
Extending UML for Multidimensional Modeling

Sergio Luján-Mora, Juan Trujillo
Departamento de Lenguajes y Sistemas Informáticos

Universidad de Alicante (Spain)
{slujan,jtrujillo}@dlsi.ua.es

Abstract
Multidimensional (MD) modeling is the foundation of data warehouses, MD data-

bases, and OLAP applications. In the last years, there have been some proposals to
represent MD properties at the conceptual level. Nevertheless, none of them considers
all multidimensional properties at both the structural and dynamic levels. In this
paper, we present an object-oriented (OO) approach to accomplish the MD modeling
at the conceptual level. This approach de�nes an extension by means of stereotypes to
the the Uni�ed Modeling Language (UML) for MD modeling. The extension uses the
Object Constraint Language (OCL) for expressing well-formedness rules of the new
de�ned elements. The advantages of our proposal are twofold: on the one hand, this
extension allows us to represent MD models with the UML, allowing us to specify the
whole system in a uniform way; on the other hand, an OO approach can elegantly
consider main MD properties at the conceptual level. Finally, we show how to use
these stereotypes in Rational Rose 2000 for MD modeling

Keywords: UML, UML extensions, multidimensional modeling, OCL, Rational Rose

1 Introduction

Multidimensional (MD) modeling is the foundation of data warehouses (DW), MD data-
bases, and On-Line Analytical Processing (OLAP) applications. These systems provide
companies with many years of historical information for the decision making process. MD
modeling structures information into facts and dimensions. A fact is an analyzed item of
interest for a company (sales, deliveries, etc.), whereas a dimension represents the context
for analyzing a fact (product, customer, time, etc.). Various approaches for the conceptual
design of MD systems have been proposed in the last few years [6][13][15][14] to represent
main MD structural and dynamic properties. However, none of them has been widely
accepted as a standard conceptual model for MD modeling. Due to space constraints, we
refer the reader to [1] for a detailed comparison and discussion about most of these models.

The Uni�ed Modeling Language (UML) [3, 10] has become the de facto standard for
modeling systems (and not just software) using object-oriented concepts. UML is an ex-
tensible language, in the sense it provides mechanisms (stereotypes, tagged values, and
constraints) that allow introducing new elements for speci�c domains if it is needed, such
as web applications, database applications, business modeling, software development pro-
cesses, etc. The de�nition of a collection of enhancements (stereotypes, tagged values, and

1



constraints) that extend an existing diagram type to support a new purpose is called a
pro�le.

In the last years, some proposals to extend the UML for database design have been
presented. In [2], �...a pro�le that extends the existing class diagram de�nition to support
persistence modeling� is presented. This pro�le is intended to make objects persistent
(save objects between sessions) in di�erent storages: �les, relational databases, object-
relational databases, etc. In [11], the Data Modeling pro�le for the UML is described,
�...including descriptions and examples for each concept including database, schema, table,
key, index, relationship, column, constraint and trigger�. In [9], as it is said in the back
cover of the book, �...brings you exactly the information you need to begin working with
the UML and take full advantage of the technology for high-quality database modeling and
design�. Finally, in [8] an Object-Relational Database Design Methodology is presented.
The methodology de�nes new UML stereotypes for Object-Relational Database Design
and proposes some guidelines to translate a UML schema into an object-relational one.
Nevertheless, to the best of our knowledge, there is no proposal to extend the UML for
MD modeling.

In this paper, we present an extension to the UML for MD modeling, as it easily
and elegantly considers main MD properties at the conceptual level such as the many-
to-many relationships between facts and dimensions, degenerate dimensions, multiple and
alternative path classi�cation hierarchies, and non-strict and complete hierarchies.

Moreover, we show how to apply this extension in a well-known model-driven devel-
opment tool, i.e., Rational Rose. This tool provides the Rose Extensibility Interface that
allows us to customize and extend the menus, integrate new stereotypes and tagged values
in the models, and run scripts that validate the correctness of the MD models.

