
Neural Networks: Automata and Formal Models

of Computation

Mikel L. Forcada
Universitat d’Alacant,

Dept. Llenguatges i Sistemes Informàtics,
E-03071 Alacant (Spain).

January 21, 2002

ii

Contents

Preface v

1 Introduction 1
1.1 Neural networks and formal models of language and computation 1
1.2 Organization of the document . 3

2 Finite-state machines and neural nets 5
2.1 McCulloch and Pitts’ neural logical calculus 5
2.2 What functions can a neuron compute? 7
2.3 Nets with circles and finite-state machines 8

2.3.1 Mealy machines . 8
2.3.2 Moore machines . 10
2.3.3 Deterministic finite-state automata 10
2.3.4 Minsky’s neural automata 11

2.4 Finite-state automata and regular languages 12

3 Sequence processing with neural nets 13
3.1 Processing sequences . 13

3.1.1 State-based sequence processors 15
3.2 Discrete-time recurrent neural networks 16

3.2.1 Neural Mealy machines 17
3.2.2 Neural Moore machines 20
3.2.3 Other architectures without hidden state 21

3.3 Application of DTRNN to sequence processing 24
3.4 Learning algorithms for DTRNN 25

3.4.1 Gradient-based algorithms 27
3.4.2 Non-gradient methods . 29
3.4.3 Architecture-coupled methods 30

3.5 Learning problems . 31
3.6 Papers . 32

4 Computational capabilities of DTRNN 37
4.1 Languages, grammars and automata 37

4.1.1 Grammars and Chomsky’s hierarchy. 37

iii

iv CONTENTS

4.1.2 Chomsky’s hierarchy of grammars 38
4.2 DTRNN behaving as finite-state machines 39

4.2.1 DTRNN based on threshold units 40
4.2.2 DTRNN based on sigmoid units 41
4.2.3 Featured papers . 44

4.3 Turing computability with DTRNN 46
4.3.1 Turing machines . 46

4.4 Super-Turing capabilities of DTRNN 48

5 Grammatical inference with DTRNN 49
5.1 Grammatical inference (GI) . 49
5.2 Discrete-time recurrent neural networks for grammatical inference 50
5.3 Representing and learning . 51

5.3.1 Open questions on grammatical inference with DTRNN . 52
5.3.2 Stability and generalization 52

5.4 Automaton extraction algorithms 53
5.4.1 State-space partition methods 54
5.4.2 Clustering methods . 54
5.4.3 Using Kohonen’s self-organizing maps 55

5.5 Featured papers . 55
5.5.1 Inference of finite-state machines 55
5.5.2 Inference of context-free grammars 58

Author Index 61

Index 63

List of abbreviations 73

Preface

Status of this document

The document you are reading was originally conceived (in 1995) as a reprint
collection; the text was intended to serve as an introduction to what I believed
to be some of the important papers in the field. A number of personal and
editorial circumstances have prevented me from finishing this work; the LaTeX
files have been frozen in my hard disk since May 2000, and, expectedly, reflect
the perception of the field I had at that time. Therefore, this document can
only be seen as some kind of draft, besides being somewhat outdated. Moreover,
you will also find passages which may sound odd without the reprinted papers:
perhaps you can make up your own reprint collection by binding the papers
together with these pages (when I have found a featured paper to be freely
available on the web, a link to a locally-cached online version of the paper is given
for convenience; authors of missing papers are kindly requested to contribute
them if they are allowed to do so: mailto:mlf@dlsi.ua.es).

Some of the material has already been published as journal papers or book
chapters (Carrasco et al., 2000; Forcada and Carrasco, 2001), but the rest was
not available in any way. A couple of months ago it occurred to me that this
document might be useful to other people working in related fields, and, since
I am basically switching to a different field of computer science, I have decided
to hang it up on the web for whatever you wish to do with it. In fact, if you
are really interested in using some of this material for your own publications or
course notes, just contact me and I will be glad to pass the LaTeX sources on:
you are just kindly asked to mention me and this website in the derivative work
you produce.

Motivation1

The fields of artificial neural networks and theoretical computer science have
been linked since their inception. As Perrin (1990) says:

The first historical reference to finite automata is a paper of S.C. Kleene
of 1956 in which the basic theorem, now known as Kleene’s theorem, is

1A slightly edited version of the original preface

v

vi PREFACE

already proved [...]. Kleene’s paper was actually a mathematical reworking
of the ideas of two reseachers from the MIT, W. McCulloch and W. Pitts,
[...] who had presented as early as 1943 a logical model for the behaviour of
nervous systems that turned out to be the model of a finite-state machine
[...].

In the paper by McCulloch and Pitts, the first model of a finite automaton was
indeed a network of idealized neuron-like elements.

The objective of this document is to comment a series of papers showing the
intellectual strands from this early work to the current theoretical developments
and potential applications in various areas. Neural networks are becoming more
and more popular as tools in time-series prediction, pattern recognition, process
control, signal and image processing, etc. One of the new exciting and grow-
ing directions in neural networks are models that process temporal signals and
have feedback. Fully understanding these models means understanding their
relationships and similarities to other models of mathematics, logic and com-
puter science. It also means understanding what the neural network models are
capable of computing and representing and what computational insights can be
gained from new models of neural networks. Because of the increased impor-
tance of computational models in all fields, the interest in this area in neural
networks and computer science will continue to grow.

In particular, the papers selected explore the mentioned relationship between
neural networks and the foundations of computer science: automata (from finite-
state to Turing machines), the classes of formal languages they define (from
regular to unrestricted), and the underlying models for computation. Neural
networks have been used both to represent these models and to learn them
from examples; this growing field of research has produced an interesting cor-
pus of scientific work which, in addition to strengthening the view of neural
networks as implementations of theoretical computational devices, has found
numerous practical applications. I have tried to survey in a single volume the
most important work relating neural networks to formal language and compu-
tation models, which may be found scattered —as many other works on neural
networks— throughout a wide variety of journals as well as in technical reports.

The hardest part of compiling a document like this is the process of selecting
the papers. Some papers have not been included because of their extension.
Sometimes I have decided not to include the earliest account of a new idea or
concept, but have included a later, but clearer paper; in these cases, earlier
works are referred and briefly discussed in the introductions.

To my knowledge, this is the first document covering this relationship; how-
ever, it has an orientation which is very similar to other books such as Discrete
Neural Computation by Siu et al. (1995) and Circuit Complexity and Neural
Networks by Parberry (1994) which explore related subjects. What makes this
document different is its emphasis in dynamic models of computation (i.e., au-
tomata) and dynamic neural networks (i.e., recurrent neural networks).

The featured papers will be grouped in chapters. Each group of papers will
share an introduction that will allow the reader to comprehend the relationships
among the different approaches and the main emerging results.

vii

Chapter introductions have been written having in mind two (apparently
conflicting) goals:

• on the one hand, an effort has been made to define clearly and formally
(and motivating the need for) the main theoretical and neural concepts
and constructions discussed in the papers and their relationship so that
introductions may almost be read independently of the papers and convey
a reasonably comprehensive view of the field;

• on the other hand, I have tried not to give away too much but instead
have tried to “advertise” the papers in such a way that the reader cannot
resist the temptation to delve into the individual papers.

In this way, the two main intended uses of the document are covered: either
as a textbook in a graduate course or as a reference book for researchers active
in the fields involved. Chapter introductions provide the reader with a unified
vision of the whole field since its inception up to the most recent work. For this
purpose:

• a homogeneous notation is throughout the whole document, a notation
that may serve as a reference to understand the particular notations used
by the authors of the particular papers.

• special care has been taken to provide extensive references to the most
relevant work in the field, to make it useful to any reader willing to start
or pursue research in the expanding field of neural networks, automata
and formal models of computation.

The intended readership of this document includes active researchers, both
in academia and industry (mainly in computer science, computer engineering,
electrical engineering, and applied mathematics departments or in R&D labora-
tories involved in computing, control, signal processing, etc.) of all levels, both
coming from the fields of formal languages and computational theory and from
the broader neural networks community; graduate students in these fields; and
research planners or evaluators. Readers are expected to hold (or be about to
obtain) a bachelor’s degree in computer science, computer engineering, electri-
cal engineering or applied mathematics and to be interested in fields such as
computer science (formal languages and models of computation, pattern recog-
nition, machine learning), computer engineering, electrical engineering, applied
mathematics, control, signal processing, and complex systems.

Acknowledgements: This document was conceived as a reprint collection by
C. Lee Giles, whose contributions to it have been crucial; my sincerest thanks go
to him. This document has also benefited enormously from comments by Rafael
C. Carrasco, Juan Antonio Pérez Ortiz and Asun Castaño and from technical
help by Ana Isabel Guijarro, all of whom I thank. Partial support through grant
TIC97-0941 of the Spanish Comisión Ministerial de Ciencia y Tecnoloǵıa is also
acknowledged.

viii PREFACE

Mikel L. Forcada
January 2002

Chapter 1

Introduction

1.1 Neural networks and formal models of lan-
guage and computation

The last decade has witnessed a surge of interest in the relationships between
the behavior of artificial neural networks and models used in formal language
theory and theory of computation, such as automata or Turing machines. As
a result, an increasing number of researchers are focusing their attention in
questions such as

• “what can a neural network compute?”, and —since neural networks are
by nature trainable systems—

• “what can a neural network learn to compute?”

Distinguishing these two apparently equivalent questions is crucial in the field of
artificial neural networks. It is often the case that neural network architectures
that may be shown to be capable of a certain kind of computation cannot
easily be trained from examples to perform it. Unfortunately, one may found
examples in the literature where researchers attribute an observed problem to
the architecture used when it may also be due to the training algorithm (learning
algorithm) used.

These questions —which will be called the main questions in this Introduction—
tie together the cores of two broad fields of basic knowledge: computer science
and neuroscience. The convergence of their daughter disciplines (such as pattern
recognition, artificial intelligence, neurocognition, etc.) in the interdisciplinary
arena of artificial neural networks may be reasonably expected to have a great
technological impact and a wealth of applications.

Indeed, on the one hand, in computer science, the formal theories of language
and computation are so intimately related that they may be considered to form
a single body of knowledge. One may just take a look at the titles of highly
cited and well known books on the subject; as an example, take the Introduc-
tion to automata theory, languages and computation by Hopcroft and Ullman

1

2 CHAPTER 1. INTRODUCTION

(1979). There is a well-established relationship between the levels in Chomsky’s
hierarchy of language complexity (regular, context-free, context-sensitive and
unrestricted, in order of increasing complexity) and the classes of idealized ma-
chines, (correspondingly, finite-state automata, pushdown or stack automata,
linearly bounded automata and Turing machines, in increasing order of com-
putational power). This equivalence allows us to view computational devices
—that is, automata— as language acceptors or language recognizers and their
computational power in terms of the complexity of the language class they ac-
cept or recognize.

On the other hand, the advances in neuroscience have inspired idealized
models of the brain and the nervous system. Extremely simplified models of
the behavior of an isolated neuron and of the interaction between neurons have
been used to construct the concept of artificial neural networks, systems that
are capable of acting as universal function approximators (Hornik et al., 1989),
amenable to be trained from examples without the need for a thorough un-
derstanding of the task in hand, and able to show surprising generalization
performance and predicting power, thus mimicking some interesting cognitive
properties of evolved natural neural systems such as the brains of mammals.

In the light of the equivalence between language and automata classes, and
the wide variety of neural architectures —more specifically, discrete-time recur-
rent neural networks— that can be used to emulate the behavior of sequential
machines, the basic questions stated at the beginning of this introduction may
be given a more concrete formulation: on the one hand,

• can a neural network of architecture class A perform the same computation
as an automaton of class M?

• can a neural network of architecture class A be a recognizer for languages
of language class L?

and on the other hand,

• can a neural network of architecture class A be trained 1 to perform the
same computation as an automaton of class M , from a set of examples?

• can a neural network of architecture class A be trained to recognize a
language of class L from a set of examples?

Viewing computing devices as language recognizers or language acceptors allows
researchers to view examples as strings, belonging or not to the language —to
the computation— that is to be learned by the neural net. This brings the
research in this field very close to another important area of computer science:
grammatical inference, that is learning grammars from examples. Grammatical
inference is relevant because a wide variety of phenomena may be represented
and treated as languages after discretization of the input sequences as strings
of symbols from an appropriate alphabet.

1Of course, in reasonable time, as Marvin Minsky remarks in his foreword to the book by
Siu et al. (1995).

1.2. ORGANIZATION OF THE DOCUMENT 3

One of the first contacts of these two wide streams of research may be traced
to a date as early as 1943, when two researchers from MIT, Warren S. McCul-
loch and Walter Pitts, published their paper “A logical calculus of the ideas
immanent in nervous activity” (McCulloch and Pitts, 1943). This paper is con-
sidered to be seminal to both the field of artificial neural networks and to that
of automata theory. As Perrin (1990) put it, McCulloch and Pitts presented “a
logical model for the behaviour of nervous systems that turned out to be the
model of a finite-state machine”. This contact was followed a decade later by
the work of Kleene (1956) and Minsky (1956), who gradually moved away from
the neural formalization toward a logical and mathematical layout that would
be called “finite automata”. It was Minsky (1967) who made the often-quoted
statement “every finite-state machine is equivalent to, and can be simulated by,
some neural net”.

A long hiatus of more than three decades followed that early junction. The
field of artificial neural networks grew falteringly in the beginning and then
bloomed exuberantly in the late seventies and the early eighties with the work of
Werbos (1974), Kohonen (1974), Hopfield (1982), and McClelland et al. (1986).
The formal theory of language and computation has been maturing steadily
during this time. It was not until the late eighties that both fields made contact
again, this time for a long and fertile relationship. This document is a selection
of what I believe to be some of the best representatives of the work that has
been done in the field that connects artificial neural networks, automata and
formal models of language and computation.

1.2 Organization of the document

The document is organized in four chapters in addition to this Introduction.
Each chapter contains extensive introductory material that will allow the reader
to comprehend the relationships among the different approaches and the main
emerging results; these chapter introductions include the tutorial material needed
to put the papers in context.

Chapter 2 illustrates the beginning of the relationship between neural net-
works, automata and formal models of computation by presenting two pioneer-
ing papers; one is the seminal paper “A logical calculus of ideas immanent in
nervous activity”, (McCulloch and Pitts, 1943), and the other is a book chapter
by Minsky (1967), which discusses in detail the implementation of finite-state
automata in terms of McCulloch-Pitts neurons. The introduction of the chapter
includes a discussion on the computational capabilities of a single neuron as well
as an introduction to finite-state machines.

Chapter 3 addresses the use of neural networks as sequence processors and
collects four papers (Jordan, 1986; Elman, 1990; Pollack, 1990; Bengio et al.,
1994) in which discrete-time recurrent neural networks are trained to process
temporal sequences. The introduction describes discrete-time recurrent neural
network architectures in detail, viewing them as neural automata, and discusses
briefly the learning algorithms used for training them and the problems that

4 CHAPTER 1. INTRODUCTION

may be encountered.
Chapter 4 deals with the theoretical work concerning the computational

(symbolic sequence processing) capabilities of discrete-time recurrent neural net-
works and collects a number of representative papers (Alon et al., 1991; Siegel-
mann and Sontag, 1991; Goudreau et al., 1994; Siegelmann, 1995; Kremer, 1995;
Horne and Hush, 1996; Omlin and Giles, 1996b; Alquézar and Sanfeliu, 1995).
The introduction contains a tutorial describing formal grammars, Chomsky’s
hierarchy, Turing machines, and super-Turing computation.

The field of grammatical inference (that is, learning a language from exam-
ples) is the main theme of the papers collected in Chapter 5, which deals with
the inference of regular languages and finite-state automata (Cleeremans et al.,
1989; Pollack, 1991; Giles et al., 1992; Manolios and Fanelli, 1994; Tiňo and
Sajda, 1995) and with the inference of context-free languages and pushdown
automata (Zeng et al., 1994; Mozer and Das, 1993; Giles et al., 1990). The
chapter starts with an introduction to grammatical inference in general and in
particular with neural networks.

Chapter 2

Finite-state machines and
neural nets: the inception

This chapter collects two papers: one is the seminal paper by McCulloch and
Pitts (1943), where the authors decided to explore the question “what can a
neural network compute?” in terms of a very idealized model of the brain
which was in turn based on a very simplified model of neuron: a threshold unit.
The second paper, by Minsky (1967), discusses in detail the implementation of
finite-state machinesin terms of McCulloch-Pitts neurons.

2.1 McCulloch and Pitts’ neural logical calculus

The paper by McCulloch and Pitts (1943) is commonly regarded as the inception
of two fields of research. One is the theory of finite-state machines as a model
of computation. The other one is the field of artificial neural networks. This
is an important and widely cited paper, yet a difficult one to understand. the
notation used by McCulloch and Pitts (1943) is hard to follow for us nowadays,
but it also was for Kleene (1956), who expresses this very clearly:

The present article is partly an exposition of their results; but we found
the part of their [McCulloch and Pitts’] paper dealing with arbitrary nerve
nets obscure, so we have proceeded independently there.

Later on, having found an apparent flaw in one of the results by McCulloch and
Pitts (1943), Kleene (1956) says:

This apparent counterexample discouraged us from further attempts to
decipher part III of McCulloch-Pitts [1943].

The paper by McCulloch and Pitts (1943) paper is properly titled “A logical
calculus of the ideas immanent in nervous activity”: after stating a careful and
well argumented selection of simplifications of the behavior of real neurons, they
develop a logical apparatus to define:

5

6 CHAPTER 2. FINITE-STATE MACHINES AND NEURAL NETS

• The concepts of solution of a net and realizability of a logical predicate by
a net. After dividing the neurons in one net in two groups, that is, input
neurons (“peripheral afferents”) that do not get signals from any other
neuron in the net, and the rest of neurons, they go on to define a method
to answer the following two questions in the most general way possible:

– What does a given net compute?

– Can a given net compute a given logical sentence?

Neurons are in two possible states: firing and not firing, and thus, they
define for each neuron i a predicate that is true when the neuron is firing
at a given time t: Ni(t). They define the solution of a net as a set of
logical sentences of the form “neuron i is firing if and only if” a given
logical combination of the firing predicates of input neurons at previous
times and some constant sentences including firing predicates of these
same neurons at t = 0 is true. These sentences are a solution for a net if
they are all true for it. In other words, the sentences describe what the net
computes. Conversely, such an “if and only if” sentence is called realizable
by a net if it is true for that net; that is, when the net can compute it.

• A class of logical expressions (including predicates which have predicates
as functions) which they call temporal propositional expressions (TPE).
These predicates have a single free variable (which will be identified as
discrete time), and are recursively defined such that (a) any predicate
of one argument is a TPE; (b) the logical conjunction (and), disjunction
(or) and negated conjunction (and not) of any two TPEs with the same
variable is a TPE; (c) a TPE in which the value of the time variable is
substituted by its predecessor (time delay) is a TPE; and nothing else is
a TPE.

The main result is that any TPE is realizable by a non-recurrent neural
net, that is, there is always a net, whose synapses or connections do not form
cycles, which can compute any given TPE (McCulloch and Pitts (1943) call
non-recurrent nets “nets without circles”). This result follows from the fact
that the neurons in McCulloch and Pitts (1943) are described by a TPE (their
eq. (1)) which basically states that a neuron i is firing at time t if and only if
none of the neurons having an inhibitory synapse towards it was firing at time
t − 1 and more than θi neurons having an excitatory synapse towards it were
firing at time t− 1. The positive integer θi is called the excitation threshold of
neuron i.

To understand the computational behavior of nets with circles, one can follow
Kleene (1956)1. His notation is closer to the one used nowadays, and the results
are more general. Kleene (1956) characterized with mathematical expressions
the set of all input neuron activation sequences that bring a given net with circles
to a particular state after they have been completely processed, and discovered

1Available as a PDF file at http://www.dlsi.ua.es/~mlf/nnafmc/papers/

kleene56representation.pdf, retyped by Juan Antonio Pérez-Ortiz

2.2. WHAT FUNCTIONS CAN A NEURON COMPUTE? 7

interesting regularities among them. Kleene (1956) called them “regular events”;
we currently call them “regular expressions” in language theory (Hopcroft and
Ullman, 1979, 28).

2.2 What functions can a neuron compute?

From the statements in McCulloch and Pitts (1943) it follows naturally that
their neurons are equivalent to a model commonly used nowadays, where:

• Each neuron i is in either of two states at time t: xi[t] = 1 or “firing” and
xi[t] = 0 or “not firing”;

• all synapses (connections) are equivalent and characterized by a real num-
ber (their strength), which is positive for excitatory connections and neg-
ative for inhibitory connections;

• a neuron i becomes active when the sum of those connections wij coming
from neurons j connected to it which are active, plus a bias bi, is larger
than zero.

This is usually represented by

xi[t] = θ

bi +
∑
j∈C(i)

wijxj [t− 1]

 , (2.1)

where θ(x) is the step function: 1 when x >= 0 and 0 otherwise and C(i) is the
set of neurons that impinge on neuron i. This kind of neural processing element
is usually called a threshold linear unit or TLU. The time indexes are dropped
when processing time is not an issue (Hertz et al., 1991, 4).

If all inputs (assume there are n of them) to a TLU are either 0 or 1,
the neuron may be viewed as computing a logical function of n arguments.
The truth table of an arbitrary, total logical function of n arguments has 2n

different rows, and the output for any of them may be 0 or 1. Accordingly,
there are 2(2n) logical functions of n arguments. However, there are logical
functions a TLU cannot compute. For n = 1 all 4 possible functions (identity,
negation, constant true and constant false) are computable. However, for n = 2
there are two noncomputable functions, corresponding to the exclusive or and
its negation. The fraction of computable functions cannot be expressed as a
closed-form function of n but vanishes as n grows (Horne and Hush, 1996)). The
computable functions correspond to those in which the set of all input vectors
corresponding to true outputs and the set of all input vectors corresponding to
false outputs are separable by a n-dimensional hyperplane in that n-dimensional
space. This follows intuitively from eq. (2.1): the equation of the hyperplane is
the argument of function θ equated to zero.

The computational limitations of TLUs have a radical consequence: to com-
pute a general logical function of n arguments, one needs a cascade of TLUs.

8 CHAPTER 2. FINITE-STATE MACHINES AND NEURAL NETS

1

u1

u2

1

1

-1.5

1

1

-2

-0.5

y

1

Figure 2.1: Two TLUs may be used to compute the exclusive-or function (u1 and
u2 are the inputs, y is the output, and biases are represented as connections coming
from a constant input of 1).

For example, to compute the exclusive-or function one needs at least two TLUs,
as shown in figure 2.1. A common layout is the so-called multilayer perceptron
(MLP) or layered feedforward neural net (Haykin (1998), ch. 4; Hertz et al.
(1991), ch. 6). In this layout:

• Each neuron belongs to a subset called layer.

• If neuron i belongs to layer I then all neurons j sending their output to
neuron i belong to layer I − 1.

• Layer 0 is the input vector.

The backpropagation (BP) learning algorithm (Haykin (1998), sec. 4.3; Hertz
et al. (1991), ch. 6) is usually formulated for the MLP.

2.3 Nets with circles and finite-state machines

The second document featured in this section, a chapter in Infinite and Finite
Machines (Minsky, 1967), is well known because it establishes the equivalence
between neural nets with cyclic connections and a class of abstract computing
devices called finite-state machines or finite automata. The following sections
define three main classes of finite-state machines (FSM): Mealy machines, Moore
machines and deterministic finite automata .

