Direct-initialization
Initializes an object from explicit set of constructor arguments.
Syntax
 T object ( arg );
T object   | 
(1) | ||||||||
 T object { arg };
 | 
(2) | (since C++11) | |||||||
 T ( other )
T   | 
(3) | ||||||||
 static_cast< T >( other )
 | 
(4) | ||||||||
 new T( args, ... )
 | 
(5) | ||||||||
 Class::Class() : member( args, ... ) { ... }
 | 
(6) | ||||||||
 [arg]() { ... }
 | 
(7) | (since C++11) | |||||||
Explanation
Direct-initialization is performed in the following situations:
The effects of direct-initialization are:
-  If 
Tis an array type, 
  | 
(until C++20) | 
 struct A { explicit A(int i = 0) {} }; A a[2](A(1)); // OK: initializes a[0] with A(1) and a[1] with A() A b[2]{A(1)}; // error: implicit copy-list-initialization of b[1] // from {} selected explicit constructor  | 
(since C++20) | 
-  If 
Tis a class type, 
  | 
(since C++17) | 
-  the constructors of 
Tare examined and the best match is selected by overload resolution. The constructor is then called to initialize the object. 
-  the constructors of 
 
 struct B { int a; int&& r; }; int f(); int n = 10; B b1{1, f()}; // OK, lifetime is extended B b2(1, f()); // well-formed, but dangling reference B b3{1.0, 1}; // error: narrowing conversion B b4(1.0, 1); // well-formed, but dangling reference B b5(1.0, std::move(n)); // OK  | 
(since C++20) | 
-  Otherwise, if 
Tis a non-class type but the source type is a class type, the conversion functions of the source type and its base classes, if any, are examined and the best match is selected by overload resolution. The selected user-defined conversion is then used to convert the initializer expression into the object being initialized. -  Otherwise, if 
Tis bool and the source type is std::nullptr_t, the value of the initialized object is false. -  Otherwise, standard conversions are used, if necessary, to convert the value of other to the cv-unqualified version of 
T, and the initial value of the object being initialized is the (possibly converted) value. 
Notes
Direct-initialization is more permissive than copy-initialization: copy-initialization only considers non-explicit constructors and non-explicit user-defined conversion functions, while direct-initialization considers all constructors and all user-defined conversion functions.
In case of ambiguity between a variable declaration using the direct-initialization syntax (1) (with round parentheses) and a function declaration, the compiler always chooses function declaration. This disambiguation rule is sometimes counter-intuitive and has been called the most vexing parse.
#include <fstream> #include <iterator> #include <string> int main() { std::ifstream file("data.txt"); // The following is a function declaration: std::string foo1(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>()); // It declares a function called foo1, whose return type is std::string, // first parameter has type std::istreambuf_iterator<char> and the name "file", // second parameter has no name and has type std::istreambuf_iterator<char>(), // which is rewritten to function pointer type std::istreambuf_iterator<char>(*)() // Pre-C++11 fix (to declare a variable) - add extra parentheses around one // of the arguments: std::string str1((std::istreambuf_iterator<char>(file)), std::istreambuf_iterator<char>()); // Post-C++11 fix (to declare a variable) - use list-initialization for any // of the arguments: std::string str2(std::istreambuf_iterator<char>{file}, {}); }
Example
#include <iostream> #include <memory> #include <string> struct Foo { int mem; explicit Foo(int n) : mem(n) {} }; int main() { std::string s1("test"); // constructor from const char* std::string s2(10, 'a'); std::unique_ptr<int> p(new int(1)); // OK: explicit constructors allowed // std::unique_ptr<int> p = new int(1); // error: constructor is explicit Foo f(2); // f is direct-initialized: // constructor parameter n is copy-initialized from the rvalue 2 // f.mem is direct-initialized from the parameter n // Foo f2 = 2; // error: constructor is explicit std::cout << s1 << ' ' << s2 << ' ' << *p << ' ' << f.mem << '\n'; }
Output:
test aaaaaaaaaa 1 2