The remainder of this paper is structured as follows: Section 2 summarizes the UML
Extensibility Mechanism. Section 3 introduces the main MD concepts such as fact, dimen-
sion, and hierarchy level that our approach comprises. Section 4 proposes the new UML
extension (stereotypes, tagged values, and constraints) for MD modeling. Section 5 shows
how to apply our MD extension in Rational Rose. Section 6 presents the main conclusions.
Finally, Section 7 introduces our future work.

2 UML Extensibility Mechanism

The UML Extensibility Mechanism package is the subpackage from the UML metamodel
that speci�es how speci�c UML model elements are customized and extended with new
semantics by using stereotypes, tagged values, and constraints. A coherent set of such
extensions, de�ned for speci�c purposes, constitutes a UML pro�le1. For example, the
UML 1.4 [10] includes a standard pro�le for modeling software development processes and
another one for business modeling.

A stereotype2 is a model element that de�nes additional values (based on tagged val-

1�A pro�le is a stereotyped package that contains model elements that have been customized for a speci�c
domain or purpose by extending the metamodel using stereotypes, tagged de�nitions, and constraints� [10].

2�A stereotype is a model element that de�nes additional values (based on tag de�nitions), additional
constraints, and optionally a new graphical representation. All model elements that are branded by one or

2



ues), additional constraints, and optionally a new graphical representation (an icon): a
stereotype allows us to attach a new semantic meaning to a model element. A stereotype
is represented as a string between a pair of guillemots (� � ), but it can also be rendered
by a new icon.

A tagged value3 speci�es a new kind of property that may be attached to a model
element. A tagged value is rendered as a string enclosed by brackets and placed below the
name of another element.

A constraint4 can be attached to any model element to re�ne its semantics. As it is
stated in [16], �A constraint is a restriction on one or more values of (part of) an object-
oriented model or system�. In the UML, a constraint is rendered as a string between a pair
of braces ({ }) and placed near the associated model element. There are three common
kinds of constraints: preconditions, postconditions, and invariants. Preconditions and
postconditions are applied to operations: a precondition must be true at the moment that
the operation is going to be executed, whereas a postcondition must be true at the moment
that the operation has just ended its execution. An invariant is a constraint that states
a condition that must always be met by all instances of the class, type, or instance. An
invariant on a stereotype is interpreted as an invariant on all types on which the stereotype
is applied.

A constraint can be de�ned by means of an informal explanation or by means of Object
Constraint Language (OCL) [16, 10] expressions. The OCL is a declarative language that
allows software developers to write constraints over object models.

3 Multidimensional conceptual modeling

In this section, we will summarize how the conceptual MD modeling approach followed in
this paper [14] represents both the structural and dynamic parts of MD modeling. In this
approach, main MD modeling structural properties are speci�ed by means of a UML class
diagram in which the information is clearly separated into facts and dimensions.

Dimensions and facts are considered by dimension classes and fact classes respectively.
Then, fact classes are speci�ed as composite classes in shared aggregation relationships of
n dimension classes. Thanks to the �exibility of shared aggregation relationships that the
UML provides, many-to-many relationships between facts and particular dimensions can
be considered by indicating the 1..* cardinality on the dimension class role. For example,

more particular stereotypes receive these values and constraints in addition to the attributes, associations,
and superclasses that the element has in the standard UML. Stereotypes augment the classi�cation mech-
anism based on the built in UML metamodel class hierarchy; therefore, names of new stereotypes must
not clash with the names of prede�ned UML metamodel elements or standard elements� [10].

3�Tag de�nitions specify new kinds of properties that may be attached to model elements. The actual
properties of individual model elements are speci�ed using Tagged Values. These may either be simple
datatype values or references to other model elements. Tag de�nitions can be compared to metaattribute
de�nitions while tagged values correspond to values attached to model elements. They may be used to rep-
resent properties such as management information (author, due date, status), code generation information
(optimizationLevel, containerClass)� [10].

4�A constraint is a Boolean expression over one or several elements that must always be true. A
constraint can be speci�ed in several di�erent ways (e.g., using natural language or a constraint language)�
[10].