2.3.1 Mealy machines

Mealy machines (Hopcroft and Ullman (1979, 42), Salomaa (1973, 31)) are
finite-state machines that act as transducers or translators, taking a string on
an input alphabet and producing a string of equal length on an output alphabet.
Formally, a Mealy machine is a six-tuple

M = (Q,Σ,Γ, δ, λ, qI) (2.2)

where

2.3. NETS WITH CIRCLES AND FINITE-STATE MACHINES 9

1/O

1/E

0/O0/E

1 2

Figure 2.2: A Mealy machine that outputs an E if the number of 1s read so far is
even and an O if it is odd. Transition labels are σ/γ where σ ∈ Σ is the input and
γ ∈ Γ is the output.

• Q = {q1, q2, . . . , q|Q|} is a finite set of states;

• Σ = {σ1, σ2, . . . , σ|Σ|} is a finite input alphabet;

• Γ = {γ1, γ2, . . . , γ|Γ|} is a finite output alphabet;

• δ : Q×Σ→ Q is the next-state function, such that a machine in state qj ,
after reading symbol σk, moves to state δ(qj , σk) ∈ Q.

• λ : Q × Σ → Γ is the output function, such that a machine in state qj ,
after reading symbol σk, writes symbol λ(qj , σk) ∈ Γ; and

• qI ∈ Q is the initial state in which the machine is found before the first
symbol of a string is processed.

As an example, let M = (Q,Σ,Γ, δ, λ, qI) such that:

Q = {q1, q2}, qI = q1.

Σ = {0, 1}

Γ = {E, O}

δ(q1, 0) = q1, δ(q1, 1) = q2

δ(q2, 0) = q2, δ(q2, 1) = q1

λ(q1, 0) = E, λ(q1, 1) = O
λ(q2, 0) = O, λ(q2, 1) = E

This machine, which may also be represented as in figure 2.2, outputs an E if
the number of 1s read so far is even and an O if it is odd; for example, the
translation of 11100101 is OEOOOEEO.

10 CHAPTER 2. FINITE-STATE MACHINES AND NEURAL NETS

2.3.2 Moore machines

A Moore machine (Hopcroft and Ullman, 1979, 42) may be defined by a similar
six-tuple, with the only difference that symbols are output after the transition
to a new state is completed, and the output symbol depends only on the state
just reached, that is, λ : Q→ Γ.

The class of translations that may be performed by Mealy machines and the
class of translations that may be performed by Moore machines are identical.
Indeed, given a Mealy machine, it is straightforward to construct the equivalent
Moore machine and vice versa (Hopcroft and Ullman, 1979, 44) .

2.3.3 Deterministic finite-state automata

Deterministic finite-state automata (DFA) (Hopcroft and Ullman (1979, 16),Sa-
lomaa (1973, 26)) may be seen as a special case of Moore machines. A DFA is
a five-tuple

M = (Q,Σ, δ, qI , F) (2.3)
where Q, Σ, δ and qI have the same meaning as in Mealy and Moore machines
and F ⊆ Q is the set of accepting states. If the state reached by the DFA
after reading a complete string in Σ∗ (the set of all finite-length strings over
Σ, including the empty string ε) is in F then, the string is accepted ; if not, the
string is not accepted (or rejected). This would be equivalent to having a Moore
machine whose output alphabet has only two symbols, Y (yes) and N (no), and
looking only at the last output symbol (not at the whole output string) to decide
whether the string is accepted or rejected.

As an example, let M = (Q,Σ, δ, qI , F) be a DFA such that:

Q = {q1, q2}, F = {q1}, qI = q1.

Σ = {0, 1}

δ(q1, 0) = q1

δ(q1, 1) = q2

δ(q2, 0) = q2

δ(q2, 1) = q1

This automaton, which may also be represented as in figure 2.3, accepts only
those strings of 0s and 1s having an even number of 1s. Another example of
DFA is given by the following definition

Q = {q1, q2, q3, q4}, F = {q1, q2, q3}, qI = q1.

Σ = {0, 1}

δ(q1, 0) = q2, δ(q1, 1) = q1

δ(q2, 0) = q3, δ(q2, 1) = q1

δ(q3, 0) = q4, δ(q3, 1) = q1

δ(q4, 0) = q4, δ(q4, 1) = q4.

This automaton, which may also be represented as in figure 2.4, accepts only
those strings of 0s and 1s not including the substring 000.

2.3. NETS WITH CIRCLES AND FINITE-STATE MACHINES 11

1

1

00

1 2

Figure 2.3: A deterministic finite-state automaton that accepts only binary strings
having an even number of 1s.

1 1 0,1

0 0 0

1

2 3 41

Figure 2.4: A deterministic finite-state automaton that accepts only binary strings
not containing the sequence “000”.

2.3.4 Minsky’s neural automata

This chapter discusses the implementation of finite-state machines (formulated
as Mealy machines) using McCulloch and Pitts (1943)’s neurons ; it starts by
building very simple automata such as gates, switches, impulse counters, and
simple arithmetic circuits, and finally proves a theorem which is crucial to the
field that connects artificial neural networks and the formal theories of language
and computation. In Minsky’s own words, “every finite-state machine is equiv-
alent to, and can be simulated by, some neural net”. The theorem constructs
a recurrent neural net in which there are |Q||Σ| units which detect a particular
combination of state and input symbol and |Γ| units which compute outputs.
The neural net is shown to exhibit the same behavior as the corresponding
Mealy machine.

It is worth mentioning that the net itself is a neural Moore machine, architec-
turally very similar to Elman (1990)’s nets and that Minsky’s construction has
inspired other work such as Kremer (1995)’s or Alquézar and Sanfeliu (1995)’s
.2

2Some of these architectures use sigmoid units whose output is real and continuous instead
of TLU whose output is discrete; for details, see section 3.2.

12 CHAPTER 2. FINITE-STATE MACHINES AND NEURAL NETS

2.4 Finite-state automata and regular languages

Each given DFA, as defined in eq. 2.3, can accept a certain set of strings of sym-
bols. A (finite or infinite) set of strings over a given alphabet is usually called
a language. The class of languages that DFAs can accept is called the class
of regular languages, where the word regular is borrowed from Kleene (1956)’s
“regular events”; in other words, if a language is accepted by a DFA, it is a
regular language, and vice versa. These languages (also called regular sets) may
be represented by regular expressions based on Kleene (1956)’s regular events.
Each regular expression represents a set of strings. Now, for any two expressions
r and s, rs represents the set of all strings that may be obtained by concate-
nating strings of r with strings of s and r|s represents the union of r and s; in
addition, for any set s, s∗ represents the set of all strings that may be obtained
by concatenating strings of s to themselves zero (that is, the empty string ε) or
more times (this operation is called the Kleene closure and the symbol is called
the Kleene star); using these operations (concatenation, union, and Kleene clo-
sure) on regular languages always yields regular languages. The basic regular
languages are the empty set {} (represented ∅), the languages containing a sin-
gle one-symbol string ({σ} for all σ ∈ Σ, represented simply by σ), and the
language containing only the empty string {ε} (represented by ε itself). It is
easy to show that any finite language is regular. Kleene (1956) showed for the
first time that the set of languages expressible by regular expressions is exactly
the one that may be accepted by a net with circles, that is, by a finite-state
machine (see also Hopcroft and Ullman (1979, 218), Salomaa (1973, 27)).

See section 4.1.1 for an introduction to grammars as an alternative way of
defining formal languages.

Chapter 3

Sequence processing with
neural networks

This chapter collects a number of early papers in which neural networks are
trained to be sequence processors. The notions of sequence or time are con-
substantial to the concept of computation as a sequential behavior, and indeed,
the question explored by papers in this chapter is the second “main question”
mentioned in the introduction, that is, “what can a neural network learn to
compute?”, in terms of sequence processing and recognition.

The introductory material discusses briefly what is sequence processing (sec-
tion 3.1); then, the following sections illustrate how neural networks may be used
as sequence processors. The use of neural networks for sequence processing tasks
has a very important advantage: neural networks are adaptive devices that may
be trained to perform sequence processing tasks from examples. Section 3.2 gives
a general introduction to a kind of neural networks which is very relevant to
sequence processing, namely, discrete-time recurrent neural networks, under the
paradigm of “neural state machines”; section 3.3 briefly reviews some applica-
tions of recurrent neural networks to some real-world sequence processing tasks;
section 3.4 gives an outline of the main learning (also training) algorithms; and
the learning problems that may be observed are discussed in section 3.5. Finally,
a brief introduction to each one of the featured papers is given in section 3.6

3.1 Processing sequences

The word sequence (from Latin sequentia, i.e., “the ones following”) is used to
refer to a series of data items, each one taken from a certain set of possible values
U , so that each one of them is assigned an index (usually consecutive integers)
indicating the order in which the data items are generated or measured.1 Since

1Other authors (Stiles et al., 1997; Stiles and Ghosh, 1997) prefer to see sequences as
functions that take an integer and return a value in U .

13

14 CHAPTER 3. SEQUENCE PROCESSING WITH NEURAL NETS

the index usually refers to time, some researchers like to call sequences time
series as in “time series prediction” (Janacek and Swift, 1993; Weigend and
Gershenfeld, 1993; Box et al., 1994). In the field of signal processing, this would
usually be called a discrete-time sampled signal; researchers in this field would
identify the subject of this discussion as that of discrete-time signal processing
(Oppenheim and Schafer, 1989; Mitra and Kaiser, 1993; Ifeachor and Jervis,
1994).

In most of the following, it will be considered, for convenience, that U is a
vector space in the broadest possible sense. Examples of sequences would be:

• strings (words) on an alphabet (where U would be the alphabet of possible
letters and the integer labels 1, 2, . . . would be used to refer to the first,
second, etc. symbol of the string)

• acoustic vectors obtained every T milliseconds after suitable preprocessing
of a speech signal (here U would be a vector space and the indices would
refer to sampling times)

What can be done with sequences? Far from having the intention of being
exhaustive and formal, one may classify sequence processing operations in the
following broad classes:2

Sequence classification, sequence recognition: in this kind of processing,
a whole sequence u = u[1]u[2] . . . u[Lu] is read and a single value, label
or pattern (not a sequence) y, taken from a suitable set Y , is computed
from it. For example, a sequence of acoustic vectors such as the one
mentioned above may be assigned a label that describes the word that
was pronounced, or a vector of probabilities for each possible word. Or
a string on a given alphabet may be recognized as belonging to a certain
formal language. For convenience, Y will also be considered to be some
kind of vector space.

Sequence transduction or translation, signal filtering: In this kind of pro-
cessing, a sequence u = u[1]u[2] . . . u[Lu] is transformed into another se-
quence y = y[1]y[2] . . . y[Ly] of data items taken from a set Y . In prin-
ciple, the lengths of the input Lu and the output Ly may be different.
Processing may occur in different modes: some sequence processors read
the whole input sequence u and then generate the sequence y. Another
mode is sequential processing, in which the output sequence is produced
incrementally while processing the input sequence. Sequential processing
has the interesting property that, if the result of processing of a given
sequence u1 is a sequence y1, then the result of processing a sequence that
starts with u1 is always a sequence that starts with y1 (this is sometimes
called the prefix property). A special case of sequential processing is syn-
chronous processing: the processor reads and writes one data item at a
time, and therefore, both sequences grow at the same rate during pro-
cessing. For example, Mealy and Moore machines, defined in section 2.3,

2This classification is inspired in the one given by Hertz et al. (1991, 177).

3.1. PROCESSING SEQUENCES 15

are sequential, finite-memory, synchronous processors that read and write
symbol strings. Examples of transductions and filtering include machine
translation of sentences and filtering of a discrete-time sampled signal.
Note that sequence classification applied to each prefix u[1], u[1]u[2], etc.
of a sequence u[1]u[2]u[3] . . . is equivalent to synchronous sequence trans-
duction.

Sequence continuation or prediction: In this case, the sequence processor
reads a sequence u[1]u[2] . . . u[t] and produces as an output a possible
continuation of the sequence û[t + 1]û[t + 2].... This is usually called
time series prediction and has interesting applications in meteorology or
finance, where the ability to predict the future behavior of a system is a
primary goal. Another interesting application of sequence prediction is
predictive coding and compression. If the prediction is good enough, the
difference between the predicted continuation of the signal and its actual
continuation may be transmitted using a channel with a lower bandwidth
or a lower bit rate. This is extensively used in speech coding (Sluijter et al.,
1995), for example, in digital cellular phone systems.

Sequence generation: in this mode, the process generates an output sequence
y[1]y[2] . . . from a single input u or no input at all. For example, a phone
number inquiry system may generate a synthetical pronunciation of each
digit.

3.1.1 State-based sequence processors

Sequence processors may be built around a state; state-based sequence proces-
sors maintain and update at each time t a state x[t] which stores the information
about the input sequence they have seen so far (u[1], . . . , u[t]) which is neces-
sary to compute the current output y[t] or future outputs. State is recursively
computed: the state at time t, x[t], is computed from the state at time t − 1,
x[t− 1], and the current input u[t] using a suitable next-state function:

x[t] = f(x[t− 1], u[t]). (3.1)

The output is then computed using an output function, usually from the current
state,

y[t] = h(x[t]), (3.2)

but sometimes from the previous state and the current input, like current state
itself

y[t] = h(x[t− 1], u[t]). (3.3)

Such a state-based sequence processor is therefore defined by the set of available
states, by its initial state x[0], and by the next-state (f) and output (h) functions
(the nature of inputs and outputs is defined by the task itself). For example,
Mealy and Moore machines (sections 2.3.1 and 2.3.2) and deterministic finite-
state automata (section 2.3.3) are sequence processors having a finite set of

16 CHAPTER 3. SEQUENCE PROCESSING WITH NEURAL NETS

available states. As will be seen in the following section, neural networks may
be used and trained as state-based adaptive sequence processors. .

3.2 Discrete-time recurrent neural networks

When neural networks are used to do sequence processing, the most general
architecture is a recurrent neural network (that is, a neural network in which
the output of some units is fed back as an input to some others), in which, for
generality, unit outputs are allowed to take any real value in a given interval
instead of simply two characteristic values as in threshold linear units. In par-
ticular, since sequences are discrete in nature (that is, they are made of data
indexed by integers), the processing occurs in discrete steps, as if the network
were driven by an external clock, and each of the neurons is assumed to com-
pute its output instantaneously, hence the name discrete-time recurrent neural
networks to account for this fact. There is another wide class of recurrent neu-
ral networks in which inputs and outputs are functions of a continuous time
variable and neurons have a temporal response (relating state to inputs) that is
described by a differential equation in time (Pineda, 1987). These networks are
aptly called continous-time recurrent neural networks (for an excellent review,
see Pearlmutter (1995)).

Discrete-time recurrent neural networks are adaptive, state-based sequence
processors that may be applied to any of the four broad classes of sequence
processing tasks mentioned in section 3.1: in sequence classification, the output
of the DTRNN is examined only at the end of the sequence; in synchronous
sequence transduction tasks, the DTRNN produces a temporal sequence of out-
puts corresponding to the sequence of inputs it is processing; in sequence con-
tinuation or prediction tasks, the output of the DTRNN after having seen an
input sequence may be interpreted as a continuation of it; finally, in sequence
generation tasks, a constant or no input may be applied in each cycle to generate
a sequence of outputs.

In this document, it has been found to be convenient to see discrete-time
recurrent neural networks (DTRNN) (see Haykin (1998), ch. 15; Hertz et al.
(1991), ch. 7; Hush and Horne (1993); Tsoi and Back (1997)) as neural state
machines (NSM), and to define them in a way that is parallel to the definitions
of Mealy and Moore machines given in section 2.3. This parallelism is inspired
in the relationship established by Pollack (1991) between deterministic finite-
state automata (DFA) and a class of second-order DTRNN,3 under the name
of dynamical recognizers. A neural state machine N is a six-tuple

N = (X,U, Y, f ,h,x0) (3.4)

in which

• X = [S0, S1]nX is the state space of the NSM, with S0 and S1 the values
defining the range of values for the state of each unit, and nX the number

3Defined in section 3.2.1.

3.2. DISCRETE-TIME RECURRENT NEURAL NETWORKS 17

of state units;4

• U = R
nU defines the set of possible input vectors, with nU the number of

input lines;

• Y = [S0, S1]nY is the set of outputs of the NSM, with nY the number of
output units;

• f : X × U → X is the next-state function a feedforward neural network
which computes a new state x[t] from the previous state x[t− 1] and the
input just read u[t]5.:

x[t] = f(x[t− 1],u[t]); (3.5)

• h is the output function, which in the case of a Mealy NSM is h : X×U →
Y , that is, a feedforward neural network which computes a new output
y[t] from the previous state x[t− 1] and the input just read u[t]:

y[t] = h(x[t− 1],u[t]), (3.6)

and in the case of a Moore NSM is h : X → Y , a feedforward neural
network which computes a new output y[t] from the newly reached state
x[t]:

y[t] = h(x[t]); (3.7)

• and finally, x0 is the initial state of the NSM, that is, the value that will
be used for x[0].

Most classical DTRNN architectures may be directly defined using the NSM
scheme; the following sections show some examples (in all of them, weights and
biases are assumed to be real numbers). The generic block diagrams of neural
Mealy and neural Moore machines are given in figures 3.1 and 3.2 respectively.

3.2.1 Neural Mealy machines

Omlin and Giles (1996a) and Omlin and Giles (1996b) have used a second-
order6 recurrent neural network (similar to the one used by Giles et al. (1992),
Pollack (1991), Forcada and Carrasco (1995), Watrous and Kuhn (1992), and
Zeng et al. (1993)) which may be formulated as a Mealy NSM described by a
next-state function whose i-th coordinate (i = 1, . . . , nX) is

fi(x[t− 1],u[t]) = g

 nX∑
j=1

nU∑
k=1

W xxu
ijk xj [t− 1]uk[t] +W x

i

 , (3.8)

4All state units are assumed to be of the same kind.
5Unlike in eqs. (3.1–3.3), bold lettering is used here to emphasize the vectorial nature of

states, inputs, outputs, and next-state and output functions.
6Second-order neural networks operate on products of two inputs, each input taken from

a different subset; first-order networks instead, operate on raw inputs.

18 CHAPTER 3. SEQUENCE PROCESSING WITH NEURAL NETS

feedforward net
(next state)

feedforward net
(output)

u[t]x[t-1]

x[t] y[t]

Figure 3.1: Block diagram of a neural Mealy machine.

x[t-1]

feedforward net
(output)

u[t]

feedforward net
(next state)

x[t]

y[t]

Figure 3.2: Block diagram of a neural Moore machine.

3.2. DISCRETE-TIME RECURRENT NEURAL NETWORKS 19

where g : R → [S0, S1] (usually S0 = 0 or −1 and S1 = 1) is the activation
function7 of the neurons, and an output function whose i-th coordinate (i =
1, . . . , nY) is

hi(x[t− 1],u[t]) = g

 nX∑
j=1

nU∑
k=1

W yxu
ijk xj [t− 1]uk[t] +W y

i

 . (3.9)

Throughout this document, a homogeneous notation will be used for weights.
Superscripts indicate the computation in which the weight is involved: the xxu
in W xxu

ijk indicates that the weight is used to compute a state (x) from a state
and an input (xu); the y in W y

i (a bias) indicates that it is used to compute
an output. Subscripts designate, as usual, the particular units involved and run
parallel to superscripts.

Activation functions g(x) are usually required to be real-valued, monotonously
growing, continuous (very often also differentiable), and bounded; they are usu-
ally nonlinear. Two commonly used examples of differentiable activation func-
tions are the logistic function gL(x) = 1/(1 + exp(−x)), which is bounded by
0 and 1, and the hyperbolic tangent gT (x) = tanh(x) = (1 − exp(−2x))/(1 +
exp(−2x)), which is bounded by −1 and 1. Activation functions are usually
required to be differentiable because this allows the use of learning algorithms
based on gradients. There are also a number of architectures that do not use
sigmoid-like activation functions but instead use radial basis functions ((Haykin,
1998), ch. 5; Hertz et al. (1991, 248)), which are not monotonous but instead
are Gaussian-like functions that reach their maximum value for a given value of
their input. DTRNN architectures using radial basis functions have been used
by Cid-Sueiro et al. (1994); Frasconi et al. (1996).

Another Mealy NSM is that defined by Robinson and Fallside (1991) under
the name of recurrent error propagation network, a first-order DTRNN which
has a next-state function whose i-th coordinate (i = 1, . . . , nX) is given by

fi(x[t− 1],u[t]) = g

 nX∑
j=1

W xx
ij xj [t− 1] +

nU∑
j=1

W xu
ij uj [t] +W x

i

 , (3.10)

and an output function h(x[t − 1],u[t]) whose i-th component (i = 1, . . . , nY)
is given by

hi(x[t− 1],u[t]) = g

 nX∑
j=1

W yx
ij xj [t− 1] +

nU∑
j=1

W yu
ij uj [t] +W y

i

 . (3.11)

Jordan (1986) nets may also be formulated as Mealy NSM. Both the next-state
and the output function use an auxiliary function z(x[t − 1],u[t]) whose i-th

7Also called transfer function, gain function and squashing function (Hertz et al., 1991,
4).

20 CHAPTER 3. SEQUENCE PROCESSING WITH NEURAL NETS

coordinate is

zi((x[t− 1],u[t]) = g

 nX∑
j=1

W zx
ij xj [t− 1] +

nU∑
j=1

W zu
ij uj [t] +W z

i

 , (3.12)

with i = 1, . . . , nZ . The i-th coordinate of the next-state function is

fi(x[t− 1],u[t]) = αxi[t− 1] + g

 nZ∑
j=1

W xz
ij zj(x[t− 1],u[t]) +W x

i

 (3.13)

(with α ∈ [0, 1] a constant) and the i-th coordinate of the output function is

hi(x[t− 1],u[t]) = g

 nZ∑
j=1

W xz
ij zj(x[t− 1],u[t]) +W x

i

 . (3.14)

3.2.2 Neural Moore machines

Elman (1990)’s simple recurrent net , a widely-used Moore NSM, is described
by a next-state function identical to the next-state function of Robinson and
Fallside (1991), eq. (3.10), and an output function h(x[t]) whose i-th component
(i = 1, . . . , nY) is given by

hi(x[t]) = g

 nX∑
j=1

W yx
ij xj [t] +W y

i

 . (3.15)

However, an even simpler DTRNN is the one used by Williams and Zipser
(1989c,a), which has the same next-state function but an output function that
is simply a projection of the state vector yi[t] = xi[t] for i = 1, . . . , nY with
nY ≤ nX . This architecture is also used in the encoder (or compressor) part of
Pollack (1990)’s RAAM (see page 34) when encoding sequences.

The second-order counterpart of Elman (1990)’s simple recurrent net has
been used by Blair and Pollack (1997) and Carrasco et al. (1996). In that case,
the i-th coordinate of the next-state function is identical to eq. (3.8), and the
output function is identical to eq. (3.15).

The second-order DTRNN used by Giles et al. (1992) , Watrous and Kuhn
(1992), Pollack (1991) , Forcada and Carrasco (1995), and Zeng et al. (1993)
may be formulated as a Moore NSM in which the output vector is simply a
projection of the state vector hi(x[t]) = xi[t] for i = 1, . . . , nY with nY ≤ nX , as
in the case of Williams and Zipser (1989c) and Williams and Zipser (1989a). The
classification of these second-order networks as Mealy or Moore NSM depends on
the actual configuration of feedback weights used by the authors. For example,
Giles et al. (1992) use one of the units of the state vector x[t] as an output unit;
this would be a neural Moore machine in which y[t] = x1[t] (this unit is part of
the state vector because its value is also fed back to form x[t − 1] for the next
cycle).

