from a terminal

Debug

Code generation

Unit tests with JUnit

Seminar 2.11

Run from a terminal

Actividad

Do the following:
• Open a terminal (console).
• Go to the Eclipse project’s folder.
• Run the command java -cp bin
es.ua.dlsi.prog3.p1.Coordinate (Eclipse
automatically compiles classes and puts the .class files
into folder bin).

Eclipse and Junit

David Rizo, Pedro J.
Ponce de León

Contents

Installation

Environment
Workspace

Interface

Projects
Creation

Classes
Importing classes

Class creation

Run
from Eclipse

from a terminal

Debug

Code generation

Unit tests with JUnit

Seminar 2.12

Debug

• Select Run > Debug (there is a button for this in the
toolbar as well) to run your application in debug mode.

• To set a breakpoint, walk through the code and place your
cursor on the marker bar (along the left edge of the editor
area) on the line with the suspected code; double-click to
set the breakpoint.

• Notice that Eclipse has switched to the Debug perspective.

Help

Step into (F5) Run step by step stepping into every method.

Step over (F6) Run next code line in a single step.

Step return (F7) Run the remaining code in the current method and return to the invoking point.

Resume (F8) Resume the execution till the next breakpoint (or the end of applicaction).

Run to line (^R) Resume the execution till the line where the curso is.

Eclipse and Junit

David Rizo, Pedro J.
Ponce de León

Contents

Installation

Environment
Workspace

Interface

Projects
Creation

Classes
Importing classes

Class creation

Run
from Eclipse

from a terminal

Debug

Code generation

Unit tests with JUnit

Seminar 2.13

Debug

Task

1 Add this code to your main method:
double[] d1 = new double[] { 2.5, 3.4 };
double[] d2 = new double[] { 2.5, 3.4, -3.2 };
Coordinate c1 = new Coordinate(d1);
Coordinate c2 = new Coordinate(d2);
System.out.println(c1.getDimensions());
System.out.println(c2.getDimensions());

2 Set a breakpoint at the first code line in method main, and
3 run the method line by line.

Eclipse and Junit

David Rizo, Pedro J.
Ponce de León

Contents

Installation

Environment
Workspace

Interface

Projects
Creation

Classes
Importing classes

Class creation

Run
from Eclipse

from a terminal

Debug

Code generation

Unit tests with JUnit

Seminar 2.14

Code generation

• Implementing some operations (e.g., equals, hashCode
or toString) is usually routine.

• Eclipse can write some draft excerpts of code for you;
right-click on the source file and select Source >
Generate toString() or Source > Generate
hashCode and equals().

Task

Automatically generate the methods hashCode and equals of
the class Coordinate assignment.

WARNING

Methods generated in this way do not always do what we want
them to do. For example, toString() might create a string
with a different format, or equals() might compare objects in
a different way to how we want them to be compared.

Eclipse and Junit

David Rizo, Pedro J.
Ponce de León

Contents

Installation

Environment
Workspace

Interface

Projects
Creation

Classes
Importing classes

Class creation

Run
from Eclipse

from a terminal

Debug

Code generation

Unit tests with JUnit

Seminar 2.15

Unit tests

• A unit test is a piece of code that verifies a specific use
case of a software component according to its
specification.

• Each test is configured to test a particular use case of a
class interface.

• Tests are organized into test sets or suites. Each test
suite is associated with a class.

• For example, conditions or limit values of the method
arguments are tested, or conditions causing a method to
throw an exception.

Eclipse and Junit

David Rizo, Pedro J.
Ponce de León

Contents

Installation

Environment
Workspace

Interface

Projects
Creation

Classes
Importing classes

Class creation

Run
from Eclipse

from a terminal

Debug

Code generation

Unit tests with JUnit

Seminar 2.16

JUnit

• JUnit is the most widely used tool unit testing in Java.
• In Eclipse it is configured in Project > Properties >
Java Build Path > Libraries > Add Library

• We use JUnit 4. This library is already included in the
base project you imported.

Eclipse and Junit

David Rizo, Pedro J.
Ponce de León

Contents

Installation

Environment
Workspace

Interface

Projects
Creation

Classes
Importing classes

Class creation

Run
from Eclipse

from a terminal

Debug

Code generation

Unit tests with JUnit

Seminar 2.17

JUnit

Source code for unit test files is placed in independent .java
files

Task

• Uncompress the file tests_p1.tgz containing the tests.
Copy and paste the folder es into the project’s source
folder test (the files containing the source code for the
tests also belong to the package
es.ua.dlsi.prog3.p1).

• Update the project in Eclipse (F5)

To run the tests, right-click on the package or class containing
them and choose Run as > JUnit test

Eclipse and Junit

David Rizo, Pedro J.
Ponce de León

Contents

Installation

Environment
Workspace

Interface

Projects
Creation

Classes
Importing classes

Class creation

Run
from Eclipse

from a terminal

Debug

Code generation

Unit tests with JUnit

Seminar 2.18

JUnit

Open the file with unit tests CoordinateTest.java
• Look at the attributes. They are references to the objects

to be used by the tests.
• Methods with annotations @Before configure the tests.

They are executed before each method annotated as
@Test.

• Methods @Test contain unit tests (methods assert or
assertions)

• assertEquals checks that the expected value matches
the actual one. The parameters are in this order: title
(optional), expected value, real value, difference in
absolute value allowed (optional, useful for real values).

• assertTrue and assertFalse check that their
arguments are true or false, respectively.

• fail produces a test failure when executed.

Eclipse and Junit

David Rizo, Pedro J.
Ponce de León

Contents

Installation

Environment
Workspace

Interface

Projects
Creation

Classes
Importing classes

Class creation

Run
from Eclipse

from a terminal

Debug

Code generation

Unit tests with JUnit

Seminar 2.19

JUnit

Actividad

• Run the test: Run -> Debug as... -> JUnit Test
on the file with the test (those having fail instructions will
fail). The tab JUnit is opened ad you will see the result of
the execution of the test.

• Choose a test that fails. In the panel Failure trace
double click on the first line indicating at
es.ua.dlsi.prog3.p1.CoordinateTest It will
take you to the line that produced the error.

• Change some expected value in a test that does not fail.
Now it will fail and by selecting the test in the the panel
Failure trace you will see why in the first line.

Eclipse and Junit

David Rizo, Pedro J.
Ponce de León

Contents

Installation

Environment
Workspace

Interface

Projects
Creation

Classes
Importing classes

Class creation

Run
from Eclipse

from a terminal

Debug

Code generation

Unit tests with JUnit

Seminar 2.20

New unit test

To create a new unit test for a class, right-click on its name and
select New > JUnit test case.

• Choose JUnit 4
• Type test (instead of src) in the directory field Source
folder.

Task

• Implement a method in Coordinate that returns the sum
of its components.

• Create a unit test (or several) to check that your method
works as expected.

• To run all the tests, right-click on the project name and
select Run as > JUnit test

• You can also run a specific test class, a specific test within
a class or just the tests that failed.

• Delete the method and its tests when you are done.

	Installation
	Environment
	Workspace
	Interface

	Projects
	Creation

	Classes
	Importing classes
	Class creation

	Run
	from Eclipse
	from a terminal
	Debug

	Code generation
	Unit tests with JUnit