3



Figure 1: Multidimensional modeling using UML

on the left hand side of Figure 1, we can see how the fact class Sales has a many-to-many
relationship with the dimension class Product and a one-to-many relationship with the
dimension class Time.

By default, all measures in the fact class are considered additive. For nonadditive
measures, additive rules are de�ned as constraints and are also placed in somewhere around
the fact class. Furthermore, derived measures5 can also be explicitly considered (constraint
/ ) and their derivation rules are placed between braces in somewhere around the fact class,
as can be seen in Figure 1.

This OO approach also allows us to de�ne identifying attributes in the fact class, if
convenient, by placing the constraint {OID} next to a measure name. In this way we can
represent degenerate dimensions [5, 7], thereby providing other fact features in addition
to the measures for analysis. For example, we could store the ticket and line numbers as
other ticket features in a fact representing sales tickets, as re�ected in Figure 1.

With respect to dimensions, every classi�cation hierarchy level of a dimension is spec-
i�ed by a class (called a base class). An association of classes speci�es the relationships
between two levels of a classi�cation hierarchy. The only prerequisite is that these classes
must de�ne a Directed Acyclic Graph (DAG) rooted in the dimension class (constraint
{dag} placed next to every dimension class). The DAG structure can represent both al-
ternative path and multiple classi�cation hierarchies. Every classi�cation hierarchy level
must have an identifying attribute (constraint {OID}) and a descriptor attribute (con-
straint {D}). These attributes are necessary for an automatic generation process into
commercial OLAP tools, as these tools store this information in their metadata. The mul-
tiplicity 1 and 1..* de�ned in the target associated class role addresses the concepts of
strictness and non-strictness. In addition, de�ning the {completeness} constraint in the
target associated class role addresses the completeness of a classi�cation hierarchy (see an
example on the center of Figure 1). This approach considers all classi�cation hierarchies
non-complete by default.

5Although a derived measure can be completely derived from other measures and is therefore logically
redundant, we obtain two advantages when using this kind of measure. On the one hand, the measure may
be included to de�ne a useful name or concept. On the other hand, the usual intent is that the measure
should exist in the implementation to avoid the need for recomputation.

4



Figure 2: Extension of UML with stereotypes

The categorization of dimensions, used to model additional features for an entity's
subtypes, is considered by means of generalization-specialization relationships. However,
only the dimension class can belong to both a classi�cation and a specialization hierarchy
at the same time. An example of categorization for the Product dimension can be observed
on the right hand side of Figure 1.

4 UML Extension for Multidimensional Modeling

According with [4], �An extension to the UML begins with a brief description and then
lists and describes all of the stereotypes, tagged values, and constraints of the extension.
In addition to these elements, an extension contains a set of well-formedness rules. This
rules are used to determine whether a model is semantically consistent with itself�. In this
section, we summarize our UML extension for MD modeling following this structure:

• Description: A little description in natural language of the extension.

• Prerequisite Extensions: It indicates whether the current extension needs the exis-
tence of previous extensions.

• Stereotypes: The de�nition of the stereotypes.

• Well-Formedness Rules: The static semantics of the metaclasses are de�ned as a set
of invariants de�ned by OCL expressions.

• Comments: Any additional comment, decision or example all written in natural
language.

For the de�nition of stereotypes and tagged values, we follow the examples included in
the UML speci�cation [10]:

• Name: The name of the stereotype.

5



• Base class (also called Model class): The UML metamodel element that serves as the
base for the stereotype.

• Description: An informal description with possible explanatory comments.

• Icon: It is possible to de�ne a distinctive visual cue (an icon) for the stereotype.

• Constraints: A list of constraints de�ned by OCL expressions associated with the
stereotype, with an informal explanation of the expressions6.

• Tagged values: A list of all tagged values that may be associated with the stereotype.

Regarding tagged value, we de�ne them as follows:

• Type: The name of the type of the values that can be associated with the tagged
value.

• Multiplicity: The maximum number of values that may be associated with the tagged
value.