3.2. DISCRETE-TIME RECURRENT NEURAL NETWORKS 21

3.2.3 Other architectures without hidden state

There are a number of discrete-time neural network architectures that do not
have a hidden state (their state is observable because it is simply a combination
of past inputs and past outputs) but may still be classified as recurrent. One
such example is the NARX (Nonlinear Auto-Regressive with eXogenous inputs)
network used by Narendra and Parthasarathy (1990) and then later by Lin et al.
(1996) and Siegelmann et al. (1996) (see also (Haykin, 1998, 746)), which may
be formulated in state-space form by defining a state that is simply a window
of the last nI inputs and a window of the last nO outputs. Accordingly, the
next-state function simply incorporates a new input (discarding the oldest one)
and a freshly computed output (discarding the oldest one) to the windows and
shifts each one of them one position. The nX = nInU + nOnY components of
the state vector are distributed as follows:

• The first nInU components are allocated to the window of the last nI
inputs: ui[t− k] (k = 0 . . . nI − 1) is stored in xi+knU [t];

• The nOnY components from nInU+1 to nX are allocated to the window of
the last nO outputs: yi[t−k] (k = 1 . . . nO) is stored in xnInU+i+(k−1)nY [t].

The next-state function f performs, therefore, the following operations:

• Incorporating the new input and shifting past inputs

fi(x[t− 1],u[t]) = ui[t], 1 ≤ i ≤ nU ;
fi(x[t− 1],u[t]) = xi−nU [t− 1], nU < i ≤ nUnI

(3.16)

• Shifting past outputs:

fi(x[t− 1],u[t]) = xi−nY [t− 1], nUnI + nY < i ≤ nX ; (3.17)

• Computing new state components using an intermediate hidden layer of
nZ units:

fi+nUni(x[t− 1],u[t]) = g

 nZ∑
j=1

W xz
ij zj [t] +W x

i

 , 1 ≤ i ≤ nY (3.18)

with

zi[t] = g

 nX∑
j=nU+1

W zx
ij xi[t− 1] +

nU∑
j=1

W zu
ij uj [t] +W z

i

 , 1 ≤ i ≤ nZ .

(3.19)

The output function is then simply

hi(x[t]) = xi+nUnI [t], (3.20)

22 CHAPTER 3. SEQUENCE PROCESSING WITH NEURAL NETS

...

.
.
.

.
.
.

.
.
.

output y[t]

� � ����� ���

.
.
.

.
.
.

.
.
.

hidden z[t]...

... ...

input window output window

1

2

nY

1

2

nU

u[t-nI]u[t-1]u[t] y[t-nO]y[t-2]y[t-1]

Figure 3.3: Block diagram of a NARX network (the network is fully connected but
all arrows have not been drawn for clarity).

with 1 ≤ i ≤ nY . Note that the output is computed by a two-layer feedforward
neural network. The operation of a NARX network N may then be summarized
as follows (see figure 3.3):

y[t] = N(u[t],u[t− 1], . . . ,u[t− nI],y[t− 1],y[t− 2], . . . ,y[t− nO]). (3.21)

Their operation is therefore a nonlinear variation of that of an ARMA (Auto-
Regressive, Moving Average) model or that of an IIR (Infinite-time Impulse
Response) filter.

When the state of the discrete-time neural network is simply a window of past
inputs, we have a network usually called a time delay neural network (TDNN)
(see also (Haykin, 1998, 641)). In state-space formulation, the state is simply
the window of past inputs and the next-state function simply incorporates a
new input to the window and shifts it one position in time:

fi(x[t− 1],u[t]) = xi−nU [t− 1], nU < i ≤ nUnI ;
fi(x[t− 1],u[t]) = ui[t], 1 ≤ i ≤ nU ,

(3.22)

3.2. DISCRETE-TIME RECURRENT NEURAL NETWORKS 23

...

.
.
.

.
.
.

output y[t]

� � ����� ���

.
.
.

hidden z[t]...

...

input window

1

2

nU

u[t] u[t-1] u[t-nI]

Figure 3.4: Block diagram of a TDNN (the network is fully connected but all arrows
have not been drawn for clarity).

with nX = nUnI ; and the output is usually computed by a two-layer perceptron
(feedforward net):

hi(x[t− 1],u[t]) = g

 nZ∑
j=1

W yz
ij zj [t] +W y

i

 , 1 ≤ i ≤ nY (3.23)

with

zi[t] = g

 nX∑
j=1

W zx
ij xi[t− 1] +

nU∑
j=1

W zu
ij uj [t] +W z

i

 , 1 ≤ i ≤ nZ . (3.24)

The operation of a TDNN network N may then be summarized as follows
(see figure 3.4):

y[t] = N(u[t],u[t− 1], . . . ,u[t− nI]). (3.25)

Their operation is therefore a nonlinear variation of that of an MA (Moving
Average) model or that of a FIR (Finite-time Impulse Response) filter.

The weights connecting the window of inputs to the hidden layer may be
organized in blocks sharing weight values, so that the components of the hidden
layer retain some of the temporal ordering in the input window. TDNN have

24 CHAPTER 3. SEQUENCE PROCESSING WITH NEURAL NETS

been used for tasks such as phonetic transcription (Sejnowski and Rosenberg,
1987), protein secondary structure prediction (Qian and Sejnowski, 1988), or
phoneme recognition (Waibel et al., 1989; Lang et al., 1990). Clouse et al.
(1997b) have studied the ability of TDNN to represent and learn a class of
finite-state recognizers from examples (see also (Clouse et al., 1997a) and (Clouse
et al., 1994))8.

3.3 Application of DTRNN to sequence process-
ing

DTRNN have been applied to a wide variety of sequence-processing tasks; here
is a survey of some of them:

Channel equalization: In digital communications, when a series of symbols
is transmitted, the effect of the channel may yield a signal whose decod-
ing may be impossible without resorting to a compensation or reversal of
these effects at the receiver side. This sequence transduction task (which
converts the garbled sequence received into something as similar as possi-
ble to the transmitted signal) is usually known as equalization. A number
of researchers have studied DTRNN for channel equalization purposes
(Kechriotis et al., 1994; Ortiz-Fuentes and Forcada, 1997; Bradley and
Mars, 1995; Cid-Sueiro and Figueiras-Vidal, 1993; Cid-Sueiro et al., 1994;
Parisi et al., 1997).

Speech recognition: Speech recognition may be formulated either as a se-
quence transduction task (for example, continuous speech recognition sys-
tems aim at obtaining a sequence of phonemes from a sequence of acoustic
vectors derived from a digitized speech sample) or as a sequence recog-
nition task (for example, as in isolated-word recognition, which assigns a
word in a vocabulary to a sequence of acoustic vectors). Discrete-time
recurrent neural networks have been extensively used in speech recogni-
tion tasks (Robinson and Fallside, 1991; Robinson, 1994; Bridle, 1990;
Watrous et al., 1990; Chiu and Shanblatt, 1995; Kuhn et al., 1990; Chen
et al., 1995).

Speech coding: Speech coding aims at obtaining a compressed representation
of a speech signal so that it may be sent at the lowest possible bit rate. A
family of speech coders are based in the concept of predictive coding: if the
speech signal at time t may be predicted using the values of the signal at
earlier times, then the transmitter may simply send the prediction error

8The class of finite-state recognizers representable in TDNN is that of definite-memory
machines (DMM), that is, finite-state machines whose state is observable because it may be
determined by inspecting a finite window of past inputs (Kohavi, 1978). When the state is
observable but has to be determined by inspecting both a finite window of past inputs and a
finite window of past outputs, we have a finite-memory machine (FMM); the neural equivalent
of FMM is therefore the NARX network just mentioned.

3.4. LEARNING ALGORITHMS FOR DTRNN 25

instead of the actual value of the signal and the receiver may use a similar
predictor to reconstruct the signal; in particular, a DTRNN may be used
as a predictor. The transmission of the prediction error may be arranged
in such a way that the number of bits necessary is much smaller than
the one needed to send the actual signal with the same reception quality
(Sluijter et al., 1995). Haykin and Li (1995), Baltersee and Chambers
(1997), and Wu et al. (1994) have used DTRNN predictors for speech
coding.

System identification and control: DTRNN may be trained to be models
of time-dependent processes such as a stirred-tank continuous chemical
reactor: this is usually referred to as system identification. Control goes a
step further: a DTRNN may be trained to drive a real system (a “plant”)
so that the properties of its output follows a desired temporal pattern.
Many researchers have used of DTRNN in system identification (Adalı
et al., 1997; Cheng et al., 1995; Werbos, 1990; Dreider et al., 1995; Nerrand
et al., 1994), and control (Li et al., 1995; Narendra and Parthasarathy,
1990; Puskorius and Feldkamp, 1994; Chovan et al., 1994, 1996; Wang and
Wu, 1995, 1996; Zbikowski and Dzielinski, 1995).

Time series prediction: The prediction of the next item in a sequence may
be interesting in many other applications besides speech coding. For exam-
ple, short-term electrical load forecasting is important to control electrical
power generation and distribution. Time series prediction is a classical
sequence prediction application of DTRNN. See, for example, Connor and
Martin (1994); Dreider et al. (1995); Draye et al. (1995); Aussem et al.
(1995).

Natural language processing: The processing of sentences written in any
natural (human) language may itself be seen as a sequence processing task,
and has been also approached with DTRNN. Examples include discovering
grammatical and semantic classes of words when predicting the next word
in a sentence (Elman, 1991), learning to assign thematic roles to parts of
Chinese sentences (Chen et al., 1997), or training a DTRNN to judge on
the grammaticality of natural language sentences (Lawrence et al., 1996).

3.4 Learning algorithms for DTRNN

When we want to train a DTRNN as a sequence processor, the usual procedure
is to choose the architecture and parameters of the architecture: the number of
input lines nU and the number of output neurons nY will usually be determined
by the nature of the input sequence itself and by the nature of the processing we
want to perform9; the number of state neurons nX will have to be determined
through experimentation or used to act as a computational bias restricting the

9Although the choice of a particular encoding scheme or a particular kind of preprocessing
—such as e.g. a normalization— may indeed affect the performance of the network.

26 CHAPTER 3. SEQUENCE PROCESSING WITH NEURAL NETS

computational power of the DTRNN when we have a priori knowledge about
the computational requirements of the task. Since DTRNN are state-based
sequence processors (see section 3.1.1), the choice of the number of state units
is crucial: the resulting state space has to be ample enough to store all the
information about an input sequence that is necessary to produce a correct
output for it, assuming that the DTRNN architecture is capable of extracting
that information from inputs and computing correct outputs from states; it is
also possible to modify the architecture as training proceeds (see e.g. Fahlman
(1991)), as will be mentioned later.

Then we train the DTRNN on examples of processed sequences; training a
DTRNN as a discrete-time sequence processor involves adjusting its learnable
parameters. In a DTRNN these are the weights, biases and initial states10 (x0).
To train the network we usually need an error measure which describes how far
the actual outputs are from their desired targets; the learnable parameters are
modified to minimize the error measure. It is very convenient that the error is
a differentiable function of the learnable parameters which is to be minimized
(this is usually the case with most sigmoid-like activation functions, as has
been discussed in the previous section). A number of different problems may
occur when training DTRNN —and, in general, any neural network— by error
minimization. These problems are reviewed in section 3.5.

Learning algorithms (also called training algorithms) for DTRNN may be
classified according to diverse criteria. All learning algorithms (except trivial
algorithms such as a random search) implement a heuristic to search the many-
dimensional space of learnable parameters for minima of the error function cho-
sen; the nature of this heuristic may be used to classify them. Some of the
divisions that will be described in the following may also apply to non-recurrent
neural networks.

A major division occurs between gradient-based algorithms, which compute
the gradient of the error function with respect to the learnable parameters at the
current search point and use this vector to define the next point in the search
sequence, and non-gradient-based algorithms which use other (usually local)
information to decide the next point. Obviously, gradient-based algorithms
require that the error function be differentiable, whereas most non-gradient-
based algorithms may dispense with this requirement. In the following, this will
be used as the main division.

Another division relates to the schedule used to decide the next set of learn-
able parameters. Batch algorithms compute the total error function for all of
the patterns in the current learning set and update the learnable parameters
only after a complete evaluation of the total error function has been performed.
Pattern algorithms compute the contribution of a single pattern to the error
function and update the learnable parameters after computing this contribu-
tion. This formulation of the division may be applied to most neural network
learning algorithms; however, in the case of DTRNN used as sequence proces-

10Learning the initial state is surprisingly not too common in DTRNN literature, because
it seems rather straightforward to do so; we may cite the papers by Bulsari and Saxén (1995)
Forcada and Carrasco (1995), and Blair and Pollack (1997).

3.4. LEARNING ALGORITHMS FOR DTRNN 27

sors, targets may be available not only for a whole sequence (as, for instance,
in a classification task) but also for parts of a sequence (as would be the case in
a synchronous translation task in which the targets are known after each item
of the sequence). In the second case, a third learning mode, online learning ,
is possible: the contribution to the error function of each partial target may
be used to update some of the learnable parameters even before the complete
sequence has been processed. Online learning is the only possible choice when
the learning set consists of a single sequence without a defined endpoint or when
patterns can only be presented once.11

A third division has already been mentioned. Most learning algorithms for
DTRNN do not change the architecture during the learning process. However,
there are some algorithms that modify the architecture of the DTRNN while
training it (for example, the recurrent cascade correlation algorithm by Fahlman
(1991) adds neurons to the network during training).

3.4.1 Gradient-based algorithms

The two most common gradient-based algorithms for DTRNN are backpropaga-
tion through time (BPTT) and real-time recurrent learning (RTRL). Most other
gradient-based algorithms may be classified as using an intermediate or hybrid
strategy combining the desirable features of these two canonical algorithms.

The simplest kind of gradient-based algorithm —used also for feedforward
neural networks— is a gradient-descent learning algorithm which updates each
learnable parameter p of the network according to the rule

pnew = pold − αp
∂E

∂p
(3.26)

where αp is a positive magnitude (not necessarily a constant) called the learning
rate for parameter p and E is either the total error for the whole learning
set (as in batch learning) or the error for the pattern just presented (as in
pattern learning). Most gradient-based algorithms are improvements of this
simple scheme (for details see e.g. (Haykin, 1998, 220,233ff); (Hertz et al.,
1991, 103ff,123ff,157)); all of them require the calculation of derivatives of error
with respect to all of the learnable parameters. The derivatives for a DTRNN
may be computed (or approximated) in different ways, which leads to a variety
of methods.

Backpropagation through time

Backpropagation through time (BPTT) may be considered as the earliest learn-
ing algorithm for DTRNN. The most commonly used reference for BPTT is
the book chapter by Rumelhart et al. (1986), although an earlier description
of BPTT may be found in Werbos (1974)’s PhD dissertation (see also Werbos

11For a detailed discussion of gradient-based learning algorithms for DTRNN and their
modes of application, the reader is referred to an excellent survey by Williams and Zipser
(1995), whose emphasis is on continuously running DTRNN.

28 CHAPTER 3. SEQUENCE PROCESSING WITH NEURAL NETS

(1990)). The central idea to BPTT is the unfolding of the discrete-time recur-
rent neural network into a multilayer feedforward neural network (FFNN) each
time a sequence is processed. The FFNN has a layer for each “time step” in the
sequence; each layer has nX units, that is, as many as there are state units in
the original networks. It is as if we are using time to index layers in the FFNN.
Next state is implemented by connecting state units in layer t− 1 and inputs in
time t to state units in layer t. Output units (which are also repeated in each
“time step” where targets are available) are connected to state units (and input
lines when the DTRNN is a Mealy NSM) as in the DTRNN itself.

The resulting FFNN is trained using the standard backpropagation (BP)
algorithm, but with one restriction: since layers have been obtained by repli-
cating the DTRNN over and over, weights in all layers should be the same. To
achieve this, BPTT updates all equivalent weights using the sum of the gradi-
ents obtained for weights in equivalent layers, which may be shown to be the
exact gradient of the error function for the DTRNN.

In BPTT, weights can only be updated after a complete forward step and a
complete backward step, just as in regular backpropagation. When processing
finite sequences, weights are usually updated after a complete presentation of
the sequence.

The time complexity of BPTT is one of its most attractive features: for
first-order DTRNN in which the number of states is larger than the number of
inputs (nX > nU), the temporal cost of the backward step used to compute the
derivatives grows as n2

X , that is, the same as the cost of the forward step used to
process the sequence and compute the outputs. The main drawback of BPTT
is its space complexity, which comes from the need to replicate the DTRNN for
each step of the sequence. This also makes it a bit trickier to program than
RTRL.

For more details on BPTT the reader is referred to Haykin (1998, 751) and
Hertz et al. (1991, 182).

Real-time recurrent learning

Real-time recurrent learning (RTRL) has been independently derived by many
authors, although the most commonly cited reference for it is Williams and
Zipser (1989b) (for more details see also Hertz et al. (1991, 184) and Haykin
(1998, 756)). This algorithm computes the derivatives of states and outputs
with respect to all weights as the network processes the sequence, that is, during
the forward step. No unfolding is performed or necessary. For instance, if the
network has a simple next-state dynamics such as the one described in eq. (3.10),
derivatives may be computed together with the next state. The derivative of
states with respect to, say, state-state weights at time t, would be computed
from the states and derivatives at time t− 1 and the input at time t as follows:

∂xi[t]
∂W xx

kl

= g′(Ξi[t])

δikxl[t] +
nX∑
j=1

W xx
ij

∂xj [t− 1]
∂W xx

kl

 , (3.27)

3.4. LEARNING ALGORITHMS FOR DTRNN 29

with g′() the derivative of the activation function, δik Kronecker’s delta (1 if
i = k and zero otherwise) and

Ξi[t] =
nX∑
j=1

W xx
ij xj [t− 1] +

nU∑
j=1

W xu
ij uj [t] +W x

i (3.28)

the net input to state unit i. The derivatives of states with respect to weights
at t = 0 are initialized to zero.12

Since derivatives of outputs are easily defined in terms of state derivatives
for all architectures, the learnable parameters of the DTRNN may be updated
after every time step in which output targets are defined, (using the derivatives
of the error for each output), therefore even after having processed only part of
a sequence. This is one of the main advantages of RTRL in applications where
online learning is necessary; the other one is the ease with which it may be
derived and programmed for a new architecture; however, its time complexity
is much higher than that of BPTT; for first-order DTRNNs such as the above
with more state units than input lines (nX > nU) the dominant term in the time
complexity is n4

X . A detailed derivation of RTRL for a second-order DTRNN
architecture may be found in (Giles et al., 1992).

The reader should be aware that the name RTRL (Williams and Zipser,
1989c) is applied to two different concepts: it may be viewed solely as a method
to compute the derivatives or as a method to compute derivatives and to update
weights (in each cycle). One may use RTRL to compute derivatives and update
the weights after processing a complete learning set made up of a number of
sequences (batch update), after processing each sequence (pattern update), and
after processing each item in each sequence (online update). In these last two
cases, the derivatives are not exact but approximate (they would be exact for a
zero learning rate). For batch and pattern weight updates, RTRL and BPTT
are equivalent, since they compute the same derivatives. The reader is referred
to Williams and Zipser (1995) for a more detailed discussion.

Other derivative-based methods

It is also possible to train DTRNN using the extended Kalman filter (EKF, see
e.g. (Haykin, 1998, 762ff)) of which RTRL may be shown to be a special case
(Williams, 1992); the EKF has been successfully used in many applications,
such as neurocontrol (Puskorius and Feldkamp, 1994). The EKF is also related
to RLS (recursive-least squares) algorithms.

3.4.2 Non-gradient methods

Gradient-based algorithms are the most used of all learning algorithms for
DTRNN. But there are also some interesting non-gradient-based algorithms,

12Derivatives with respect to the components of the initial state x[0] may also be easily
computed (Forcada and Carrasco, 1995; Bulsari and Saxén, 1995; Blair and Pollack, 1997),
by initializing them accordingly (that is, ∂xi[0]/∂xj [0] = δij).

30 CHAPTER 3. SEQUENCE PROCESSING WITH NEURAL NETS

most of which rely on weight perturbation schemes. Of those, two batch learn-
ing algorithms are worth mentioning:

• Alopex (Unnikrishnan and Venugopal, 1994) is a batch learning algorithm
that biases random weight updates according to the observed correlation
between previous updates of each learnable parameter and the change in
the total error for the learning set. It does not need any knowledge about
the network’s particular structure; that is, it treats the network as a black
box, and, indeed, it may be used to optimize parameters of systems other
than neural networks; this makes it specially attractive when it comes to
test a new architecture for which derivatives have not been derived yet.
Alopex has only found limited use so far in connection with DTRNN (but
see Forcada and Ñeco (1997) or Ñeco and Forcada (1997)).

• The algorithm by Cauwenberghs (1993) (see also (Cauwenberghs, 1996))
uses a related learning rule: the change effected by a random perturba-
tion π of the weight vector W on the total error E(W) is computed and
weights are updated in the direction of the perturbation so that the new
weight vector is W − µE(W + π)− E(W))π, where µ acts as a learning
rate.. Cauwenberghs (1993) shows that this algorithm performs gradi-
ent descent on average when the components of the weight perturbation
vector are mutually uncorrelated with uniform auto-variance, with error
decreasing in each epoch for small enough π and µ, and with a slowdown
with respect to gradient descent proportional to the square root of the
number of parameters.

3.4.3 Architecture-coupled methods

A number of learning algorithms for DTRNN are coupled to a particular archi-
tecture: for example, BPS (Gori et al., 1989) is a special algorithm used to train
local feedback networks, that is, DTRNN in which the value of a state unit xi[t]
is computed by using only its previous value xi[t−1] but not the rest of the state
values xj [t− 1], j 6= i. Local-feedback DTRNN using threshold linear units and
having a two-layer output network capable of performing any Boolean mapping
have recently been shown (Frasconi et al., 1996) to be capable of recognizing
only a subset of regular languages, and to be incapable of emulating all FSM
(Kremer, 1999). A related algorithm is focused backpropagation(Mozer, 1989).
Learning algorithms are also very simple when states are observable (such as in
NARX networks, see section 3.2.3), because, during learning, the desired value
for the state may be fed back instead of the actual value being computed by the
DTRNN; this is usually called teacher forcing..

But sometimes not only learning algorithms are specialized on a particular
architecture but it is also the case that the algorithm modifies the architecture
during learning. One such algorithm is Fahlman’s (Fahlman, 1991) recurrent
cascade correlation, which is described in the following section.

3.5. LEARNING PROBLEMS 31

Recurrent cascade correlation

Fahlman (1991) has recently proposed a learning algorithm that establishes a
mechanism to grow a DTRNN during training by adding hidden state units
which are trained separately so that their output does not affect the operation
of the DTRNN. Training starts with an architecture without hidden state units,

yi[t] = g

 nU∑
j=1

W yu
ij uj [t] +W y

i

 , i = 1 . . . nY , (3.29)

and a pool of nC candidate hidden units with local feedback which are connected
to the inputs are trained to follow the residual error of the network:

xi[t] = g

 nU∑
j=1

W xu
ij uj [t] +W xx

ii xi[t− 1] +W x
i

 (3.30)

with i = 1 . . . nC . Training adds the best candidate unit to the network in a
process called tenure. If there are already nH tenured hidden units, the state of
candidate i is

xi[t] = g

 nU∑
j=1

W xu
ij uj [t] +W xx

ii xi[t− 1] +
nH∑
j=1

W xx′

ij xj [t] +W x
i

 (3.31)

(the prime in W xx′

ij meaning that it weights state values at time t, not t− 1 as
usual). Tenure adds the best of the candidates to the network as a hidden unit
labeled nH + 1 (where nH is the number of existing hidden units), its incoming
weights are frozen and connections are established with the output units and
subsequently trained. Therefore, hidden units form a lower-triangular structure
in which each of the units receives feedback only from itself (local feedback)and
the output is computed from the input and each of the hidden units:

yi[t] = g

 nU∑
j=1

W yu
ij uj [t] +

nH∑
j=1

W yx
ij xj [t] +W y

i

 , i = 1 . . . nY . (3.32)

Recurrent cascade correlation networks have recently been shown to be inca-
pable of recognizing certain classes of regular languages (see section 4.2.3).

3.5 Learning problems

When it comes to train a DTRNN to perform a certain sequence processing
task, the first thing that should be checked is whether the DTRNN architecture
chosen can actually represent or approximate the task that we want to learn.
However, this is seldom possible, either because of our incomplete knowledge of
the computational nature of the sequence processing task itself or because of

32 CHAPTER 3. SEQUENCE PROCESSING WITH NEURAL NETS

our lack of knowledge about the tasks that a given DTRNN architecture can
actually perform. In most of the following, I will be assumed that the DTRNN
architecture (including the representation used for inputs, the interpretation
assigned to outputs and the number of neurons in each layer) has already been
chosen and that further learning may only occur through adjustment of weights,
biases and similar parameters. We will review some of the problems that may
occur during the adjustment of these parameters.

Some of the problems may appear regardless of the kind of learning algorithm
used, and others may be related to gradient-based algorithms.

Multiple minima: The error function for a given learning set is usually a
function of a relatively large number of learnable parameters. For example, a
rather small DTRNN, say, an Elman net with two inputs, two output units, and
three state units has 21 weights, 5 biases and, in case we decide to adjust them,
3 initial state values. Assume we have already found a minimum in the error
surface. Due to the structure of connections, choosing any of the 6 possible
permutations of the 3 state neurons would yield exactly the same value for the
error function. But, in addition to this, it is very likely that the 26-dimensional
space of weights and biases is plagued with local minima, some of which may
actually not correspond to the computational task we want to learn. Since it is
not feasible for any learning algorithm to sample the whole 26-dimensional space,
the possibility that it finds a suboptimal minimum of the error function is very
high. This problem is especially important with local-search algorithms such as
gradient descent: if the algorithm slowly modifies the learnable parameters to
go downhill on the error surface, it may end up trapped in any local minimum.
The problem of multiple minima is not a specific problem of DTRNN; it affects
almost all neural-network architectures.

Long-term dependencies: The problem of long-term dependencies, or the
problems when training DTRNN to perform tasks in which a late output de-
pends on a very early input which has to be remembered, is more specific to
DTRNN, because it is a sequence-processing problem; one of the most exhaus-
tive studies of this problem has been done by Bengio et al. (1994) (see (Haykin,
1998, 773)). See section 3.6 for a discussion.

3.6 Papers

Four papers are featured in this chapter:

Jordan (1986): Jordan’s paper, “Serial Order: A Parallel Distributed Pro-
cessing Approach”, describes how a particular recurrent neural network archi-
tecture, described in page 3.2.1, which almost everyone calls a Jordan net now,
may be trained to generate sequences of vectors corresponding to various tasks.
Inputs to Jordan’s nets are constant during the generation of a whole sequence

3.6. PAPERS 33

and are aptly called the “plan” for that sequence: the net is taught to produce
a different sequence for each plan.

State in Jordan nets is not hidden but fully observable (what Jordan (1986)
calls hidden units are used as an intermediate step for the computation of the
output, see eq. 3.12). Therefore, it is possible to train them using teacher forcing
(see section 3.4.3). Jordan finds that teacher forcing favors fast learning.

Jordan also studies the behavior of trained DTRNN when their state is
perturbed and observes that learned sequences are attractors for the DTRNN.
For example, if the DTRNN has been trained to produce an oscillating output
pattern, it is attracted towards the corresponding limit cycle of the network.
When the vectors in the desired output sequence are not completely specified
but only some of their components have target values, Jordan shows that the
use of “don’t care” conditions for the remaining coordinates favors the learning
of “anticipation” behaviors: components not specified during learning tend to
adopt values which approach the specified value for the component in the closest
future vector of the sequence. The results are discussed in the context of the
simulation of coarticulatory features of speech, that is, inter-phoneme influences.
Finally, Jordan also studies the modelling of dual tasks, that is, tasks that are
learned separately but have to be performed simultaneously.

Elman (1990): Elman’s paper , “Finding structure in time” (http://www.
dlsi.ua.es/~mlf/nnafmc/papers/elman90finding.pdf), introduces another
widely-used recurrent architecture, the simple recurrent net, which everyone
calls now an Elman net (see section 3.2.2); previous state x[t−1] is called context
—in view of the fact that they try to encode information about the inputs seen
so far, u[1] . . .u[t − 1]— and current state x[t] is said to be stored in hidden
units. Instead of using BPTT or RTRL, the networks are trained using simple
backpropagation in each time step without considering the recurrent effects of
each weight on the values of context units. Elman studies the performance of
this network and the nature of the representations learned by the network when
it is trained to perform four sequence prediction tasks:

• Predicting the next bit in a sequence in which every third bit is the ex-
clusive or of the previous two, which are randomly chosen; the error of
the trained network drops every three cycles, when the current bit may
be predicted from past inputs.

• Predicting the next letter in a random sequence of the three syllables ba,
dii and guu where letters are represented by binary vectors representing
their articulatory (phonetic) features. The network learns to predict the
vowels from the consonants and also the fact that a consonant follows the
vowels, even if it is impossible to predict which one.

• Predicting the next letter in a sequence of concatenated words (without
blanks) from a 15-word lexicon; letters are represented by random 5-bit
vectors. As a result, prediction error gracefully falls inside words and

34 CHAPTER 3. SEQUENCE PROCESSING WITH NEURAL NETS

raises at the end of the word, where the letter starting the next word
cannot be predicted: the network learns to predict word boundaries.

• Predicting the next word in a concatenated sequence of two- and three-
word sentences; each words is represented by a randomly-assigned binary
vector having a single bit on (one-hot encoding). Hierarchical clustering
studies of the hidden unit activation patterns show that the net has de-
veloped representations of words that correspond to lexical classes (noun,
verb) and subclasses (transitive verb, animate noun), etc. simply by learn-
ing the sequential layout of words.

In all cases, Elman (1990) nets learn the temporal structure present in the
sequences of events they are trained to predict.

Pollack (1990): The paper by Pollack, “Recursive distributed representa-
tions” (http://www.dlsi.ua.es/~mlf/nnafmc/papers/pollack90recursive.
pdf) introduces a new architecture, which is nowadays called recursive auto-
associative memory (RAAM). When used to process sequences, the system is
basically a set of two discrete-time recurrent neural networks, the encoder (or
compressor) and the decoder (or reconstructor) . The encoder is trained to
produce a different final state vector for each sequence, so that the trained
decoder may trace back the steps and retrieve the sequences from the states;
therefore, a distributed representation of sequences is achieved. But RAAMs are
more general devices because they may be used not only to obtain distributed
representations of sequences, but also of trees with a maximum valence.13

A RAAM Z, that is, a recursive auto-associative memory (Pollack, 1990)
with valence V is a tree-storing device composed by two different subsystems:

• the encoder E = (X,U, V, f), where X = [S0, S1]nX is the state space of
the RAAM, with S0 and S1 in R, nX the order (number of state units),
U = [S0, S1]nU the set of possible inputs with nU the number of input
signals; and f : XV × U → X is the encoding function;

• the decoder D = (X,U, V,h,d1,d2, . . . ,dV) where h : X → U is the
output function and the V functions di : X → X, i = 1, . . . V are the
decoding functions.

Encoding, decoding, and output functions are realized in RAAM by feedforward
neural networks, usually single-layer feedforward neural networks with neurons
whose outputs are in the interval [S0, S1]. The usual choices for S0 and S1

are S0 = 0 and S1 = 1 when the activation function of neurons is the logistic
function gL(x) = 1/(1 + exp(−x)).

RAAMs may be used as tree-storing devices which store trees of maximum
valence V as follows:

13The valence (also arity) of a tree is the maximum number of daughters that can be found
in any of its nodes.

3.6. PAPERS 35

• A special value of X, which we will call x0 is used to represent the missing
daughters of a node in an input tree when there are less than V daughters.

• Each possible node label σk in the set Σ = σ1, σ2 . . . , σ|Σ| of tree node
labels is assigned a value uk ∈ U .

• For each of the decoding functions di, a special region of X, which will
be called X(i)

ε , is defined such that when the output of the decoding func-
tion is in that region the RAAM is interpreted as designating a missing
daughter (for a node having less than V daugthers). This is necessary for
the RAAM to produce finite-sized trees as outputs (they have to end in
nodes having no daughters)14.

• Each possible output node label σm is also assigned a nonempty region
Um ∈ U such that when the result of the output function is in Um the
RAAM is interpreted as outputting a node with label σm.

• The encoder E walks the input tree in a bottom-up fashion, computing
a state value in X for each possible subtree from the state values corre-
sponding to its daughter subtrees; that is, it encodes the tree as a vector
in X.

• the decoder D generates the output tree in a top-down function, gener-
ating, from the state representation of each output node, suitable state
representations in X for its daughter nodes and suitable labels in U ; that
is, it decodes the vector obtained by the encoder to produce a tree.

Pollack (1990) trained RAAMs to store the trees in a learning set.
It has to be noted that, in principle, RAAMs may be used to store trees even

when labels are not taken from a finite alphabet of symbols but instead consist
of arbitrary vectors in U , but Pollack (1990) emphasizes symbolic computations.

RAAMs have been used for various tasks, most of them related to language
processing:

• for translating sentences from one language to another, by training RAAMs
to represent the source and target sentences and then either by training a
multilayer perceptron to obtain the RAAM representation for the target
sentence from the RAAM representation of the source sentence (Chalmers,
1990) or by training the two RAAM so that the corresponding represen-
tations are identical (Chrisman, 1991).

• More recently, RAAM have been extended to RHAM (recursive heteroas-
sociative memories) which learn to obtain representations of input trees
that are directly decoded into a different output tree (Forcada and Ñeco,
1997).

14Stolcke and Wu (1992) added a special unit to the state pattern which is an indicator
showing whether the pattern is a terminal representation. Another possibility would be to
add a special output neuron.

36 CHAPTER 3. SEQUENCE PROCESSING WITH NEURAL NETS

• Kwasny and Kalman (1995) have used Elman (1990) nets to obtain, from
a sentence, a RAAM representation of its parse tree.

• Sperduti (1994) has introduced labeling RAAMs which may be used to
store directed labeled graphs (Sperduti, 1994; Sperduti and Starita, 1995;
Sperduti, 1995).

Bengio et al. (1994): This paper http://www.dlsi.ua.es/~mlf/nnafmc/
papers/bengio94learning.pdf discusses the problem of long-term dependen-
cies, a problem which is specific to DTRNN-like sequence processing devices and
may be formulated as follows: when the sequence processing task is such that
the output after reading a relatively long sequence depends on details of the
early items of the sequence, it may occur that learning algorithms are unable
to acknowledge this dependency due to the fact that the actual output of the
DTRNN at the current time is very insensitive to small variations in the early
input, or, what is equivalent, to the small variations in the weights involved in
the early processing of the event (even if the change in the early input is large);
this is known as the problem of vanishing gradients (see also (Haykin, 1998,
773)). Small variations in weights are the modus operandi of most learning
algorithms, in particular, but not exclusively, of gradient-descent algorithms.
Bengio et al. (1994) prove that the vanishing of gradients is specially severe
when we want the DTRNN to robustly store information about a very early ef-
fect. The paper also presents a series of experiments in which the performance
of alternate DTRNN learning methods is evaluated for three simple single-input
single-output problems having long-term dependencies; the experiments show a
partial success of some of them.

Chapter 4

Computational capabilities
of DTRNN

This chapter reviews the computational capabilities of discrete-time recurrent
neural networks and features a number of relevant papers. Section 4.1 reviews
some concepts of formal language theory. Section 4.2 studies under which condi-
tions DTRNN behave as finite-state machines, and introduces two main groups
of featured papers: those discussing the construction of FSM with, on the
one hand, DTRNN which have threshold linear units, and, on the other hand,
DTRNN which have sigmoid units. Section 4.3 discusses the comparative ca-
pacity of DTRNN and a cornerstone computational model, the Turing machine,
and introduces a third group of featured papers dealing with this subject.

4.1 Overview of formal language theory: Lan-
guages, grammars and automata

This section reviews some of the basic results of the formal theory of languages
and computation (for further information, the reader is referred to books on
the subject such as Hopcroft and Ullman (1979), Salomaa (1973) or Lewis and
Papadimitriou (1981)), and in particular, the relation between languages, gram-
mars and automata.

4.1.1 Grammars and Chomsky’s hierarchy.

Grammars

Grammars provide a way to define languages by giving a finite set of rules that
describe how the valid strings may be constructed. A grammar G consists of:
an alphabet Σ of terminal symbols or terminals, a finite set of variables V , a

37

38 CHAPTER 4. COMPUTATIONAL CAPABILITIES OF DTRNN

set of rewrite rules P or productions, and a start symbol S (a variable):

G = (V,Σ, P, S).

Rewrite rules or productions consist of a left-hand side α and a right-hand
side β: α→ β. Their meaning is: replace α with β.

Left-hand sides α are strings over V ∪ Σ, containing at least one variable
from V : α ∈ (V ∪ Σ)∗V (V ∪ Σ)∗. 1 Right-hand sides are strings over V ∪ Σ:
β ∈ (V ∪ Σ)∗

The grammar generates strings in Σ∗ by applying rewrite rules to the start
symbol S until no variables are left. Each time a rule is applied, a new sentential
form (string of variables from V and terminals from Σ) is produced. For each
rule α→ β, any occurence of a left-hand side α as a subscript of the sentential
form may be substituted by β to form a new sentential form.

The language generated by the grammar, L(G), is the set of all strings that
may be generated in that way. Recursive rewrite rules, that is, those which have
the same variable in both the left-hand and the right-hand side of a rule lead
to infinite languages (if the grammar has no useless symbols).2

As an example, consider the following grammar,

G = (V,Σ, P, S)

V = {S,A}

Σ = {a, m, o, t}

P =

 (1) S → toAto
(2) A → ma
(3) A → maA


which generates the language

L(G) = {tomato, tomamato, tomamamato . . .}.

The generation of the string tomamamato would proceed as follows:

S ⇒1 toAto⇒3 tomaAto⇒3 tomamaAto⇒2 tomamamato

where the subscripted arrows refer to the application of particular rules in G.

4.1.2 Chomsky’s hierarchy of grammars

Grammars are usually classified according to a hierarchy established by Chom-
sky (1965) (see also (Hopcroft and Ullman, 1979) or Salomaa (1973, 15)), ac-
cording to the form of their productions. Each of the levels in the hierarchy has
a corresponding automaton class:

1Here, an abbreviated notation for the concatenation of languages, L1L2 = {w1w2|w1 ∈
L1, w2 ∈ L2}, is used.

2This occurs also when a string containing the variable may be derived in more than one
step from another string containing it, that is, when recursion is indirect.

4.2. DTRNN BEHAVING AS FINITE-STATE MACHINES 39

• Type 0 or unrestricted (all possible grammars). Languages generated are
recognized by Turing machines (automata that read from and write on an
endless tape, which will be defined in section 4.3.1). Recognizing a string
is outputting “yes” if the string belongs to the language.

• Type 1 or context-sensitive: β never shorter than α, |α| ≤ |β| (except for
S → ε). Languages generated are recognized by linearly-bounded automata
(a subclass of Turing machines, see section 4.3.1).

• Type 2 or context-free: α is a single variable (α ∈ V). The class of lan-
guages generated by type 2 grammars is exactly the class of languages rec-
ognized by pushdown automata (PDA, Hopcroft and Ullman (1979, 110),
Salomaa (1973, 34)), which may be seen as finite-state machine which can
push symbols into and pop symbols from an infinite stack. A (nonde-
terministic) pushdown automaton is a 7-tuple M = (Q,Σ,Φ, δ, qI , φ0, F)
where:

– Q is the finite set of states, with qI ∈ Q the initial state;

– Σ is the finite input alphabet;

– Φ is a finite set of symbols which may be stored in the stack, which
is not initially empty, but instead contains a special symbol φI ;

– F ⊆ Q is the subset of accepting states.

– δ is the next-state or transition function of the automaton, which
maps Q×Σ∗×Φ into finite subsets of Q×Φ∗; that is, when the PDA
is in a state, reads in a string, pops a symbol from the stack, changes
state, and pushes zero or more symbols into the stack, nondetermin-
istically choosing the next state and the symbols pushed from a finite
set of choices.

The PDA is said to accept an input string from Σ∗ when it is led to at least
one accepting state in F . An alternate acceptance criterion prescribes an
empty stack at the end of the processing.

• Type 3 or regular: α ∈ V , β contains at most one variable at the right end.
Languages generated are recognized by deterministic finite-state automata
(see section 2.3.3).

4.2 Discrete-time recurrent neural networks be-
having as finite-state machines

Discrete-time recurrent neural networks (DTRNN) may be constructed using
either threshold linear units (TLU) or units showing a continuous response such
as sigmoid units. DTRNN using TLU were actually the earliest models of finite-
state machines (FSM), as has been discussed in chapter 2, but in recent times
there have been interesting theoretical advances in the representation of FSM

40 CHAPTER 4. COMPUTATIONAL CAPABILITIES OF DTRNN

in DTRNN; the corresponding papers are discussed in section 4.2.1. Sigmoid-
based DTRNN have also recently been proven (by construction) to be able to
behave as FSM; section 4.2.2 discusses the main issues involved and features
three representative papers in the field.

4.2.1 DTRNN based on threshold units

The first four papers featured in this chapter (Alon et al., 1991; Goudreau
et al., 1994; Kremer, 1995; Horne and Hush, 1996) deal with the implementa-
tion of finite-state machines such as deterministic finite-state automata (DFA,
section 2.3.3) or Mealy machines (section 2.3.1) in DTRNN made up of thresh-
old linear units. The first such construction was proposed by (Minsky, 1967)
(see chapter 2), and used a number of TLU which grew linearly with the num-
ber of states |Q| in the FSMṪwo of the papers featured in this section (Alon
et al., 1991; Horne and Hush, 1996) explore the possibility of encoding |Q|-state
automata in less than O(|Q|) units.3

Kremer (1995): This paper generalizes the result by Minsky (1967) by show-
ing that TLU-based Elman (1990) nets may actually represent finite automata
using Θ(|Q||Σ|) states,4 but the construction by Kremer (1995) allows for input
and output symbols to be represented by arbitrary patterns of ‘0’ and ‘1’ ac-
tivations (instead of being represented by exclusive or one-hot patterns having
precisely one ‘1’). This has the effect of reducing the number of learnable pa-
rameters in the input–state (Wxu) and the state–output (Wyx) weight matrices
(see section 3.2.2).

Alon et al. (1991): The work by Alon et al. (1991) (http://www.dlsi.
ua.es/~mlf/nnafmc/papers/alon91efficient.pdf) stems from the following
consideration: if nX TLUs may be found in 2nX different states, “one might
wonder if an |Q|-state FSM could be implemented in a network with O(log |Q|)
nodes”. These authors set out to establish bounds on the smallest number of
TLU needed to implement a binary Mealy machine, that is, a Mealy machine
with binary input and output alphabets (Σ = Γ = {0, 1}), using a single-layer
first-order DTRNN architecture which is basically a neural Moore machine (sec-
tion 3.2.2) with threshold linear units. The results are far above the optimistic
O(log |Q|). The main result presented by Alon et al. (1991) is that the number
of units necessary to implement a |Q|-state Mealy machine in such an archi-
tecture is Ω((|Q| log |Q|)1/3) (lower bound to the complexity) and O((|Q|)3/4)
(upper bound to the complexity) when no restrictions whatsoever are imposed

3As usual, O(F (n)), with F : N→ R
+, denotes the set of all functions f : N→ R such that,

for any n0 there exists a positive constant K such that, for all n > n0, f(n) ≤ KF (n) (upper
bound). Similarly, a lower bound may be defined; Ω(F (n)) denotes the set of all functions
f : N → R such that, for any n0 there exists a positive constant Q such that, for all n > n0,
f(n) ≥ QF (n).

4Θ(F (n)), with F : N → R
+, is the set of all functions f : N → R belonging both to

O(F (n)) and Ω(F (n)) (see the preceding footnote).

4.2. DTRNN BEHAVING AS FINITE-STATE MACHINES 41

on the fan-in or the fan-out of the units or on the values of weights. To obtain
the lower bound, they use a counting argument based on a lower bound on the
number of “really different” Mealy machines of |Q| states and a lower bound on
the number of different Mealy machines that may be built using nX or less TLU.
The upper bound is obtained by construction but details are not given in the
current paper. However, reasonable (“mild”) restrictions on fan-ins, fan-outs
and weights lead to equal upper (O(|Q|)) and lower (Ω(|Q|)) bounds.

Horne and Hush (1996): The authors of this more recent paper (http://
www.dlsi.ua.es/~mlf/nnafmc/papers/horne96bounds.pdf) try to improve these
bounds by using a different DTRNN architecture, which, instead of using a
single-layer first-order feedforward neural network for the next-state function,
uses a lower-triangular network, that is, a network in which a unit labeled i re-
ceives inputs only from units with lower labels (j < i); lower triangular networks
include layered feedforward networks as a special case. If no restrictions are im-
posed on weights, the lower and upper bounds are identical and the number of
units is Θ(|Q|1/2) (the bound being better than the one obtained by Alon et al.
(1991)). When thresholds and weights are restricted to the set {−1, 1}, the lower
and upper bounds are again the same, but better: Θ((|Q| log |Q|)1/2). When
limits are imposed on the fan-in, the result by Alon et al. (1991) is recovered:
Θ(|Q|).

Goudreau et al. (1994), These authors (http://www.dlsi.ua.es/~mlf/
nnafmc/papers/goudreau94first.pdf) study whether simple single-layer DTRNN
(neural Moore machines, see section 3.2.2) with threshold linear units (TLU)
are capable of representing finite-state recognizers or DFA. Their study shows
that,

• when the output y[t] of the neural Moore machine is simply a projection
of the state x[t], first-order DTRNN are not capable of representing some
DFA, whereas second-order DTRNN may represent any DFA, and

• when the output is computed by a single-layer feedforward neural network
(as in Elman (1990) nets), then first-order DTRNN may represent any
DFA provided that some of the states (not all of them) in the DFA are
represented by more than one state unit in the DTRNN, which Goudreau
et al. (1994) call state-splitting (see section 4.2.2).

Complete splitting would lead to nX = |Q||Σ| state units, as in the construction
by Minsky (1967) , but the authors show an example where less units are used.
With second-order networks, state-splitting is not necessary and nX = |Q| units
are sufficient.

4.2.2 DTRNN based on sigmoid units

Much of the work performed by researchers in the contact area between neural
networks and formal language and computation theory concerns the training of

42 CHAPTER 4. COMPUTATIONAL CAPABILITIES OF DTRNN

sigmoid-based DTRNN to identify or approximate finite-state machines, and,
in particular, regular language acceptors such as deterministic finite-state au-
tomata (DFA). This is the subject of chapter 5. Most of this work starts by
assuming that a given DTRNN architecture is capable of performing the same
computation as a finite-state machine (FSM). This section addresses the follow-
ing question: “When does a DTRNN behave as a FSM?”