• Description: An informal description with possible explanatory comments.

We have de�ned eight stereotypes: four stereotypes specialize the Attribute model
element, three specialize the Class model element, and one specializes the Association
model element. We have represented part of the UML metamodel7 in Figure 2 to show
where our stereotypes �t.

4.1 Description

This extension to the UML de�nes a set of stereotypes, tagged values, and constraints that
enable us to model MD models. The stereotypes are applied to certain components that
are particular to MD modeling, allowing us to represent them in the same model and on the
same diagrams that describe the rest of the system. The principal elements to MDmodeling
are the Fact class and the Dimension class. A Fact class consists of OID and FactAttribute,
whereas a Dimension class consists of OID, Descriptor, and DimensionAttribute. Moreover,
the hierarchy levels of a Dimension are represented by means of Base classes. Finally, a
Completeness association is de�ned.

4.2 Prerequisite Extensions

No other extension to the language is required for the de�nition of this extension.
6In OCL expressions, self, which can be omitted as a reference to the stereotype de�ning the context

of the constraint, has been kept for clarity.
7All the metaclasses come from the Core Package, a subpackage of the Foundation Package.

6



4.3 Stereotypes

4.3.1 Fact

In this stereotype we do not de�ne the following elements (but we use them in our MD ap-
proach) because they are de�ned in the UML metamodel and therefore, they are inherited
by this stereotype:

• name: An attribute of ModelElement. It is an identi�er for the ModelElement.

• documentation: A tagged value of Element. It is a comment, description or expla-
nation of the element to which it is attached.

• Name: Fact

• Base class: Class

• Description: Classes of this stereotype represent facts in a MD model

• Icon: Figure 3.a

• Constraints:

� All attributes of a Fact must be OID or FactAttribute:
self.feature->select(oclIsKindOf(Attribute))->forAll(oclIsTypeOf(OID) or oclIsTypeOf(FactAttribute))

� All associations of a Fact must be aggregations:
self.association->forAll(aggregation = #aggregate)

� A Fact can only be associated to Dimension classes:8

self.allOppositeAssociationEnds->forAll(participant.oclIsTypeOf(Dimension))

• Tagged values: None

4.3.2 OID

In this stereotype we do not de�ne the following elements (but we use them in our MD ap-
proach) because they are de�ned in the UML metamodel and therefore, they are inherited
by this stereotype:

• name: An attribute of ModelElement. It is an identi�er for the ModelElement.

• documentation: A tagged value of Element. It is a comment, description or expla-
nation of the element to which it is attached.

• type: An association of StructuralFeature. Designates the classi�er whose in-
stances are values of the feature.

• initialValue: An attribute of Attribute. An expression specifying the value of
the attribute upon initialization.

8allOppositeAssociationEnds is an additional operation de�ned in the UML speci�cation [10]: �The
operation allOppositeAssociationEnds results in a set of all AssociationEnds, including the inherited ones,
that are opposite to the Classi�er�.

7



• Name: OID

• Base class: Attribute

• Description: Attributes of this stereotype represent OID attributes of Fact, Dimension or Base
classes in a MD model9

• Icon: Figure 3.d

• Constraints: None

• Tagged values: None

4.3.3 FactAttribute

In this stereotype we do not de�ne the following elements because they are de�ned in the
UML metamodel: name, documentation, type, and initialValue (see OID). In addition,
we do not de�ne the tagged value derived because it is de�ned in the UML metamodel
and therefore, they are inherited by this stereotype:

• derived: A tagged value of ModelElement. A true value indicates that the model el-
ement can be completely derived from other model elements and is therefore logically
redundant.

• Name: FactAttribute

• Base class: Attribute

• Description: Attibutes of this stereotype represent attributes of Fact classes in a MD model

• Icon: Figure 3.e

• Constraints:

� A FactAttribute can only belong to a Fact:
self.owner.oclIsTypeOf(Fact)

� If a FactAttribute is derived, then it need a derivation rule (an OCL expression):
self.derived implies self.derivationRule.oclIsTypeOf(OclExpression)

• Tagged values:

� derivationRule:

∗ Type: UML::Datatypes::String
∗ Multiplicity: 1
∗ Description: If the attribute is derived, this tagged value represents the derivation rule

9In a Fact class, an OID attribute is needed to explicitly consider what is called degenerated dimension.
In a Dimension or Base class, an OID attribute is needed to automatically generate the implementation of
a MD model into commercial OLAP tools.

8



4.3.4 Dimension

In this stereotype we do not de�ne the following elements because they are de�ned in the
UML metamodel: name, and documentation (see Fact).

• Name: Dimension

• Base class: Class

• Description: Classes of this stereotype represent dimensions in a MD model

• Icon: Figure 3.b

• Constraints:

� All attributes of a Dimension must be OID, Descriptor, or DimensionAttribute:
self.feature->select(oclIsKindOf(Attribute))->forAll(oclIsTypeOf(OID) or oclIsTypeOf(Descriptor)
or oclIsTypeOf(DimensionAttribute))

� All associations of a Dimension with a Fact must be aggregations at the opposite end:
self.association.association->forAll(associationEnd.participant.oclIsTypeOf(Fact) implies associa-
tionEnd.aggregation = #aggregate)

� All associations of a Dimension with a Fact must not be aggregations at its end:
self.association.association->forAll(associationEnd.participant.oclIsTypeOf(Fact) implies aggrega-
tion <> #aggregate)

� A Dimension cannot be associated to another Dimension:
self.allOppositeAssociationEnds->forAll(not participant.oclIsTypeOf(Dimension))

• Tagged values:

� isTime:

∗ Type: UML::Datatypes::Boolean
∗ Multiplicity: 1
∗ Description: Indicates whether the dimension represents a time dimension or not10

4.3.5 Descriptor

In this stereotype we do not de�ne the following elements because they are de�ned in the
UML metamodel: name, documentation, type, and initialValue (see OID). In addition,
we do not de�ne the tagged value derived because it is de�ned in the UML metamodel
(see FactAttribute).

• Name: Descriptor

• Base class: Attribute

• Description: Attributes of this stereotype represent descriptor attributes of Dimension or Base
classes in a MD model11

• Icon: Figure 3.f

• Constraints:

10The �Time dimension� is treated di�erently from the others in the OLAP tools.
11A descriptor attribute is needed to automatically generate the implementation of a MD model into

commercial OLAP tools, since this attribute will be used as the default label in the data analysis.

9



� A Descriptor attribute can only belong to a Dimension or Base:
self.owner.oclIsTypeOf(Dimension) or self.owner.oclIsTypeOf(Base)

• Tagged values:

� derivationRule:

∗ Type: UML::Datatypes::String
∗ Multiplicity: 1
∗ Description: If the attribute is derived, this value represents the derivation rule

4.3.6 DimensionAttribute

In this stereotype we do not de�ne the following elements because they are de�ned in the
UML metamodel: name, documentation, type, and initialValue (see OID). In addition,
we do not de�ne the tagged value derived because it is de�ned in the UML metamodel
(see FactAttribute).

• Name: DimensionAttribute

• Base class: Attribute

• Description: Attributes of this stereotype represent attributes of Dimension or Base classes in a MD
model

• Icon: Figure 3.g

• Constraints:

� A DimensionAttribute can only belong to a Dimension or Base:
self.owner.oclIsTypeOf(Dimension) or self.owner.oclIsTypeOf(Base)

• Tagged values:

� derivationRule:

∗ Type: UML::Datatypes::String
∗ Multiplicity: 1
∗ Description: If the attribute is derived, this value represents the derivation rule

4.3.7 Base

In this stereotype we do not de�ne the following elements because they are de�ned in the
UML metamodel: name, and documentation (see Fact).