In a recent paper, Casey (1996) has shown that a DTRNN performing a
robust DFA-like computation (a special case of FSM-like computation) must
organize its state space in mutually disjoint, closed sets with nonempty interiors
corresponding to the states of the DFA. These states can be taken to be all of
the points such that if the DTRNN is initialized with any of them, the DTRNN
will produce the same output as the DFA initialized in the corresponding state.
This formulation, which is closely connected to what Pollack (1991) called a
dynamical recognizer, has inspired the following definition. A DTRNN N =
(X,U, Y, f ,h,x0) behaves as a FSM M = (Q,Σ,Γ, δ, λ, qI) when the following
conditions are held:

Partition of the state space: Each state qi ∈ Q is assigned a nonempty re-
gion Xi ⊆ X such that the DTRNN N is said to be in state qi at time t
when x[t] ∈ Xi. Accordingly, these regions must be disjoint: Xi ∩Xj = ∅
if qi 6= qj . Note that there may be regions of X that are not assigned to
any state.

Representation of input symbols: Each possible input symbol σk ∈ Σ is
assigned a different vector uk ∈ U (it would also be possible to assign a
region Uk ⊆ U to each symbol).

Interpretation of output: Each possible output symbol γm ∈ Γ is assigned
a nonempty region Ym ⊆ Y such that the DTRNN N is said to output
symbol γm at time t when y[t] ∈ Ym. Analogously, these regions must be
disjoint: Ym ∩ Yn = ∅ if γm 6= γn. Note that there may be regions of Y
that are not assigned to any output symbol.

Correctness of the initial state: The initial state of the DTRNNN , belongs
to the region assigned to the initial state qI , that is, x0 ∈ XI .

Correctness of the next-state function: For any state qj and symbol σk of
M , the transitions performed by the DTRNN N from any point in the
region of state space Xj assigned to state qj when symbol σk is presented
to the network must lead to points that belong to the region Xi assigned
to qi = δ(qj , σk); formally, this may be expressed as

fk(Xj) ⊆ Xi ∀qj ∈ Q, σk ∈ Σ : δ(qj , σk) = qi (4.1)

where the shorthand notation

fk(A) = {f(x,uk) : x ∈ A} (4.2)

has been used.

4.2. DTRNN BEHAVING AS FINITE-STATE MACHINES 43

Correctness of output: In the case of Mealy NSM, for any state qj and sym-
bol σk of M , the output produced by the DTRNN N from any point in
the region of state space Xj assigned to state qj when symbol σk is pre-
sented to the network belongs to the region Ym assigned to γm = λ(qj , σk);
formally, this may be expressed as

hk(Xj) ⊆ Ym ∀qj ∈ Q, σk ∈ Σ : λ(qj , σk) = γm (4.3)

where the shorthand notation

hk(A) = {h(x,uk) : x ∈ A} (4.4)

has been used. In the case of Moore NSM, for any state qj , the output
produced by the DTRNN N from any point in the region the condition
for the correctness of the output may be expressed as:

h(Xj) ⊆ Ym ∀qj ∈ Q : λ(qj) = γm, (4.5)

with h(A) = {h(x) : x ∈ A}.
Note that the regions Xi ⊆ X, i = 1, . . . , |Q| and Ym ⊆ Y , m = 1, . . . , |Γ|

may have a nondenumerable 5 number of points, because of being subsets of Rn

for some n. However, for a finite input alphabet Σ, only a denumerable number
of points in the state (X) and output (Y) spaces are actually visited by the net
for the set of all possible finite-length input strings over Σ, denoted Σ∗, which
is also denumerable.

Note also that DFA represent a special case: as said in section 2.3.3, deter-
ministic finite-state automata may be seen as Moore or Mealy machines having
an output alphabet Γ = {Y,N} whose output is only examined after the last
symbol of the input string is presented, and it is such that, for a Moore machine,

λ(qi) =
Y if qi ∈ F
N otherwise, (4.6)

and for a Mealy machine,

λ(qi, σk) =
Y if δ(qi, σk) ∈ F
N otherwise. (4.7)

A region in output space Y would be assigned to each one of these two symbols:
YY , YN , such that YY ∩ YN = ∅, and the output of the NSM would only be
examined after the whole string has been processed.

Recently, Š́ıma (1997) has shown that the behavior of any DTRNN using
threshold activation functions may be stably emulated by another DTRNN using
activation functions in a very general class which includes the sigmoid functions
considered in this paper, and describes the conditions under which this emula-
tion is correct for inputs of any length. This means that any of the constructions
described in section 4.2.1 to encode FSM in DTRNN may be converted, using
the method by Š́ıma (1997) into an equally-capable analog DTRNN.

5A set is denumerable (also countable) when there is a way to assign a unique natural num-
ber to each of the members of the set. Some infinite sets are nondenumerable (or uncountable);
for example, real numbers form a nondenumerable set.

44 CHAPTER 4. COMPUTATIONAL CAPABILITIES OF DTRNN

Some DTRNN architectures cannot implement all FSM

Not all DTRNN architectures are capable of representing all FSMḞor example,
as discussed in section 4.2.1, Elman (1990) neural nets can emulate any FSM
using nX = |Q||Σ| state neurons using a step function (see Kremer (1995)). As
will be seen, Elman nets using sigmoids over rational numbers (Alquézar and
Sanfeliu, 1995) may also be used to implement FSM (see the paper by Alquézar
and Sanfeliu (1995)) ; more recently, Carrasco et al. (2000) have shown that
this is also the case for Elman nets using real sigmoids.

On the other hand, first-order DTRNN without an output layer which use
as output a projection of the state vector, that is,

yi[t] = xi[t]; i = 1, . . . , nY ; nY < nX (4.8)

cannot emulate all FSM, analogously to the work by Goudreau et al. (1994) .
These networks can however emulate DFA using a suitable end-of-string symbol
and |Q||Σ|+ 1 state neurons.

Finally, it is easy to show (using a suitable odd-parity counterexample in the
way described by Goudreau et al. (1994)) that the networks by Robinson and
Fallside (1991) networks (see section 3.2.1) cannot represent the output function
of all Mealy machines unless a two-layer scheme as the following is used:

hi(x[t− 1],u[t]) = g

 nZ∑
j=1

W yz
ij zj [t] +W y

i

 (4.9)

with

zi[t] = g

 nX∑
j=1

W zx
ij xj [t− 1] +

nU∑
j=1

W zu
ij uj [t] +W z

i

 (4.10)

(i = 1, . . . , nZ), and nZ the number of units in the layer before the actual
output layer (the hidden layer of the output function). This may be called
an augmented Robinson-Fallside network . The encoding of arbitrary FSM in
augmented Robinson-Fallside networks is described by Carrasco et al. (2000).

Another interesting example is that of Fahlman’s recurrent cascade corre-
lation networks, which are constructed by an algorithm having the same name
(see section 3.4.3). Kremer (1996b) —see the following section— has shown
these networks cannot represent all FSM by defining suitable classes of nonrep-
resentable machines.

4.2.3 Featured papers

Alquézar and Sanfeliu (1995), These authors (http://www.dlsi.ua.es/
~mlf/nnafmc/papers/alquezar95algebraic.pdf) show how arbitrary FSM
may be represented in Elman nets under the condition that the inputs, the
outputs, and the state values are all rational numbers and the sigmoid oper-
ates with rational arithmetic, and give a simple recipe to select the weights

4.2. DTRNN BEHAVING AS FINITE-STATE MACHINES 45

of the network so that this occurs, which is derived from a representation of
the next-state function of the FSM in terms of a system of linear equations;
the construction byMinsky (1967) happens to be a special case of the proposed
method. The construction needs a split-state representation of the states in the
FSM for the reasons given by Goudreau et al. (1994) . Corresponding results
for second-order DTRNN are also presented. The authors also indicate how the
derived algebraic relations may be used to constrain gradient-descent algorithms
to preserve prior knowledge inserted in the DTRNN in form of FSM transitions.

Omlin and Giles (1996b) These authors http://www.dlsi.ua.es/~mlf/
nnafmc/papers/omlin96stable.pdfset out to prove whether there exists a way
to choose weights in a DTRNN based on real sigmoids (in particular, the logis-
tic function g(x) = 1/(1 + exp(−x))), therefore allowing real ranges of outputs
and state values, so that the DTRNN behaves as a deterministic finite-state
automaton (see section 2.3.3). They propose a way to choose the weights of
a second-order DTRNN that guarantees that the language accepted by the
DTRNN and that accepted by the DFA are identical; all weights and biases
are simple multiples of a single value H (H, −H, −H/2 and 0).6 A careful
worst-case analysis of the fixed points and bounds of repeated applications of
the next-state function defines the actual value of H, which is always greater
than 4 and grows roughly as log(nX). The experimental values of H found by
the authors seem however to be constant for a set of large random DFA.

Kremer (1996b): As has been discussed earlier in this chapter, certain DTRNN
architectures may not be capable of representing all possible FSM. Recurrent
cascade correlation (RCC) (see section 3.4.3) is both the name of a learning algo-
rithm which constructs a DTRNN during learning and the name of the class of
architectures generated by this algorithm. A number of papers have addressed
the representational capabilities of RCC networks ((Giles et al., 1995), (Kremer,
1996a),; (Kremer, 1996b)) by defining a class of FSM that cannot be represented
in RCC nets; the class grows in generality as we go from one paper to another. A
general formulation is presented by Kremer (1996b) (http://www.dlsi.ua.es/
~mlf/nnafmc/papers/kremer96finite.pdf), but the class of FSM that can be
represented in this architecture still remains to be defined. According to Kremer
(1996b), which uses a reductio ad absurdum proof, RCC nets cannot represent
FSM which, as a response to input strings whose symbols repeat with a peri-
odicity p, output strings have a periodicity ω such that p mod ω = 0 (if p is
even) or 2p mod ω = 0 (if p is odd). One such automaton is the odd parity au-
tomaton (see figure 2.3), whose output has a period 2 if its input is a constant
“11111...” (period 1).

6In the same spirit, Carrasco et al. (2000) have recently proposed similar encodings for
general Mealy and Moore machines on various first- and second-order DTRNN architectures.

46 CHAPTER 4. COMPUTATIONAL CAPABILITIES OF DTRNN

4.3 Turing computability with discrete-time re-
current neural nets

4.3.1 Turing machines

A Turing machine ((Turing, 1936); Hopcroft and Ullman (1979, 147); Salo-
maa (1973, 36)) is an automaton that uses an endless tape as memory. Any
finite procedure, algorithm, or computable function may always be reduced to
a Turing machine (TM).

In each move, the machine reads a symbol from the tape. Depending on the
symbol and the current state, the TM changes state, writes a new symbol, and
moves right or left.

A TM may be defined as M = (Q,Σ,Λ, δ, qI , B, F) where

• Q is a finite set of states;

• Σ is the input alphabet;

• Λ is the tape alphabet;

• δ : Q × Λ → Q × Λ × {L,R} is the next move function (R is “right”, L
is “left”; the function may not be defined for some arguments; there, the
TM stops);

• qI ∈ Q is the initial state;

• B ∈ Λ (B 6∈ Σ) is a special blank symbol;

• F ⊂ Q is the set of final states (the machine stops when entering any
q ∈ F).

Turing machines as language acceptors: The TM is started on a tape
containing a string w ∈ Σ∗ at the beginning of the tape and blanks B after it.
A TM accepts a string w when it enters a final state in F ; if the string is not
accepted, the TM may or may not stop. It may be shown (Hopcroft and Ullman
(1979, 221); Salomaa (1973, 37)) that the class of languages accepted by TM is
the same as the class of languages generated by unrestricted grammars (defined
in section 4.1.2).

Turing machines as function computers: TM may compute partial func-
tions mapping natural numbers into natural numbers (Hopcroft and Ullman,
1979, 151). A possible construction uses Σ = {1} and zero (0) as the blank B.
If the function computed by the TM is f , and the initial tape is 11 . . . 10000 . . .
with n ones, the result is 0000 . . . 011 . . . 10000 . . . with f(n) + 1 ones if f is de-
fined for n and with zero ones if undefined. Any recursively computable function
mapping naturals into naturals may be simulated by a Turing machine.

4.3. TURING COMPUTABILITY WITH DTRNN 47

The universal Turing machine: All TMs of the form

M = (Q, {0, 1}, {0, 1, B}, δ, q1, B, {q2})

may be encoded as strings over {0, 1} and written, followed by the string w
to be processed, into a tape. There exists a special Turing machine called the
universal Turing machine (UTM, Hopcroft and Ullman (1979, 181), Salomaa
(1973, 117)) which will read this tape and simulate M on w.

Linearly-bounded automata

Linearly bounded automata (LBA) are a special class of nondeterministic7 Turing
machines which have two extra symbols in their input alphabet, say @ and $,
which are called the left and right endmarkers; the LBA can neither overwrite
these markers nor move left from @ or right from $; therefore, it uses only
a limited amount of tape. LBA accept exactly Type 1 or context-sensitive
languages (Hopcroft and Ullman (1979, 225); Salomaa (1973, 35))8.

Turing computability with DTRNN

Discrete-time recurrent neural networks may be shown to be capable of perform-
ing the same computation as any Turing machine by showing that a DTRNN
may simulate the universal Turing Machine. This is the subject of one of the
papers featured in this section:

Siegelmann and Sontag (1991) (http://www.dlsi.ua.es/~mlf/nnafmc/
papers/siegelmann91turing.pdf) show that a single-input single-output DTRNN
can simulate any TM; in particular, they show that the UTM may always be
encoded in a DTRNN with far less than 100 000 state units. Their architecture
is a simple first-order DTRNN (a “neural Moore machine”):

xi[t] = gσ

 nX∑
j=1

W xx
ij xj [t− 1] +W xu

i u[t] +W x
i


y[t] = x1[t]

where the xi[t] are rational numbers, the u[t] are either 0 or 1 and gσ(x) is 0 if
x < 0, 1 if x > 1 and x otherwise.

The input tape is the sequence u[1]u[2] . . .; the output tape is the sequence
y[1]y[2]

The proof by Siegelmann and Sontag (1991) stands on the following findings:
7Nondeterminism does not add any power to Turing machines.
8These machines are called linearly-bounded automata because a deterministic TM having

its tape bounded by an amount which is a linear function of the length of the input would
have the same computational power as them.

48 CHAPTER 4. COMPUTATIONAL CAPABILITIES OF DTRNN

• A TM may always be simulated by a pushdown automaton with three
unary stacks (counters) [indeed, only two are needed (Hopcroft and Ull-
man, 1979, 172)].

• A unary stack may be encoded as a fractional number (in binary): qs =
0.1111 = 15/16 represents four items. Popping an item is the same as
taking q′s = σ(2qs − 1); pushing an item is the same as taking q′s =
σ(1/2 + qs/2).

• All stack operations and all state transitions triggered by states of the
control unit and the symbols at the top of stacks may be computed in at
most two time steps of the DTRNN.

4.4 Super-Turing capabilities of discrete-time re-
current neural nets

More recently, DTRNN have been shown to have super-Turing computational
power. This is the subject of one of the papers featured in this document:

Siegelmann (1995): This author has shown that the above first-order DTRNN
using real instead of rational state values have super-Turing computational
power. The computational power of DTRNN is similar to that of nonuniform
Turing machines, that is, nonrealizable TM that receive in their tape, in addi-
tion to the input w, another string W (|w|) called “advice” (a function only of
the length of w) to assist in the computation9.

In particular, the computational class P/Poly refers to those nonuniform
Turing machines in which both the length of the advice and the computational
time are polynomially (not exponentially) long (relative to the length of w).
DTRNN compute the super-Turing class P/Poly in polynomial time too.

9Nonuniform TMs are unrealizable because the length of w is not bounded, and thus, the
number of possible advice strings is infinite and cannot be stored in finite memory previous
to any computation.

Chapter 5

Grammatical inference with
discrete-time recurrent
neural networks

This chapter introduces the reader to a group of papers which deal with the infer-
ence of grammar rules using discrete-time recurrent neural networks (DTRNN).
Section 5.1 defines the problem of grammatical inference. The use of DTRNN
for grammatical inference is discussed in section 5.2. The fact that DTRNN
capable of representing some tasks may not be able to learn them is the subject
of section 5.3. Section 5.4 discusses the algorithms that may be used to ex-
tract finite-state machines from trained DTRNN. Finally, section 5.5 introduces
the featured papers by dividing them in two main groups: papers dealing with
the inference of finite-state machines and papers dealing with the inference of
context-free grammars.

5.1 Grammatical inference (GI)

In chapter 4, the computational capabilities of discrete-time recurrent neural
networks were discussed in terms of their equivalence or their parallelism to
various classes of automata. In particular, automata such as deterministic finite-
state automata and Turing machines may be seen as language acceptors. Chap-
ter 4 also discussed a generative way of defining formal languages, grammars,
and describes the relationships among languages, grammars and automata.

If a given application involves data sequences which can be represented as
strings of symbols from a finite alphabet and a sequence processing task (chap-
ter 3) that involves classification of these sequences into two or more classes or
sets (languages) or recognition of those sequences that belong to a single class
of interest, then it may be the case that language acceptors such as finite-state
automata may be capable of performing the task or that grammars may be used

49

50 CHAPTER 5. GRAMMATICAL INFERENCE WITH DTRNN

to express the rules that define the sequences belonging to one of the classes
(languages).

Many sequence recognition/classification applications may be reduced to this
formulation. In this case, it may be interesting to learn a sequence-processing
task by inferring the rules of the grammar(s) or the structure of the accept-
ing automaton (automata) from samples (learning sets) of classified sequences
(strings).

Grammatical inference is the usual name given to the process of learning (in-
ferring) a grammar from a set of sample strings, and, in view of the equivalences
that may be established between grammars and automata, the task of learn-
ing an automaton from a set of sample strings may also be called grammatical
inference.

Grammatical inference is usually formulated in terms of learning recognition
or classification tasks from sets in which all strings are labeled as belonging to
one or another class (language); however, tasks such as learning a finite-state
machine that transduces (translates) strings from one language into strings from
another language or learning a probabilistic finite-state machine that generates
strings following a certain probability distribution may also be formulated as
grammatical inference tasks.

5.2 Discrete-time recurrent neural networks for
grammatical inference

This chapter is concerned with the use of discrete-time recurrent neural net-
works (DTRNN) for grammatical inference. DTRNN may be used as sequence
processors in three main modes:

Neural acceptors/recognizers: DTRNN may be trained to accept strings
belonging to a language and reject strings not belonging to it, by producing
suitable labels after the whole string has been processed. In view of the
computational equivalence between some DTRNN architectures and some
finite-state machine (FSM) classes, it is reasonable to expect DTRNN to
learn regular (finite-state) languages. A set of neural acceptors (separately
or merged in a single DTRNN) may be used as a neural classifier.

Neural transducers/translators: If the output of the DTRNN is examined
not only at the end but also after processing each one of the symbols in
the input, then its output may be interpreted as a synchronous, sequential
transduction (translation) for the input string. DTRNN may be easily
trained to perform synchronous sequential transductions and also some
asynchronous transductions.

Neural predictors: DTRNN may be trained to predict the next symbol of
strings in a given language. The trained DTRNN, after reading string
outputs a mixture of the possible successor symbols; in certain conditions
(see e.g. Elman (1990)), the output of the DTRNN may be interpreted

5.3. REPRESENTING AND LEARNING 51

as the probabilities of each of the possible successors in the language. In
this last case, the DTRNN may be used as a probabilistic generator of
strings.

When DTRNN are used for grammatical inference, the following have to be
defined:

• A learning set. The learning set may contain: strings labeled as belonging
or not to a language or as belonging to a class in a finite set of classes
(recognition/classification task)1; a draw of unlabeled strings, possibly
with repetitions, generated according to a given probability distribution
(prediction/generation task); or pairs of strings (translation/transduction
task).

• An encoding for input symbols as input signals for the DTRNN. This
defines the number of input lines nU of the DTRNN.

• An interpretation for outputs: as labels, probabilities for successor sym-
bols or transduced symbols. This defines the number of output units nY
of the DTRNN.

• A suitable DTRNN architecture, the number of state units nX and the
number of units in other hidden layers.

• Initial values for the learnable parameters of the DTRNN (weights, biases
and initial states).

• A learning algorithm (including a suitable error function and a suitable
stopping criterion) and a presentation scheme (the whole learning set may
be presented from the beginning or a staged presentation may be devised).

• An extraction mechanism to extract an automaton or grammar rules from
the weights of the DTRNN. This will be discussed in detail in section 5.4.

5.3 Representing and learning

One of the most interesting questions when using DTRNN for grammatical
inference is expressed in the title of this section. Whereas in chapter 4 it was
shown that certain DTRNN architectures may actually perform some symbolic
string processing tasks because they behave like the corresponding automata,
it remains to be seen whether the learning algorithms available are capable of
finding the corresponding sets of weights by using examples of the task to be
learned. This is because all of the learning algorithms implement a certain
heuristic to search for the solution in weights space, but do not guarantee that
the solution will be found, provided that it exists. Some of the problems have
already been mentioned in chapter 3, such as the presence of local minima not

1For some recognition tasks, positive samples may be enough.

52 CHAPTER 5. GRAMMATICAL INFERENCE WITH DTRNN

corresponding to the solution or the problem of long-term dependencies along
the sequences to be processed. It may be said that each learning algorithm has
its own inductive bias, that is, its preferences for certain solutions in weight
space.

But even when the DTRNN appears to have learned the task from the
examples, it may be the case that the internal representation achieved may not
be easily interpretable in terms of grammar rules or transitions in an automaton.
In fact, most learning algorithms do not force the DTRNN to acquire such a
representation, and this makes grammatical inference with DTRNN a bit more
difficult. However, as we will see, in recognition and transduction tasks this
problem is surprisingly not frequent: hidden states x[t] cluster in certain regions
of the state space X, and these clusters may be interpreted as automaton states
or variables in a grammar.

5.3.1 Open questions on grammatical inference with DTRNN

Summarizing, here are some of the open questions remaining when training
DTRNNs to perform string-processing tasks:

• How does one choose nX , the number of state units in the DTRNN? This
imposes an inductive bias (only automata representable with nX state
units can be learned, and maybe not all of them).

• Will the DTRNN exhibit a behavior that may easily be interpreted in
terms of automaton transitions or grammar rules? There is no bias toward
a symbolic internal representation: the number of available states in X is
infinite.

• Will it learn? Even if a DTRNN can represent a FSM compatible with the
learning set, learning algorithms do not guarantee a solution. Learning a
task is harder than programming that task on a DTRNN.

• There is the problem of multiple minima: most algorithms may get trapped
in undesirable local minima.

• If the task exhibits long-term dependencies along the strings, it may be
very hard to learn (see section 3.5).

5.3.2 Stability and generalization

Stability: Some authors use the term stability to refer to the following prop-
erty: that a DTRNN is exhibiting stable behavior (in the sense of being a neural
language recognizer or a language transducer) when outputs are within the re-
gions of output space assigned to the corresponding symbols for strings of any
length, as discussed in section 4.2.

In general, trained DTRNN are “stable” only for strings up to a given length;
this is due to the nature of the internal representation assumed. For example,
if the DTRNN is trained to behave as a finite-state machine instability means

5.4. AUTOMATON EXTRACTION ALGORITHMS 53

that the regions of state space visited by the DTRNN corresponding to the FSM
to be inferred are not disjoint and merge as they grow with string length; as
a consequence, they do not clearly map into the regions Ym of output space
assigned to the desired outputs.

As shown in chapter 4, DTRNN may be constructed so that they behave
stably as FSM.

Generalization: When a test set has been set aside, one may check whether
the behavior learned by the DTRNN from the learning set is consistent with
the test set . This is called the generalization test .

Some learning algorithms (Giles et al., 1992) partition learning sets in a
small starting set and a number of test sets (see (Giles et al., 1992)). Once the
starting set is learned, a test set is used to check the DTRNN. If the test fails,
the test is added to the learning set to be relearned. If, after some relearning
runs, the remaining test sets are correctly classified without having to relearn,
the learning algorithm terminates.

5.4 Automaton extraction algorithms

When discrete-time recurrent neural networks are used for grammatical infer-
ence purposes, and, in particular, to infer a finite-state machine, the grammat-
ical inference task is not complete unless a true symbolic representation of the
rules defining the language (grammar rules, finite-state machine transitions) are
extracted from the dynamics of the DTRNN. Since the dynamics of the DTRNN
is in a real vector space, all of the methods try to discover a partition of state
space so that the dynamics of the DTRNN may be described in terms of a finite
number of states.

Kolen (1994) has strongly criticised these methods on the grounds of their
sensitivity to the initial conditions and the behavioral changes in the extracted
description that may be induced simply by changing the way the continuous-
state dynamics of the DTRNN of the DTRNN is observed: his main point is
that looking for a finite-state description of the dynamics of the DTRNN may
be incorrect because of the continuous state nature of the DTRNN. However,
other authors such as Casey (1996) have proved that, under certain conditions,
the behavior of a DTRNN may actually be described as that of a finite-state
machine (see section 4.2), and other authors have shown that a DTRNN may
actually be induced to behave as a FSM by suitably programming its weights
((Omlin and Giles, 1996a), (Carrasco et al., 2000); see also (Omlin and Giles,
1996b)) . These results do not completely invalidate the criticisms by Kolen
(1994), which may be still applicable because most extraction methods assume,
but cannot test, that the DTRNN is actually behaving as a FSM and then
proceed to extract.

Three main types of automaton extraction algorithms will be discussed in
this document: state-space partition methods, clustering methods, and methods
based on Kohonen’s self-organizing maps.

54 CHAPTER 5. GRAMMATICAL INFERENCE WITH DTRNN

5.4.1 State-space partition methods

This method has been used, among others, by Giles et al. (1992) . The nX -
dimensional state space hypercube is divided in qnX equal hypercubes by di-
viding each of the edges of the state-space hypercube in q equal parts. The
hypercube containing the initial state x[0] of the DTRNN is labeled as the ini-
tial state of the FSM, qI and marked as visited. Then the DTRNN is alowed
to process all possible input strings. If, after reading symbol σk the DTRNN
performs a transition from a state x[t−1] in a hypercube labeled as qj to a state
x[t] in a new hypercube, then the new hypercube is given a new label qn (a new
state is created) and the transition δ(qj , σk) = qn is recorded. If the transition
results in a state x[t] in an existing hypercube qi, the transition δ(qj , σk) = qi is
recorded and the DTRNN dynamics on that string is no pursued no longer. The
resulting FSM may then be minimized. The partition parameter q is chosen to
be the smallest one leading to a FSM which is compatible with the learning set.

A variation of this method was used by Blair and Pollack (1997) to study
the nature of the representations achieved by DTRNN: instead of using the
actual values of x[t] computed by the DTRNN, these authors used the centers
of the hypercubes. The method of Blair and Pollack (1997) is used to determine
whether the DTRNN actually shows a behavior that may be described in terms
of a finite-state machine or a regular language; this is the only extraction method
known that establishes (with desired accuracy) whether the DTRNN is behaving
as a FSM or not before extracting a finite-state description of the behavior, thus
addressing some of the concerns expressed by Kolen (1994).

5.4.2 Clustering methods

Finite-state machines may also be extracted from DTRNN by means of clus-
tering methods. These methods rely on the following assumption: when the
DTRNN behaves as a FSM the points it visits when reading strings form low-
dimensional clusters in state space that correspond to the states of the FSM.
Therefore, one may use a clustering method to discover this structure and then
define the transitions of the FSM in terms of the transitions observed for these
clusters. The first observation of this is reported by Cleeremans et al. (1989)
for a simple grammar. Manolios and Fanelli (1994) start with n randomly dis-
tributed markers which are iteratively moved toward the closest network states
until they reach the centroid of the sets of points they are closest to; then, they
check whether the transitions between DTRNN states are compatible with clus-
ters being interpreted as discrete states; if not, a new set of markers is generated
and clustering starts again.

Gori et al. (1998) use a clustering method to extract simple approximate
FSM descriptions from DTRNN trained on noisy learning sets, that is, learning
sets generated by flipping the membership labels of a few strings in a clean learn-
ing set compatible with a small FSM, and find that the original FSM is some-
times recovered. Their method relies on the assumption that small DTRNN,
tend to form clusters corresponding to a simple finite-state description of a ma-

5.5. FEATURED PAPERS 55

jority of the strings in the learning set, because a FSM corresponding exactly to
the learning set may be impossible to represent. They contend that approximate
FSM learning may indeed be one promising application of DTRNN.

Some authors integrate clustering in the learning algorithm, as Das and
Mozer (1998) do (see also (Das and Das, 1991) and (Das and Mozer, 1994)).

5.4.3 Using Kohonen’s self-organizing maps

Kohonen’s self-organizing feature maps (SOFM) may also be used to extract
finite-state!behavior from the dynamics of a trained DTRNN. This has been
done, among others, by Tiňo and Sajda (1995) . The neurons in a SOFM
form a neuron field (NF); neurons are organized according to a predetermined
topology and then these neurons are topologically mapped onto the state space
of the DTRNN as follows: a position in state space is assigned to each one of
the neurons in the NF in such a way that neighborhood is preserved: points
that are close in DTRNN space are assigned to neurons in the NF that are
close. Tiňo and Sajda (1995) use a star topology for the NF after assigning
the points in DTRNN space to clusters, they determine intercluster transitions
and determinize the transition diagram until transitions are compatible with a
deterministic FSM. The resulting FSM is finally minimized.

5.5 Featured papers

This chapter features a selection of papers dealing with grammatical inference
and DTRNN. The featured papers may be divided in two main groups: pa-
pers dealing with the inference of finite-state machines and regular grammars
and papers dealing with the inference of context-free grammars or pushdown
automata.

5.5.1 Inference of finite-state machines

Five of the featured papers deal with the inference of finite-state machines.
The papers may further be divided in three groups, depending whether the
DTRNN used are trained to predict the next symbol of a word (Cleeremans
et al., 1989), to classify a string (word) as belonging or not to a language (Pol-
lack, 1991; Giles et al., 1992; Manolios and Fanelli, 1994), or to translate a string
over the input alphabet into a string over the output alphabet (Tiňo and Sajda,
1995). The papers also present a wide variety of DTRNN architectures as well
as of training and extraction schemes.

Cleeremans et al. (1989): this paper describes how an Elman (1990) simple
recurrent network may be trained to read a string and predict the next symbol.
When a network is trained to predict the next symbol, a one-hot, exclusive,
or local interpretation (one unit per symbol, high when the symbol is present

56 CHAPTER 5. GRAMMATICAL INFERENCE WITH DTRNN

and low otherwise) is used for the alphabet, and a quadratic error function is
used, it is the case that the actual outputs of the DTRNN after having seen
a string are a good approximation to the frequencies observed for each of the
successors of that string in the learning set. If the learning set is interpreted
to be a representative draw from a given probability distribution over strings,
then the outputs may actually be interpreted as probabilities, and the DTRNN
may be used as a generator having a similar probability distribution.

However, Cleeremans et al. (1989) do not use the trained DTRNN as a gen-
erator but rather as an acceptor for the language (they explored two languages).
A string is accepted if each of its successors is predicted with a probability higher
than a threshold, which the authors set to 0.32. For the simplest language, us-
ing 70,000 random strings, of which only 210 were grammatical, the network
only accepted the grammatical ones. Also, the network accepted all string in a
set of 20,000 random grammatical strings. The second language modelled long-
term dependencies: the strings started and ended with the same symbol; if the
probabilities of intervening strings were independent of that symbol, the net-
work failed to learn the language; however, when the distribution of intervening
strings depended even if very slightly on the initial symbol, then the DTRNN
learned the language.

The authors also perform a hierarchical clustering of the observed values
of the hidden units and observe clusters that correspond to the states in the
automata defining the languages.

Pollack (1991): This paper (http://www.dlsi.ua.es/~mlf/nnafmc/papers/
pollack91induction.pdf) deals with the training of a class of second-order
DTRNN (see section 3.2.1) to behave as language recognizers (Pollack (1991)
uses the name dynamical recognizers, and defines them in a way parallel to the
definition of deterministic finite automata, see section 2.3.3). The DTRNN is
trained to recognize the seven languages in Tomita (1982) using a gradient-
descent algorithm. One of the main emphases of the paper is in the cognitive
implications of this process. Pollack (1991) also shows that, as learning pro-
gresses, the DTRNN undergoes a sudden change similar to a phase transition.
He also formulates a tentative hypothesis as to the classes of languages that
may be recognized by a dynamical system such as a DTRNN and its relation
to the shape of the area visited by the network as strings get longer and longer
(the attractor) and the way it is cut by the decision function used to determine
grammaticality. Pollack (1991) studies then the nature of the representations
learned by the DTRNN, first by examining the labels given by the networks to
all strings up to length 9 (to find that the labelings are not completely consis-
tent with the languages), and then by looking at the state space of the DTRNN,
either graphically or by studying its fractal dimension.

2This is presumably because in each state, and for the language studied by Cleeremans
et al. (1989), there is a maximum of two possible successors, and 0.3 is a safe threshold below
0.5.

5.5. FEATURED PAPERS 57

Giles et al. (1992): The architecture used by these authors is very similar
to that used by Pollack (1991): a second-order DTRNN (see section 3.2.1)
which is trained using the RTRL algorithm (Williams and Zipser, 1989c) (see
section 3.4.1). The presentation scheme is one of the main innovations in this
paper: training starts with a small random subset; if the DTRNN either learns
to classify it perfectly or spends a maximum number of training epochs, the
learning set is incremented with a small number of randomly chosen strings.
When the network correctly classifies the whole learning set, then it is said to
converge. A special symbol is used to signal the end of strings; this gives the
network extra flexibility, and may be easily shown to be equivalent to adding a
single-layer feedforward neural network as an output layer, as done by Blair and
Pollack (1997) or Carrasco et al. (1996)(see section 3.2.2). These authors extract
automata from DTRNN by dividing the state space hypercube in qnX equally-
sized regions. The extraction algorithm has been explained in more detail in
section 5.4. One of the main results is that, in many cases, the deterministic
finite automata extracted from the dynamics of the DTRNN exhibit better
generalization than the DTRNN itself. This is related to the fact that the
DTRNN may not be behaving as the corresponding FSM in the sense discussed
in section 4.2, but instead it shows what some authors call unstable behavior
(see section 5.3.2).

Manolios and Fanelli (1994) use Elman’s first-order architecture ((Elman,
1990)), as Cleeremans et al. (1989) , but train it to classify strings in small learn-
ing sets as grammatical or ungrammatical —according to four of the grammars
in Tomita (1982) — using backpropagation through time (Rumelhart et al.,
1986) with batch updating (see section 3.4.1). Once the DTRNN has been
trained, automata are extracted using a special clustering algorithm that has
been described in section 5.4. One of the most interesting features of the paper
is its graphical study of the learning process, and , in particular, that of the
size of clusters as training progresses. The size of the clusters is proposed as an
indicator of generalization ability.

Tiňo and Sajda (1995) (http://www.dlsi.ua.es/~mlf/nnafmc/papers/
tino95learning.pdf) use a first-order DTRNN which is basically an aug-
mented version of the recurrent error propagation network of Robinson and
Fallside (1991), first-order DTRNN (see section 3.2.1), with an extra layer to
compute the output, to learn the transduction tasks performed by Mealy ma-
chines (see section 2.3.1). The network is trained using an online algorithm
similar to RTRL (see section 3.4.1); weights are updated after each symbol pre-
sentation (online learning). In addition to being one of the few papers dealing
with transduction instead of recognition tasks, it introduces a new FSM extrac-
tion method based on Kohonen’s self-organizing maps (see section 5.4.3; see also
Haykin (1998, 408)).

58 CHAPTER 5. GRAMMATICAL INFERENCE WITH DTRNN

Das and Mozer (1998) (http://www.dlsi.ua.es/~mlf/nnafmc/papers/
sreerupa98dynamic.pdf) encourage a second-order DTRNN (similar to the
ones used by Giles et al. (1992)) to adopt a finite-state like behavior by means
of clustering methods, which may be unsupervised or supervised. In the first
case, unsupervised clustering of the points of state space visited by the network
is used after a certain number of training epochs and a new next-state function
is constructed as follows: first, a next state candidate x′[t] is computed from
x[t−1] using eq. 3.8; then, it is assigned to the corresponding cluster; finally, it is
linearly combined with the corresponding centroid c[t] to obtain the next state:
x[t] = (1 − α)x′[t] + αc[t], with α ∈ [0, 1] estimated from the current error. In
the second (supervised) case, states are assumed to be ideally fixed points but
actually corrupted by noise that follows a Gaussian distribution whose mean
and variance is estimated for each state simultaneously to the weights of the
DTRNN. The method assumes a known number of states and uses a temperature
parameter to gradually shrink the Gaussians as the error improves. In the
experiments, both the supervised and unsupervised approaches improve the
results obtained without using any clustering; the supervised clustering method
performs much better than the unsupervised one. The idea of using clustering
to improve FSM learning by DTRNN had been previously reported by Das and
Das (1991) and Das and Mozer (1994).

5.5.2 Inference of context-free grammars

Other authors have studied the ability of DTRNN-like architectures to learn
context-free grammars from examples. In some of the cases, the DTRNN is
augmented with an external stack which it can manipulate, in much the same
way as a pushdown automaton (the recognizer for context-free grammars) is a
finite-state machine with an external stack (Giles et al., 1990; Mozer and Das,
1993). Others rely on the ability of the DTRNN to organize their state space
in a stack-like fashion.

Giles et al. (1990) use a second-order DTRNN of the kind used by Giles et al.
(1992), but supplemented with an external analog (continous) stack, to learn
successfully two simple context-free languages. A set of special output units,
called action units, are used to control the stack. The stack is continuous, in
that it may contain elements of variable thickness; this is so that gradient-based
algorithms may be used.

Mozer and Das (1993) propose what could be considered as an asyn-
chronous DTRNN-like architecture which effectively acts as a pushdown au-
tomata implementing a shift-reduce parsing strategy.3 The implementation is
based on the following modules:

3Also known as LR, Left-to-right, Rightmost-derivation parsing (Hopcroft and Ullman,
1979, 248).

5.5. FEATURED PAPERS 59

• A stack which may contain input symbols (terminals) shifted onto it or
nonterminal symbols (variables).

• A set of demon units that can read the top two stack symbols. Each demon
unit reacts to a particular pair of symbols, pops both of them from the
stack, and pushes a particular nonterminal. When no demon unit reacts,
a new input symbol is pushed onto the stack.

Grammars induced are of the form X → Y Z where Y and Z are either nonter-
minals or terminals. Both the stack (as in Giles et al. (1990)) and the demons
are continuous to allow for partial demon activity and variable-thickness sym-
bols in the stack. This in turn allows for the use of a gradient-based method to
train the network; the network is trained to obtain a stack containing simply
the start symbol after reading a grammatical string, and any other symbol after
reading a nongrammatical string. Mozer and Das (1993) successfully train the
network to learn four simple grammars from relatively small learning sets.

Zeng et al. (1994) describe a method —partially described earlier in (Zeng
et al., 1993)— to use and train a second-order DTRNN such as the one used by
Giles et al. (1992) , without and with an external stack, so that stable finite-
state or pushdown automaton behavior are ensured. The method has two basic
ingredients: (a) a discretization function

D(x) =
{

0.8 if x > 0.5
0.2 otherwise ,

which is applied after the sigmoid function when computing the new state x[t]
of the DTRNN, and (b) a pseudo-gradient learning method, which may be
intuitively described as follows: the RTRL formulas are written for the corre-
sponding second-order DTRNN without the discretization function (as in (Giles
et al., 1992)) but used with discretized states instead. The resulting algorithm
is empirically investigated to characterize its learning behavior; the conclusion
is that, even if it does not guarantee the reduction of the error, the algorithm
is able to train the DTRNN to perform the task. One of the advantages of the
discretization is that FSM extraction is trivial: each FSM state is represented
by a single point in state space. Special error functions and learning strategies
are used for the case in which the DTRNN manipulates an external stack for the
recognition of a subset of context-free languages (the stack alphabet is taken to
be the same as the input alphabet and transitions consuming no input are not
allowed; unlike Giles et al. (1990), these authors use a discrete external stack).

60 CHAPTER 5. GRAMMATICAL INFERENCE WITH DTRNN

Author Index

Adalı, T., 25
Alon, N., 40, 41
Alquézar, R., 11, 44
Aussem, A., 25

Baltersee, J., 25
Bengio, Y., 32, 36
Bengio. Y., 36
Blair, A., 20, 26, 29, 54, 57
Box, G.E., 14
Bradley, M.J., 24
Bridle, J.S., 24
Bulsari, A.B., 26, 29

Carrasco, R.C., 17, 20, 26, 29, 44,
45, 53, 57

Casey, M., 42, 53
Cauwenberghs, G., 30
Chalmers, D.J., 35
Chambers, J., 25
Chen, W.-Y., 24, 25
Cheng, Y., 25
Chiu, C.-C., 24
Chomsky, N., 38
Chovan, T., 25
Chrisman, L., 35
Cid-Sueiro, J., 19, 24
Cleeremans, A., 54–57
Clouse, D.S., 24
Connor, J.T., 25

Das, R., 55, 58
Das, S., 55, 58, 59
Draye, J.P., 25
Dreider, J.F., 25
Dzielinski, A., 25

Elman, J.L., 11, 20, 25, 33, 34, 36,
40, 41, 44, 50, 55, 57

Fahlman, S.E., 26, 27, 30, 31, 44
Fallside, F., 19, 20, 24, 44, 57
Fanelli, R., 54, 55, 57
Feldkamp, L.A, 29
Figueiras-Vidal, A.R., 24
Forcada, M.L., 17, 20, 24, 26, 29,

30, 35
Frasconi, P., 19, 30

Gershenfeld, N.A., 14
Giles, C.L., 17, 20, 29, 45, 53–56,

58, 59
Gori, M., 30, 54
Goudreau, M., 40
Goudreau, M.W., 41, 44, 45

Haykin, S., 19, 25, 28, 29, 57
Hopfield, J.J., 3
Horne, B.G., 7, 40, 41
Hush, D.R., 7, 40, 41

Ifeachor, E.C., 14

Janacek, G., 14
Jordan, M.I., 19, 32

Kaiser, J.F., 14
Kalman, B.L., 36
Kechriotis, G., 24
Kleene, S.C., 3, 5–7, 12
Kohavi, Z., 24
Kohonen, T., 3, 53, 55, 57
Kolen, J.F., 53, 54
Kremer, S.C, 40, 44, 45
Kremer, S.C., 11, 30, 40

61

62 AUTHOR INDEX

Kuhn, G.M., 17, 20, 24
Kwasny, S.C., 36

Lawrence, S.C., 25
Li, C.J., 25
Li, L., 25
Lin, T., 21

Manolios, P., 54, 55, 57
Mars, P., 24
Martin, R.D., 25
McClelland, J.L., 3
McCulloch, W.S., 3, 5–7, 11
Minsky, M.L., 3, 5, 8, 11, 40, 41, 45
Mitra, S.K., 14
Mozer, M.C., 30, 55, 58, 59

Narendra, K.S., 21, 25
Ñeco, R.P., 30, 35
Nerrand, O., 25

Omlin, C.W., 17, 45, 53
Oppenheim, A.V., 14
Ortiz-Fuentes, J.D., 24

Parberry, I., vi
Parisi, R., 24
Parthasarathy, K., 21, 25
Pearlmutter, B., 16
Perrin, D., 3
Pineda, F.J., 16
Pitts, W.H., 3, 5–7, 11
Pollack, J.B., 16, 17, 20, 26, 29, 34,

35, 42, 54–57
Puskorius, G.V, 29

Qian, N., 24

Robinson, A.J., 19, 20, 24, 44, 57
Rosenberg, C.R., 24
Rumelhart, D.E., 3, 27, 57

Sajda, J., 55, 57
Sanfeliu, A., 11, 44
Saxén, H., 26, 29
Schafer, R.W., 14
Sejnowski, T.J., 24

Shanblatt, M.A., 24
Siegelmann, H.T., 47, 48
Š́ıma, J., 43
Siu, K.Y., vi
Sluijter, R.J., 15, 25
Sontag, E.D., 47
Sperduti, A., 36
Starita, A., 36
Swift, L., 14

Tiňo, P., 55, 57
Tomita, M., 56, 57
Turing, A.M., 46

Unnikrishnan, K.P., 30

Venugopal, K.P., 30

Waibel, A., 24
Wang, J., 25
Watrous, R.L., 17, 20, 24
Weigend, A.S., 14
Werbos, P.J., 3, 25, 27, 28
Williams, R.J., 20, 28, 29, 57
Wu, G., 25
Wu, L., 25

Zbikowski, R., 25
Zeng, Z., 17, 20, 59
Zipser, D., 20, 28, 29, 57

Index

accepting state, 10, 39
activation

function
derivative, 29

activation function, 19, 34
differentiable, 19, 26
properties, 19, 43
radial basis functions, 19
rational, 44
threshold, see threshold linear

unit
Alopex, 30
alphabet, 12, 35
asynchronous DTRNN, 58
asynchronous transduction, 50
attractor, 56

limit cycle, 33
automata

deterministic finite-state, 8, 10,
12, 16, 39–43, 45, 49, 56,
57

finite-state, 10, 12, 40, 49, 59
neural nets and finite-state au-

tomata, 5
pushdown, 59

backpropagation, 8, 28
focused, 30
through time, 27, 29, 57

batch learning, 26, 27, 29, 30, 57
bias

as a learnable parameter, 26,
51

notation, 19
blank symbol

in Turing Machines, 46
bounds to number of units, 40, 41

BPS, 30
BPTT, see backpropagation through

time

channel equalization, 24
Chomsky’s hierarchy, 37, 38
clock

external, 16
clustering

hierarchical, 34, 56
of DTRNN state vectors, 34, 54,

56–58
compression of signals, 15
compressor

in RAAM, 34
computability of natural functions,

46
construction of FSM in DTRNN, 11,

37, 40, 41, 44, 45
context-free

grammar, 39, 49, 55, 58, 59
language, 59

context-sensitive grammar, 39, 47
continuous-time recurrent neural net-

works, 16
control, 25
countable set, 43
cycles in neural networks, 6, 8, 12

decision function, 56
decoder

in RAAM, 34
in RAAM networks, see recur-

sive auto-associative mem-
ory

definite-memory machines, 24
denumerable set, 43

63

64 INDEX

derivatives
of error, 27–29

deterministic finite-state automata,
8, 10, 12, 16, 39–45, 49, 56,
57

DFA, see deterministic finite-state
automata

discrete-time recurrent neural net-
work, 16, 21, 26, 28, 34,
37, 39, 46–50, 53–56

first-order, 17, 19, 28, 29, 40,
41, 44, 47, 48, 57

second-order, 17, 20, 29, 41, 45,
56–59

Turing computability, 47
discretization

of DTRNN state space, 59
of neuron outputs, 59

DTRNN, see discrete-time recurrent
neural network

dynamical system, 56
dynamics

atractor, 33
continuous-state, 53
next state, 28
of a DTRNN, 28, 33, 53–55, 57

EKF, 29
Elman net, 20, 32, 33, 44
empty string, 10
encoder

in RAAM, 34, 35
encoding

of FSM in DTRNN, 40, 43–45
of input symbols, 51
of Turing machines in DTRNN,

47
equivalence

of BPTT and RTRL, 29
of DFA and Moore machines,

10
of FSM and DTRNN, 8, 11, 50
of Moore and Mealy machines,

10
of sequence classification and trans-

duction, 15

of TLU and McCulloch-Pitts units,
7

error function, 32, 51
differentiable, 26
gradient of, 26, 28, 29
in batch learning, 26, 27, 30
in online learning, 27
in pattern learning, 26, 27
local minima, 32
minima, 26

multiple, 32
quadratic, 56
special, 59

excitation threshold, 6
excitatory connection, 6, 7
exclusive-or function, 7, 8
exclusive encoding

of symbols, 40, 56
expression

regular, 7, 12
equivalence with DTRNN, 12
equivalence with finite-state

machines, 12
temporal propositional, 6

extended Kalman filter, 29
extraction

of FSM from DTRNN, 49, 51,
53

through partition of state space,
54, 57

trivial, 59
using clustering, 54, 57
using self-organizing maps, 55,

57

fan-in, 41
fan-out, 41
feedback

in DTRNN, 8, 20
local, 30, 31

feedforward neural net
as next-state function, 17
as output function, 17, 22, 41,