• Name: Base

• Base class: Class

• Description: Classes of this stereotype represent hierarchy levels in a MD model

• Icon: Figure 3.c

• Constraints:

10



� All attributes of a Base must be OID, Descriptor, or DimensionAttribute:
self.feature->select(oclIsKindOf(Attribute))->forAll(oclIsTypeOf(OID) or oclIsTypeOf(Descriptor)
or oclIsTypeOf(DimensionAttribute))

� A Base must have an OID attribute and a Descriptor attribute:
self.feature->select(oclIsKindOf(Attribute))->exist(oclIsTypeOf(OID)) and self.feature->select(oclIsKindOf(Attribute))-
>exist(oclIsTypeOf(Descriptor))

� A Base can only be associated to another Base or another Dimension:
self.allOppositeAssociationEnds->forAll(participant.oclIsTypeOf(Base) or participant.oclIsTypeOf(Dimension))

� A Base can only be child in one generalization:
self.generalization->size <= 1

� A Base cannot simultaneously belong to a generalization/specialization hierarchy and an as-
sociation hierarchy:
(self.generalization->size > 0 or self.specialization->size > 0) implies (self.association->size = 0
)

• Tagged values: None

4.3.8 Completeness

In this stereotype we do not de�ne the following elements because they are de�ned in the
UML metamodel: name, and documentation (see Fact).

• Name: Completeness

• Base class: Association

• Description: Associations of this stereotype represent complete associations12

• Icon: None

• Constraints:

� The ends of a Completeness association can only be Dimension or Base classes:
self.associationEnd.participant->forAll(oclIsTypeOf(Dimension) or oclIsTypeOf(Base))

• Tagged values: None

4.4 Well-Formedness Rules

4.4.1 Namespace

• All the classes in a MD model must be Fact, Dimension, or Base:13

self.allContents->forAll(oclIsKindOf(Class) implies (oclIsTypeOf(Fact) or oclIsTypeOf(Dimension) or oclIsTypeOf(Base)))

12A complete association means that all members belong to one higher-class object and that object
consists of those members only.

13allContents is an additional operation de�ned in UML speci�cation [10]: �The operation allContents
results in a Set containing all ModelElements contained by the Namespace�.

11



Fact Dimension Base OID Fact Descriptor Dimension
Attribute Attribute

3.a 3.b 3.c 3.d 3.e 3.f 3.g

Figure 3: Stereotype icons

Fact Dimension Base
Fact - Aggregation -

Dimension - - Association
Generalization

Base - - Association
Generalization

Table 1: Relationships between new elements

4.5 Comments

Code generators for speci�c OLAP tools are expected to specify additional tagged values
for class and association stereotypes.

Table 1 shows the relationships we can �nd between the new elements we have de�ned.
The table is not symmetric because ... (Te lo cuento cuando nos veamos.)

For the use of derived attributes, we use the tagged value derived in FactAttribute,
Descriptor, and DimensionAttribute. The UML Notation Guide [10] indicates that the
de�nition of the derived attribute can be expressed as a constraint string placed near the
derived element. However, we have chosen to add a tagged value called derivationRule
that stores the de�nition of the derived attribute as an OCL expression. We think that
out approach is �more natural� and eases the exportation of MD conceptual models into
commercial OLAP tools.

(Falta comentar algo sobre la aditividad.)

5 Using Multidimensional Modeling in Rational Rose

Rational Rose is the world's leading visual modeling tool. It allows OO modeling because it
supports the UML. Rational Rose is extensible by means of add-ins, that allow to package
customizations and automation of several Rose features through the Rose Extensibility
Interface (REI) [12] into one package. An add-in is a collection of some combination of the
following: main menu items, shortcut menu items, custom speci�cations, properties (UML
tagged values), data types, UML stereotypes, online help, context-sensitive help, and event
handling.

In this section, we present an add-in we have developed, that allows us to use in Rational

12



Figure 4: Rational Rose Add-In Manager

Rose the stereotypes and tagged values we have presented. Therefore, we can use this tool
to easily model MD conceptual models.

Our add-in customizes the following elements:

• Menu item: We have added the new menu item MD Validate in the menu Tools. This
menu item runs a Rose script that validates a MD model: our script checks all the
constraints we have presented in Section 4.