57
in BPTT training, 28
in RAAM, 34

INDEX 65

layered, 8
lower-triangular, 31, 41
training, 27
two-layer, 22, 23, 30, 44

FFNN, see feedforward neural net
filtering of discrete-time signals, 14
final state

of a Turing machine, 46
finite-memory machines, 24
finite-state

automata, 40
deterministic, 8, 10, 12, 16,

39–44, 49, 56
behavior, 57

of DTRNN, 53
of DTRNN, 37, 39, 42, 45,

51–55, 58, 59
computation, 5, 11, 42

finite-state automata
deterministic, 45, 57

finite-state machine, 12
finite-state machines, 24

and neural nets, 5
approximate, 55
as transducers, 8
classes, 8
compatible with learning set, 54
definite-memory machines, 24
deterministic, 55
DTRNN behaving as, 42, 53,

54
earliest DTRNN as, 39
emulation by DTRNN, 30, 44,

45
encoding in DTRNN, 43, 44
encoding in threshold DTRNN,

11, 40
equivalence to DTRNN, 8, 50
extraction, 59
extraction from DTRNN, 49, 54,

57
finite-memory machines, 24
inference, 53, 55, 58
learning by DTRNN, 50, 52
learning in sigmoid DTRNN, 42
next-state function, 45

probabilistic, 50
pushdown automata as, 39
states

as clusters in state space, 52,
54, 56

transition, 45, 54
with stack, 58

fixed points, 45, 58
fractal dimension, 56
FSM, see finite-state machines
functions

computable by TLU, 7
recursively computable, 46

generalization, 53, 57
Gradient

learning algorithm, 26
gradient

descent, 27, 30, 32, 36, 45, 56
learning algorithm, 27, 30, 32,

36, 45, 56, 58, 59
pseudo-gradient learning, 59
vanishing, 36

grammar, 37, 49, 54
as generator, 38
Chomsky’s hierarchy, 37, 38
context-free, 39, 49, 55, 58, 59
context-sensitive, 39, 47
inference, 49, 50, 58, 59
language generated by, 38
regular, 39, 55
rules in DTRNN, 52, 53
Tomita’s, 57
unrestricted, 39, 46

grammatical inference, 49, 50, 58
using DTRNN, 49, 51–53, 55

hidden
layer, 21, 23, 44, 51
state, 31, 52

neural architectures without,
21

unit, 31, 56
activation patterns, 34

units, 31
hierarchy

66 INDEX

Chomsky’s, 37, 38

implementation
of FSM in DTRNN, 5, 11, 40,

44
inductive bias, 52
inhibitory connection, 6, 7
initial state

as a learnable parameter, 51
as a learnable parameter, 26
of a DTRNN, 17, 42

derivatives, 29
learning, 26

of a FSM, 9
of a pushdown automaton, 39
of a Turing machine, 46

input
alphabet, 8, 39, 43, 46, 47
layer, 8
neurons, 6
sequence, 14, 16, 25

length, 14
string, 43
symbol, 11

representation, 40, 51
symbols

representation, 42
to a DTRNN, 17, 25, 29, 32, 34
to a TLU, 7, 8
window, 24

in a NARX, 21
in a TDNN, 22, 23

instability, 52
internal representation, 52
interpretation

of DTRNN output
as symbols, 32

of DTRNN outputs, 51
as probabilities, 51, 56
as symbols, 42

Kalman filter
extended, 29

Kleene’s theorem, 12

language

accepted by DTRNN, 45
accepted by Turing machines,

46
acceptor, 49, 56

neural, 50
Turing machine as, 46

concatenation, 38
context-free, 59
defined by grammar, 37
finite-state, 50
generated by a grammar, 38
generator, 56

probabilistic, 51
learning by DTRNN, 56
natural, 25
recognition by DTRNN, 56
recognizer, 58
recognizer, 50, 52, 56
regular, 12, 50, 54

acceptor, 42
recognition by DTRNN, 30

transducer, 52
layers

hidden, 21, 23, 44, 51
in BPTT, 28
in feedforward neural net, 8, 41
output, 44, 57

LBA, 47
learnable parameters, 26, 27, 30, 32,

40, 51
updating

batch, 26
gradient, 27
in BPTT, 28
in perturbative methods, 30
in RTRL, 29
online, 27, 29, 57
pattern, 26, 28
random, 30

learning algorithm, 25, 27, 51
backpropagation, 8
for DTRNN, 26, 27
generalization test, 53
gradient-based, 26, 27, 32, 36,

45, 58
gradient-descent, 56

INDEX 67

inductive bias, 52
long-term dependencies, 36
non-gradient-based, 26, 29, 30
pseudo-gradient-based, 59
recurrent cascade correlation, 31

learning set, 27, 29, 30, 32, 51, 52,
54, 56, 57, 59

noisy, 54
of trees, 35
partition, 53

linearly-bounded automata, 47
local-feedback DTRNN, 30, 31
local minima, 32, 51, 52
logical functions, 7

computability, 7
logistic function, 19, 34, 45
long-term dependencies, 32, 36, 52,

56
lower-triangular feedforward neural

net, 31, 41

McCulloch-Pitts net, 5
Mealy machines, 8, 10, 11, 40, 41,

43, 45, 57
as sequence procesors, 14
binary, 40
neural, 17, 20, 28, 43

minimization
of error function, 26
of FSM, 54, 55

Moore machines, 10, 43, 45
neural, 11, 17, 20, 41, 43, 47

multilayer perceptron, 8, 35

NARX (nonlinear auto-regressive with
exogenous inputs), 21

natural language, 25
natural numbers, 43

functions of, 46
neural

Mealy machines, 17
Moore machine, 17
state machine, 16, 17, 19, 20,

28, 43
neurocontrol, 29
neuron field, 55

next-state function, 9, 17, 19–21, 39,
41, 42, 45, 58

of a TDNN, 22
next move function, 46
node

of a tree, 35
non-gradient-based

learning algorithms, 26, 29, 30
nonterminal symbols, 59
NSM, see neural state machine

observability of state, 21, 24
one-hot encoding

of symbols, 34, 40, 55
online learning, 27, 57

using RTRL, 29
output

alphabet, 8, 9, 43
desired, 26, 27, 53
function, 9, 17, 19–21, 30, 31,

34, 35, 41, 44, 57
of a DTRNN, 17
of a TLU, 7, 8
of DTRNN

as projection of state vector,
20, 41, 44

of sigmoid units, 11
sequence, 14–16

length, 14
space, 43, 53

of a DTRNN, 43
symbols

representation, 40
unit, 17, 20, 28
window, 24

in a NARX, 21

P/Poly
computational class, 48

parsing, 36
shift-reduce, 58

partition
of learning sets, 53
of state space, 42, 53, 54, 57

pattern learning, 26, 27, 29
PDA, 39

68 INDEX

perceptron
multilayer, 8
two-layer, 23

prediction
by DTRNN, 25
of a sequence, 15, 16
of next symbol, 55

using DTRNN, 50, 55, 56
time-series, 14, 15

using DTRNN, 25
predictive coding, 15, 24
probabilistic

finite-state machine, 50
language generator, 51

probabilities
in DTRNN outputs, 51, 56

probability distribution, 50, 51, 56
processing

element, 7
of natural language, 25
of sequences, 13, 16

adaptive, 16
classification, 14
using DTRNN, 13, 16, 24, 25,

31, 32
of strings, 51, 52
sequential, 14
synchronous, 14

production
of a grammar, 38

pseudo-gradient
learning algorithm, 59

pushdown automaton, 39, 58, 59
as Turing machine simulator, 48

RAAM, see recursive auto-associative
memory

radial basis functions, 19
rational activation function, 44, 47
real-time recurrent learning, 27–29,

57, 59
relation to extended Kalman fil-

ter, 29
recognition

of languages
by DTRNN, 56

of sequences, 14, 49
of speech, 24

recognizer
dynamical, 16, 42, 56
finite-state, 24, 41
for context-free languages, 58
language, 50, 52, 56
neural, 50

reconstructor
in RAAM, 34

recurrent cascade correlation, 31, 45
recurrent neural network

discrete-time, 16, 17, 20, 21, 26,
28, 34, 37, 39, 41, 45–50,
53–59

recursive auto-associative memory,
34, 35

labeling, 36
recursive hetero-associative memory,

35
recursivity

in grammars, 38
region

of output space
in DTRNN, 42, 52
in RAAM, 35

of state space
in DTRNN, 42, 53
in RAAM, 35

regular
events, 12
expression, 12
grammar, 39, 55
language, 12, 54

acceptor, 42
recognition by DTRNN, 30

representation
learned by DTRNN, 52, 54, 56
of FSM

in DTRNN, 45
of FSM in DTRNN, 39
of inputs in DTRNN, 32, 40,

42, 51
of outputs in DTRNN, 40
of parse trees in RAAM, 36
of sequences in RAAM, 34, 35

INDEX 69

of terminals in RAAM, 35
rewrite rules

in a grammar, 38
recursive, 38

Robinson-Fallside network
augmented, 44

RTRL, see real-time recurrent learn-
ing

rule
extraction from DTRNN, 51
representation in DTRNN, 53

sampling
discrete-time, 14, 15

second-order DTRNN, 17, 20, 29,
41, 45, 56–59

self-organizing feature maps, 55, 57
sequence

classification, 14
continuation, 15
generation, 15, 16
input, 14, 16, 25
output, 14–16
prediction, 15, 16, 33

for speech coding, 15
processing, 13

adaptive, 16
as language recognition, 49
long-term dependencies, 36,

52
sequential, 14
synchronous, 14
using DTRNN, 13, 16, 24, 25,

31, 32, 50
processor

discrete-time, 26
state-based, 15

recognition, 14, 49
representation

in RAAM, 35
transduction, 14

synchronous, 15, 16
sequential

processing, 14
in Mealy and Moore machines,

15

transduction
by DTRNN, 50

sigmoid
function, 59

logistic, 19, 34, 45
units

DTRNN using, 41
signal

compression, 15
discrete-time, 14, 15
filtering, 14
processing, 14

single-layer
DTRNN, 40, 41
feedforward neural net, 34

as output function, 41, 57
SOFM, 55, 57
space complexity of learning, 28
speech

coding
through sequence prediction,

15
using DTRNN, 24

modelling of coarticulatory fea-
tures, 33

recognition, 24
stability

of DTRNN as language recog-
nizers, 59

stability of DTRNN as language rec-
ognizers, 52

stack
empty, 39
external, 58, 59
in pushdown automata, 39
simulating Turing machines, 48
unary, 48

start symbol
of a grammar, 38, 59

start symbol of a grammar, 38
state

accepting, 10
of a pushdown automaton, 39

final
of a Turing machine, 46

initial

70 INDEX

of a DTRNN, 17, 42
of a pushdown automaton, 39
of a Turing machine, 46

observable, 21, 24
of a FSM, 9
of a pushdown automaton, 39
of a Turing machine, 46
of DFA

representation in DTRNN, 42
transition, 42, 55

in a FSM, 10, 52, 54
in a Turing machine, 48

unit, 52
units, 17, 20, 25, 28, 29, 34, 51

hidden, 31
in DTRNN, 25, 28

vector, 20, 34, 41, 44
clustering, 56–58
in a NARX, 21

state-based sequence processor, 15
state space

of DTRNN, 42, 43, 56
clustering, 54–57
partition, 42, 53, 54, 57
regions, 42
topological mapping, 55

of RAAM, 34
regions, 35

partition
to extract FSM, 54, 57

step function, 7
string, 8, 14

acceptance
by a DFA, 10
by a DTRNN, 50
by a pushdown automaton,

39
by a Turing machine, 46

continuation
by DTRNN, 56

empty, 10
generation

by a grammar, 38
by DTRNN, 51

input, 43, 45
output, 10

processing
by DTRNN, 51, 52
by FSM, 9

recognition
by automata, 39

rejection
by DFA, 10
by DTRNN, 50

transduction, 55
translation, 50

by DTRNN, 50
valid

as defined by grammar, 37
super-Turing

computation
by DTRNN, 48
subclass P/Poly, 48

symbol
blank

in Turing machine, 46
encoding

one-hot, local, or exclusive,
55

end-of-string, 44, 57
input symbol, 9, 11

representation in DTRNN, 40,
42, 51

in stack of pushdown automa-
ton, 59

in tape of Turing machine, 46
next symbol

prediction, 55, 56
nonterminal, 59
one-hot encoding, 34, 40
output, 9, 10, 42

by DTRNN, 32, 42
representation in DTRNN, 40

stack, 39
start symbol

of a grammar, 38, 59
string, 12, 15
terminal, 37, 59
useless, 38
variable, 37

synapse, 6, 7
excitatory, 6, 7

INDEX 71

inhibitory, 6, 7
synchronous

processing, 14
sequence transduction, 15
transduction, 16, 27

by DTRNN, 50
system identification, 25

tape
alphabet, in a Turing machine,

46
in linearly bounded automata,

47
of a nonuniform Turing machine,

48
of a Turing machine, 46, 47

target, 26–29
“don’t care” targets, 33

TDNN, 22
teacher forcing, 30
temporal propositional expression, 6
terminal symbol, 37, 38, 59
test set, 53
threshold linear unit, 7, 16, 30, 37,

39–41
threshold unit, 5
time-delay neural network, 22
time-series prediction, 14, 15

using DTRNN, 25
time complexity

of learning, 28, 29
TLU, see threshold linear unit
TM, see Turing machine
TPE, see temporal propositional ex-

pression
training algorithm, see learning al-

gorithm
transducer

finite-state, 8
of strings, 52

transduction
of sequences, 14

asynchronous, 50
sequential, 14
synchronous, 15, 27
using DTRNN, 50

of trees, 35
transition

function, see next-state function
in a FSM, 10, 42, 45, 52, 54, 55
in a pushdown automaton, 39,

59
in a Turing machine, 48

translation, see transduction
tree

learning set, 35
node, 35
storing in RAAM, 34, 35
transduction, 35

Turing machine, 46–48
deterministic, 47
nondeterministic, 47
nonuniform, 48
universal, 47

two-layer feedforward neural net, 22,
23, 30, 44

type 0 grammar, 39
type 1 grammar, 39
type 2 grammar, 39
type 3 grammar, 39

unfolding
in BPTT, 28

unit
demon, 59
threshold, 5
threshold linear, 7, 16, 30

universal Turing machine, 47
unrestricted grammar, 39, 46
updating of learnable parameters

batch, 26
in BPTT, 28
in perturbative methods, 30
in RTRL, 29
online, 27, 29
pattern, 26, 28
random, 30
using gradient, 27

valence
of a tree, 34

vanishing gradient, 36

72 INDEX

variable
in a grammar, 37, 38, 59

vector
input vector, 8

to a DTRNN, 17
to a TLU, 7

of weights, 30
space

of inputs, 14
of outputs, 14

state vector, 20, 34
clustering, 54, 56–58
in a NARX, 21

weights
as learnable parameters, 26, 51
derivatives of error with respect

to, 28
derivatives of state with respect

to, 29
equivalence in BPTT, 28
feedback, 20
in DTRNN, 17
in TDNN

organized in blocks, 23
notation, 19
perturbation, 30

learning algorithm, 30
space, 52
vector, 30

window
of inputs, 24

in a NARX, 21, 22
in a TDNN, 23

of outputs, 24
in a NARX, 21

List of abbreviations

BPTT: Backpropagation through time (section 3.4.1).

DFA: Deterministic finite-state automaton (section 2.3.3).

DTRNN: Discrete-time recurrent neural network (section 3.2).

EKF: Extended Kalman filter (section 3.4.1).

FFNN: Feedforward neural network (section 3.4.1).

FSM: Finite-state machine (section 2.3)

NARX: Nonlinear Auto-Regressive with eXogenous inputs (section 3.2.3).

NF: Neuron field (in Kohonen’s self-organizing feature maps)

NSM: Neural state machines (section 3.2).

PDA: Pushdown automaton (section 4.1.2).

RAAM: Recursive auto-associative memory (section 3.6).

RCC: Recurrent cascade correlation (section 3.4.3).

RTRL: Real-time recurrent learning (section 3.4.1).

SOFM: Kohonen’s Self-organizing feature map.

TDNN: Time-delay neural net (section 3.2.3).

TM: Turing machine (section 4.3.1).

TLU: Threshold linear unit (section 2.2).

TPE: Temporal propositional expression (section 2.1).

UTM: Universal Turing machine (section 4.3.1).

73

Bibliography

Adalı, T., Bakal, B., Sönmez, M. K., Fakory, R., and Tsaoi, C. O. (1997). Mod-
eling nuclear reactor core dynamics with recurrent neural networks. Neuro-
computing, 15(3-4):363–381.

Alon, N., Dewdney, A. K., and Ott, T. J. (1991). Efficient simulation of finite
automata by neural nets. Journal of the Association of Computing Machinery,
38(2):495–514.

Alquézar, R. and Sanfeliu, A. (1995). An algebraic framework to represent finite
state automata in single-layer recurrent neural networks. Neural Computation,
7(5):931–949.

Aussem, A., Murtagh, F., and Sarazin, M. (1995). Dynamical recurrent neu-
ral networks — towards environmental time series prediction. International
Journal of Neural Systems, 6:145–170.

Baltersee, J. and Chambers, J. (1997). Non-linear adaptive prediction of speech
with a pipelined recurrent neural network and a linearised recursive least
squares algorithm. In Proceedings of ECSAP’97, European Conference on
Signal Analysis & Prediction.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependen-
cies with gradient descent is difficult. IEEE Transactions on Neural Networks,
5(2):157–166.

Blair, A. and Pollack, J. B. (1997). Analysis of dynamical recognizers. Neural
Computation, 9(5):1127–1142.

Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1994). Time series analysis:
forecasting and control. Prentice-Hall, Englewood Cliffs, NJ. 3rd. ed.

Bradley, M. J. and Mars, P. (1995). Application of recurrent neural networks to
communication channel equalization. In IEEE International Conference on
Acoustics, Speech and Signal Processing, volume 5, pages 3399–3402.

Bridle, J. S. (1990). Alphanets: A recurrent neural network architecture with a
hidden Markov model interpretation. Speech Communication, 9:83–92.

75

76 BIBLIOGRAPHY

Bullock, T. H. and Horridge, A. G. (1965). Structure and Function in The
Nervous System of Invertebrates. W.H. Freeman and Co., New York, NY.

Bulsari, A. B. and Saxén, H. (1995). A recurrent network for modeling noisy
temporal sequences. Neurocomputing, 7(1):29–40.

Burks, A. W. and Wang, H. (1957). The logic of automata. Journal of the
ACM, 4:193–218 and 279–297.

Carrasco, R. C., Forcada, M. L., and Santamaŕıa, L. (1996). Inferring stochas-
tic regular grammars with recurrent neural networks. In Miclet, L. and
de la Higuera, C., editors, Grammatical Inference: Learning Syntax from
Sentences, pages 274–281, Berlin. Springer-Verlag. Proceedings of the Third
International Colloquium on Grammatical Inference, Montpellier, France, 25-
27 September 1996.

Carrasco, R. C., Forcada, M. L., Valdés-Muñoz, M. Á., and Ñeco, R. P. (2000).
Stable encoding of finite-state machines in discrete-time recurrent neural nets
with sigmoid units. Neural Computation, 12(9):2129–2174.

Casey, M. (1996). The dynamics of discrete-time computation, with application
to recurrent neural networks and finite state machine extraction. Neural
Computation, 8(6):1135–1178.

Cauwenberghs, G. (1993). A fast-stochastic error-descent algorithm for super-
vised learning and optimization. In Advances in Neural Information Process-
ing Systems 5, pages 244–251, San Mateo, CA. Morgan-Kaufmann.

Cauwenberghs, G. (1996). An analog VLSI recurrent neural network learn-
ing a continuous-time trajectory. IEEE Transactions on Neural Networks,
7(2):346–361.

Chalmers, D. J. (1990). Syntactic transformations on distributed representa-
tions. Connection Science, pages 53–62.

Chen, T.-B., Lin, K. H., and Soo, V.-W. (1997). Training recurrent neural
networks to learn lexical encoding and thematic role assignment in parsing
Mandarin Chinese sentences. Neurocomputing, 15(3):383–409.

Chen, W.-Y., Liao, Y.-F., and Chen, S.-H. (1995). Speech recognition with
hierarchical recurrent neural networks. Pattern Recognition, 28(6):795–805.

Cheng, Y., Karjala, T. W., and Himmelblau, D. M. (1995). Identification of
nonlinear dynamic processes with unknown and variable dead time using an
internal recurrent neural network. Ind. Eng. Chem. Res., 34:1735–1742.

Chiu, C.-C. and Shanblatt, M. A. (1995). Human-like dynamic programming
neural networks for dynamic time warping speech recognition. Int. J. Neural
Syst., 6(1):79–89.

BIBLIOGRAPHY 77

Chomsky, N. (1965). Aspects of the Theory of Syntax. MIT Press, Cambridge,
MA.

Chovan, T., Catfolis, T., and Meert, K. (1994). Process control using recurrent
neural networks. In 2nd IFAC Workshop on Computer Software Structures
Integrating AI/KBS System in Process Control.

Chovan, T., Catfolis, T., and Meert, K. (1996). Neural network architecture for
process control based on the RTRL algorithm. AIChE Journal, 42(2):493–
502.

Chrisman, L. (1991). Learning recursive distributed representations for holistic
computation. Connection Science, 3(4):345–366.

Cid-Sueiro, J., Artes-Rodriguez, A., and Figueiras-Vidal, A. R. (1994). Recur-
rent radial basis function networks for optimal symbol-by-symbol equaliza-
tion. Signal Processing, 40:53–63.

Cid-Sueiro, J. and Figueiras-Vidal, A. R. (1993). Recurrent radial basis function
networks for optimal blind equalization. In Neural Networks for Processing
III: Proceedings of the 1993 IEEE-SP Workshop, pages 562–571.

Cleeremans, A., Servan-Schreiber, D., and McClelland, J. L. (1989). Finite state
automata and simple recurrent networks. Neural Computation, 1(3):372–381.

Clouse, D., Giles, C., Horne, B., and Cottrell, G. (1994). Learning large debruijn
automata with feed-forward neural networks. Technical Report CS94-398,
Computer Science and Engineering, University of California at San Diego, La
Jolla, CA.

Clouse, D. S., Giles, C. L., Horne, B. G., and Cottrell, G. W. (1997a). Represen-
tation and induction of finite state machines using time-delay neural networks.
In Mozer, M. C., Jordan, M. I., and Petsche, T., editors, Advances in Neural
Information Processing Systems, volume 9, page 403. The MIT Press.

Clouse, D. S., Giles, C. L., Horne, B. G., and Cottrell, G. W. (1997b). Time-
delay neural networks: Representation and induction of finite-state machines.
IEEE Transactions on Neural Networks, 8(5):1065–1070.

Connor, J. T. and Martin, R. D. (1994). Recurrent neural networks and robust
time series prediction. IEEE Trans. Neural Networks, 5(2):240–254.

Das, S. and Das, R. (1991). Induction of discrete state-machine by stabiliz-
ing a continuous recurrent network using clustering. Computer Science and
Informatics, 21(2):35–40. Special Issue on Neural Computing.

Das, S. and Mozer, M. (1994). A unified gradient-descent/clustering architecture
for finite state machine induction. In Cowan, J., Tesauro, G., and Alspector,
J., editors, Advances in Neural Information Processing Systems 6, pages 19–
26. San Mateo, CA: Morgan Kaufmann.

78 BIBLIOGRAPHY

Das, S. and Mozer, M. (1998). Dynamic on-line clustering and state extraction:
an approach to symbolic learning. Neural Networks, 11(1):53–64.

Dertouzos, M. (1965). Threshold Logic: A Synthesis Approach. MIT Press,
Cambridge, MA.

Draye, J., Pavisic, D., Cheron, G., and Libert, G. (1995). Adaptive time con-
stants improve the prediction capability of recurrent neural networks. Neural
Processing Letters, 2(3):12–16.

Dreider, J. F., Claridge, D. E., Curtiss, P., Dodier, R., Haberl, J. S., and Krarti,
M. (1995). Building energy use prediction and system identification using
recurrent neural networks. Journal of Solar Energy Engineering, 117:161–
166.

Elman, J. (1991). Distributed representations, simple recurrent networks, and
grammatical structure. Machine Learning, 7(2/3):195–226.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14:179–211.

Fahlman, S. E. (1991). The recurrent cascade-correlation architecture. In Lipp-
mann, R. P., Moody, J. E., and Touretzky, D. S., editors, Advances in Neural
Information Processing Systems 3, pages 190–196. Morgan Kaufmann, Den-
ver, CO.

Forcada, M. L. and Carrasco, R. C. (1995). Learning the initial state of a second-
order recurrent neural network during regular-language inference. Neural
Computation, 7(5):923–930.

Forcada, M. L. and Carrasco, R. C. (2001). Simple stable encodings of finite-
state machines in dynamic recurrent networks, pages 103–127. IEEE Press.

Forcada, M. L. and Ñeco, R. P. (1997). Recursive hetero-associative memories
for translation. In Mira, J., Moreno-Dı́az, R., and Cabestany, J., editors, Bi-
ological and Artificial Computation: From Neuroscience to Technology (Pro-
ceedings of the 1997 International Work-conference on Artificial and Natural
Neural Networks), volume 1240 of Lecture Notes in Computer Science, pages
453–462, Berlin. Springer-Verlag.

Frasconi, P., Gori, M., Maggini, M., and Soda, G. (1996). Representation of
finite-state automata in recurrent radial basis function networks. Machine
Learning, 23:5–32.

Gilbert, E. N. (1954). Lattice theoretic properties of frontal switching functions.
Journal of Math. and Physics, 33:57–67.

Giles, C., Sun, G., Chen, H., Lee, Y., and Chen, D. (1990). Higher order recur-
rent networks & grammatical inference. In Touretzky, D., editor, Advances
in Neural Information Processing Systems 2, pages 380–387, San Mateo, CA.
Morgan Kaufmann.

BIBLIOGRAPHY 79

Giles, C. L., Chen, D., Sun, G. Z., Chen, H. H., Lee, Y. C., and Goudreau,
M. W. (1995). Constructive learning of recurrent neural networks: limitations
of recurrent cascade correlation and a simple solution. IEEE Transactions on
Neural Networks, 6(4):829–836.

Giles, C. L., Miller, C. B., Chen, D., Chen, H. H., Sun, G. Z., and Lee, Y. C.
(1992). Learning and extracted finite state automata with second-order re-
current neural networks. Neural Computation, 4(3):393–405.

Gori, M., Bengio, Y., and De Mori, R. (1989). BPS: A learning algorithm
for capturing the dynamical nature of speech. In Proceedings of the IEEE-
IJCNN89, Washington.

Gori, M., Maggini, M., Martinelli, E., and Soda, G. (1998). Inductive inference
from noisy examples using the hybrid finite state filter. IEEE Transactions
on Neural Networks, 9(3):571–575.

Goudreau, M., Giles, C., Chakradhar, S., and Chen, D. (1994). First-order vs.
second-order single layer recurrent neural networks. IEEE Transactions on
Neural Networks, 5(3):511–513.

Haykin, S. (1998). Neural Networks - A Comprehensive Foundation (2nd. ed.).
Prentice-Hall, Upper Saddle River, NJ.

Haykin, S. and Li, L. (1995). Nonlinear adaptive prediction of nonstationary
signals. IEEE Transactions on Signal Processing, 43(2):526–535.

Hebb, D. O. (1949). The Organization of Behavior. Wiley.

Hertz, J., Krogh, A., and Palmer, R. G. (1991). Introduction to the Theory of
Neural Computation. Addison-Wesley Publishing Company, Inc., Redwood
City, CA.

Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to automata theory,
languages, and computation. Addison–Wesley, Reading, MA.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent
computational abilities. Proceedings of the National Academy of Sciences,
79:2554.

Horne, B. G. and Hush, D. R. (1996). Bounds on the complexity of recurrent
neural network implementations of finite state machines. Neural Networks,
9(2):243–252.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward
networks are universal approximators. Neural Networks, 2(5):359–366.

Hubel, D. H. and Wiesel, T. N. (1959). Receptive fields of single neurons in the
cat’s striate cortex. Journal of Physiology, 148:574–591.

80 BIBLIOGRAPHY

Hush, D. and Horne, B. (1993). Progress in supervised neural networks. IEEE
Signal Processing Magazine, 10(1):8–39.

Ifeachor, E. C. and Jervis, B. W. (1994). Digital Signal Processing: a practical
approach. Addison-Wesley, Wokingham, U.K.

Irving M. Copi, Calvin C. Elgot, J. B. W. (1958). Realization of events by
logical nets. Journal of the ACM, 5(2):181–186.

Janacek, G. and Swift, L. (1993). Time series: forecasting, simulation, applica-
tions. Ellis Horwood, New York, NY.

Jordan, M. (1986). Serial order: A parallel distributed processing approach.
Technical Report ICS Report 8604, Institute for Cognitive Science, University
of California at San Diego, La Jolla, CA.

Kechriotis, G., Zervas, E., and Manolakos, E. S. (1994). Using recurrent neural
networks for adaptive communication channel equalization. IEEE Transac-
tions on Neural Networks, 5(2):267–278.

Kleene, S. (1956). Representation of events in nerve nets and finite automata.
In Shannon, C. and McCarthy, J., editors, Automata Studies, pages 3–42.
Princeton University Press, Princeton, N.J.

Kohavi, Z. (1978). Switching and Finite Automata Theory. McGraw-Hill, Inc.,
New York, NY, second edition.

Kohonen, T. (1974). An adaptive associative memory principle. IEEE Trans-
actions on Computers, C-23:444–445.

Kolen, J. F. (1994). Fool’s gold: Extracting finite state machines from recurrent
network dynamics. In Cowan, J. D., Tesauro, G., , and Alspector, J., editors,
Advances in Neural Information Processing Systems 6, pages 501–508, San
Mateo, CA. Morgan Kaufmann.

Kremer, S. C. (1995). On the computational power of Elman-style recurrent
networks. IEEE Transactions on Neural Networks, 6(4):1000–1004.

Kremer, S. C. (1996a). Comments on “constructive learning of recurrent neural
networks: limitations of recurrent cascade correlation and a simple solution”.
IEEE Transactions on Neural Networks, 7(4):1047–1051. includes a reply by
Dong Chen and C. Lee Giles.

Kremer, S. C. (1996b). Finite state automata that recurrent cascade-correlation
cannot represent. In Touretzky, D., Mozer, M., and Hasselmo, M., edi-
tors, Advances in Neural Information Processing Systems 6, Cambridge, Mas-
sachusetts. MIT Press.

Kremer, S. C. (1999). Identification of a specific limitation on local-feedback
recurrent networks acting as mealy-moore machines. IEEE Transactions on
Neural Networks, 10(2):433–438.

BIBLIOGRAPHY 81

Kuhn, G., Watrous, R. L., and Ladendorf, B. (1990). Connected recognition
with a recurrent network. Speech Communication, 9:41–48.

Kwasny, S. C. and Kalman, B. L. (1995). Tail-recursive distributed representa-
tions and simple recurrent networks. Connection Science, 7(1):61–80.

Lang, K. J., Waibel, A. H., and Hinton, G. E. (1990). A time-delay neural
network architecture for isolated word recognition. Neural Networks, 3:23–
44.

Lawrence, S., Giles, C. L., and Fong, S. (1996). Can recurrent neural networks
learn natural language grammars? In Proceedings of ICNN’96, pages 1853–
1858.

Lettvin, J. Y., Maturana, H. R., McCulloch, W. S., and Pitts, W. (1959). What
the frog’s eye tells the frog’s brain. Proceedings of IRE, 47:1940–1959.

Lewis, H. R. and Papadimitriou, C. H. (1981). Elements of the theory of com-
putation. Prentice-Hall, Englewood Cliffs, N.J.

Li, C. J., Yan, L., and Chbat, N. W. (1995). Powell’s method applied to learning
neural control of three unknown dynamic systems. Optimal Control Applica-
tions & Methods, 16:251–262.

Lin, T., Horne, B. G., Tiňo, P., and Giles, C. L. (1996). Learning long-term
dependencies in narx recurrent neural networks. IEEE Transactions on Neural
Networks, 7(6):1329–1338.

Manolios, P. and Fanelli, R. (1994). First order recurrent neural networks and
deterministic finite state automata. Neural Computation, 6(6):1154–1172.

Markov, A. A. (1958). On the inversion complexity of system of functions.
Journal of the ACM, 5(4):331–334.

McCarthy, J. (1956). The inversion of functions defined by Turing machines. In
Shannon, C. E. and McCarthy, J., editors, Automata Studies, pages 177–181.
Princeton University Press, Princeton, N.J.

McClelland, J. L., Rumelhart, D. E., and the PDP Research Group (1986). Par-
allel Distributed Processing: Explorations in the Microstructure of Cognition,
volume 2. MIT Press, Cambridge.

McCulloch, W. S. (1959). Agathe tyche: of nervous nets — the lucky reckoners.
In Mechanization of Thought Processes 2, pages 611–634. H.M. Stationery
Office, London, UK.

McCulloch, W. S. (1960). The reliability of biological systems. In Self-
Organizing Systems, pages 264–281. Pergamon Press.

82 BIBLIOGRAPHY

McCulloch, W. S. and Pitts, W. H. (1943). A logical calculus of the ideas
immanent in nervous activity. Bulletin of Mathematical Biophysics, 5:115–
133.

Minsky, M. (1956). Some universal elements for finite automata. In Shannon,
C. E. and McCarthy, J., editors, Automata Studies, pages 117–128. Princeton
University Press, Princeton, N.J.

Minsky, M. (1967). Computation: Finite and Infinite Machines. Prentice-Hall,
Inc., Englewood Cliffs, NJ. Ch.: Neural Networks. Automata Made up of
Parts.

Minsky, M. and Papert, S. (1969). Perceptrons. MIT Press, Cambridge, MA.

Minsky, M. L. (1959). Some methods of heuristic programming and artificial
intelligence. In Proc. Symposium on the Mechanization of Intelligence, pages
3–36, London, UK. H.M. Stationery Office.

Mitra, S. K. and Kaiser, J. F., editors (1993). Handbook for digital signal
processing. Wiley, New York, N.Y.

Moore, E. F. and Shannon, C. E. (1956). Reliable circuits using less reliable
relays. Journal of the Franklin Institute, 262:191–208, 291–297.

Mozer, M. (1989). A focused backpropagation algorithm for temporal pattern
processing. Complex Systems, 3(4):349–381.

Mozer, M. C. and Das, S. (1993). A connectionist chunker that induces the
structure of context-free languages. In Hanson, S. J., Cowan, J. D., and
Giles, C. L., editors, Advances in Neural Information Processing Systems 5,
San Mateo, CA. Morgan Kaufmann Publishers.

Narendra, K. S. and Parthasarathy, K. (1990). Identification and control of
dynamical systems using neural networks. IEEE Transactions on Neural Net-
works, 1:4–27.

Ñeco, R. P. and Forcada, M. L. (1997). Asynchronous translations with recur-
rent neural nets. In Proceedings of the International Conference on Neural
Networks ICNN’97, volume 4, pages 2535–2540. Houston, Texas, June 8–12,
1997.

Nerrand, O., Roussel-Gagot, P., Urbani, D., Personnaz, L., and Dreyfus, G.
(1994). Training recurrent neural networks: Why and how? an illustra-
tion in dynamical process modeling. IEEE Transactions on Neural Networks,
5(2):178–184.

Omlin, C. W. and Giles, C. L. (1996a). Constructing deterministic finite-state
automata in recurrent neural networks. Journal of the ACM, 43(6):937–972.

BIBLIOGRAPHY 83

Omlin, C. W. and Giles, C. L. (1996b). Stable encoding of large finite-state
automata in recurrent neural networks with sigmoid discriminants. Neural
Computation, 8:675–696.

Oppenheim, A. V. and Schafer, R. W. (1989). Discrete-time signal processing.
Prentice-Hall, Englewood Cliffs, NJ.

Ortiz-Fuentes, J. D. and Forcada, M. L. (1997). A comparison between recurrent
neural network architectures for digital equalization. In IEEE International
Conference on Acoustics, Speech and Signal Processing, volume 4, pages 3281–
3284.

Parberry, I. (1994). Circuit Complexity and Neural Networks. MIT Press, Cam-
bridge, Mass.

Parisi, R., Claudio, E. D. D., Orlandi, G., and Rao, B. D. (1997). Fast adap-
tive digital equalization by recurrent neural networks. IEEE Transactions on
Signal Processing, 45(11):2731–2739.

Pearlmutter, B. A. (1995). Gradient calculations for dynamic recurrent neural
networks: a survey. IEEE Transactions on Neural Networks, 6(5):1212–1228.

Perrin, D. (1990). Finite automata. In van Leeuwen, J., editor, Handbook of
Theoretical Computer Science, Volume B: Formal Models and Semantics. The
MIT Press, Cambridge, MA.

Pineda, F. J. (1987). Generalization of back-propagation to recurrent neural
networks. Physical Review Letters, 59(19):2229–2232.

Pollack, J. (1991). The induction of dynamical recognizers. Machine Learning,
7(2/3):227–252.

Pollack, J. B. (1990). Recursive distributed representations. Artificial Intelli-
gence, 46:77–105.

Puskorius, G. V. and Feldkamp, L. A. (1994). Neurocontrol of nonlinear dynami-
cal systems with kalman filter-trained recurrent networks. IEEE Transactions
on Neural Networks, 5(2):279–297.

Qian, N. and Sejnowski, T. (1988). Predicting the secondary structure of glob-
ular proteins using neural network models. Journal of Molecular Biology,
202:865–884.

Rashevsky, N. (1938). Mathematical Biophysics. Dover, Chicago. Revised
edition, 1960.

Rashevsky, N. (1940). Advances and Application of Mathematical Biology. Uni-
versity of Chicago Press, Chicago.

Robinson, T. (1994). An application of recurrent nets to phone probability
estimation. IEEE Transactions on Neural Networks, 5(2):298–305.

84 BIBLIOGRAPHY

Robinson, T. and Fallside, F. (1991). A recurrent error propagation network
speech recognition system. Computer Speech and Language, 5:259–274.

Rosenblatt, F. (1962). A comparison of several perceptron models. In Self-
Organizing Systems. Spartan Books, Washington, DC.

Rumelhart, D., Hinton, G., and Williams, R. (1986). Learning internal repre-
sentations by error propagation. In Parallel Distributed Processing, chapter 8.
MIT Press, Cambridge, MA.

Salomaa, A. (1973). Formal Languages. Academic Press, New York, NY.

Sejnowski, T. and Rosenberg, C. (1987). Parallel networks that learn to pro-
nounce english text. Complex Systems, 1:145–168.

Shannon, C. (1949). The synthesis of two–terminal switching circuits. Bell
System Technical Journal, 28:59–98.

Siegelmann, H., Horne, B., and Giles, C. (1996). Computational capabilities
of recurrent NARX neural networks. IEEE Trans. on Systems, Man and
Cybernetics, 26(6).

Siegelmann, H. and Sontag, E. (1991). Turing computability with neural nets.
Applied Mathematics Letters, 4(6):77–80.

Siegelmann, H. T. (1995). Computation beyond the Turing limit. Science,
268:545–548.

Š́ıma, J. (1997). Analog stable simulation of discrete neural networks. Neural
Network World, 7:679–686.

Siu, K.-Y., Roychowdhury, V., and Kailath, T. (1995). Discrete Neural Com-
putation. A Theoretical Foundation. Prentice-Hall, Englewood Cliffs.

Sluijter, R., Wuppermann, F., Taori, R., and Kathmann, E. (1995). State of the
art and trends in speech coding. Philips Journal of Research, 49(4):455–488.

Solomonoff, R. (1964). A formal theory of inductive inference. Information and
Control, 7(1-22):224–254.

Sperduti, A. (1994). Labelling recursive auto-associative memory. Connection
Science, 6(4):429–459.

Sperduti, A. (1995). Stability properties of the labeling recursive auto-
associative memory. IEEE Transactions on Neural Networks, 6(6):1452–1460.

Sperduti, A. and Starita, A. (1995). A neural network model for associative
access of structures. International Journal of Neural Systems, 6:189–194.

Stiles, B. W. and Ghosh, J. (1997). Habituation based neural networks for
spatio-temporal classification. Neurocomputing, 15:273–307.

BIBLIOGRAPHY 85

Stiles, B. W., Sandberg, I. W., and Ghosh, J. (1997). Complete memory struc-
tures for approximating nonlinear discrete-time mappings. IEEE Trans. on
Neural Networks, 8(6):1–14.

Stolcke, A. and Wu, D. (1992). Tree matching with recursive distributed rep-
resentations. Technical Report TR-92-025, International Computer Science
Institute, Berkeley, CA.

Tiňo, P. and Sajda, J. (1995). Learning and extracting initial Mealy automata
with a modular neural network model. Neural Computation, 7(4).

Tomita, M. (1982). Dynamic construction of finite-state automata from ex-
amples using hill-climbing. In Proceedings of the Fourth Annual Cognitive
Science Conference, pages 105–108, Ann Arbor, Mi.

Tsoi, A. C. and Back, A. (1997). Discrete time recurrent neural network archi-
tectures: a unifying review. Neurocomputing, 15:183–223.

Turing, A. M. (1936). On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
42:230–265.

Unnikrishnan, K. P. and Venugopal, K. P. (1994). Alopex: a correlation-based
learning algorithm for feedforward and recurrent neural networks. Neural
Computation, 6(3):469–490.

von Neumann, J. (1956). Probabilistic logics and the synthesis of reliable organ-
isms from unreliable components. In Shannon, C. and McCarthy, J., editors,
Automata Studies, pages 43–98. Princeton University Press, Princeton.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K. (1989).
Phoneme recognition using time–delay neural networks. IEEE Transactions
on Acoustics, Speech and Signal Processing, 37(3):328–339.

Wang, H. (1957). A variant to Turing’s theory of computing machines. Journal
of the ACM, 4(1).

Wang, J. and Wu, G. (1995). Recurrent neural networks for synthesizing linear
control systems via pole placement. International Journal of Systems Science,
26(12):2369–2382.

Wang, J. and Wu, G. (1996). A multilayer recurrent neural network for on-line
synthesis of minimum-norm linear feedback control systems via pole assign-
ment. Automatica, 32(3):435–442.

Watrous, R. L. and Kuhn, G. M. (1992). Induction of finite-state languages
using second-order recurrent networks. Neural Computation, 4(3):406–414.

Watrous, R. L., Ladendorf, B., and Kuhn, G. (1990). Complete gradient op-
timization of a recurrent network applied to /b/, /d/, /g/ discrimination.
Journal of the Acoustic Society of America, 87:1301–1309.

86 BIBLIOGRAPHY

Weigend, A. S. and Gershenfeld, N. A., editors (1993). TIME SERIES PREDIC-
TION: Forecasting the Future and Understanding the Past. Addison-Wesley,
Reading, MA. Proceedings of the NATO Advanced Research Workshop on
Comparative Time Series Analysis held in Santa Fe, New Mexico, May 14-17,
1992.

Werbos, P. J. (1974). Beyond Regression: New Tools for Prediction and Analy-
sis in the Behavioral Sciences. Doctoral Dissertation, Applied Mathematics,
Harvard University, Boston, MA.

Werbos, P. J. (1990). Backpropagation through time: what it does and how to
do it. Proc. IEEE, 78(10):1550–1560.

Williams, R. and Zipser, D. (1989a). Experimental analysis of the real-time
recurrent learning algorithm. Connection Science, 1(1):87–111.

Williams, R. and Zipser, D. (1989b). A learning algorithm for continually run-
ning fully recurrent neural networks. Neural Computation, 1(2):270–280.

Williams, R. J. (1992). Training recurrent networks using the extended kalman
filter. In Proceedings of the 1992 International Joint Conference on Neural
Networks, volume 4, pages 241–246.

Williams, R. J. and Zipser, D. (1989c). A learning algorithm for continually
running fully recurrent neural networks. Neural Computation, 1(2):270–280.

Williams, R. J. and Zipser, D. (1995). Gradient-based learning algorithms for
recurrent networks and their computational complexity. In Chauvin, Y. and
Rumelhart, D. E., editors, Back-propagation: Theory, Architectures and Ap-
plications, chapter 13, pages 433–486. Lawrence Erlbaum Publishers, Hills-
dale, N.J.

Wu, L., Niranjan, M., and Fallside, F. (1994). Fully vector-quantised neural
network-based code-excited nonlinear predictive speech coding. Technical
report, Cambridge University Engineering Department, Cambridge CB2 1PZ,
U.K. CUED/F-INFENG/TR94.

Zbikowski, R. and Dzielinski, A. (1995). Neural approximation: A control per-
spective. In Hunt, K., Irwin, G., and Warwick, K., editors, Neural Network
Engineering in Dynamic Control Systems, chapter 1, pages 1–25.

Zeng, Z., Goodman, R., and Smyth, P. (1993). Learning finite state machines
with self-clustering recurrent networks. Neural Computation, 5(6):976–990.

Zeng, Z., Goodman, R. M., and Smyth, P. (1994). Discrete recurrent neural
networks for grammatical inference. IEEE Transactions on Neural Networks,
5(2):320–330.