• Stereotypes: We have de�ned the stereotypes we have presented in Section 4.

• Properties: We have de�ned the tagged values we have presented in Section 4.

Figure 4 shows the Add-In Manager that allows us to activate or deactivate add-ins. In
Figure 4 our MD Modeling add-in is shown activated.

The best way to understand our extension is to show a tangible example. Figure 5
shows a MD conceptual model of the well-known example �Grocery� as described14 in
Chapter 2 of [7]. This example contains one Fact class, Sales, and four Dimension classes:
Time, Product, Store, and Promotion. Every classi�cation hierarchy level of a Dimension
class is represented by a Base class. For example, the classi�cation hierarchy of Time
comprises the following Base classes: Month, Quarter, Semester, Year, and Season. For
the sake of clearness, the attributes of the classes are hidden. However, we can notice
the FactAttribute list of Sales in the list of the browser (left hand panel in Figure 5):
quantity_sold, dollar_revenue, dollar_cost, and customer_count.

14This example represents the data warehouse of a company that has 500 large grocery stores spread over
three-state areas. Each store has roughly 60 000 individual products with a full complement of departments
(frozen foods, dairy, meat, bakery, liquor, etc.). Furthermore, products are usually sold under di�erent
promotion conditions (price reduction, newspaper advertisement, etc.).

13



Figure 5: Multidimensional modeling using UML

14



Figure 6: Add-in con�guration �les for Rational Rose

Figure 7: Installation of the add-in in Rational Rose

In Figure 6 we show the �les that constitute our add-in for Rational Rose. The �le
mdm.reg displayed in Figure 7 contains the instructions to install our add-in in Rational
Rose15.

The �le mdm.ini is a stereotype con�guration �le that contains our MD stereotypes
(Figure 8). To graphically distinguish model elements of di�erent stereotypes, each stereo-
type can have a graphical representation. Thus, for each stereotype, there may be four
di�erent icons (all the icons are stored in the folder called stereotypes):

• A diagram icon (Meta�le �eld). It is displayed in the model diagram.

• A small diagram toolbar icon (SmallPalleteImages �eld). It is displayed in the toolbar
(see the vertical toolbar in the middle of the Figure 5).

• A large diagram toolbar icon (MediumPalleteImages �eld). It is also displayed in the
toolbar. There are two icons for the toolbar because it is possible to select the size
of the toolbar buttons in Rational Rose.

15It actually registers our add-in Microsoft Windows' register.

15



Figure 8: File de�ning stereotypes in Rational Rose

• A list view icon (ListImage �eld). It is displayed in the list of the browser (see left
hand panel in Figure 5).

Furthermore, a stereotype can be displayed in di�erent manners in Rational Rose. The
four possible representations of a Fact are shown in Figure 9:

Use the None, Label, Decoration, and Icon options to control the display of stereotypes
in diagrams: icon (the stereotype icon is displayed), decoration (the stereotype decoration
is displayed inside the element), label (the stereotype name is displayed and appears inside
guillemots), and none (the stereotype is not indicated).

Each add-in can optionally supply its own property �le that de�nes a name space for
its properties (tagged values) and a tab in the speci�cation editor to hold the custom tool,
sets, and properties. The �le mdm.pty contains our de�ned model properties. For example,
Class Speci�cation for Time dimension is shown in Figure 5. We can notice the tab MD
Modeling that contains the tagged value for a Dimension class: isTime.

Finally, an add-in can also extend or customize Rational Rose menus. The �lemdm.mnu
contains our customization of Rational Rose menus: we only add a new menu item called
MD Validate in the Tools menu.

16



Figure 9: Possible representations of stereotypes in Rational Rose

Figure 10: Properties (tagged values) in Rational Rose

17



Figure 11: Validation script

This new menu item executes a Rose script, that is stored in mdmvalidate.ebs16. This
script validates the correctness of a MD model: it checks all the constraints we have
presented in Section 4. For example, a fragment of this script can be seen in Figure 11. In
this fragment we can notice the function VAssociationFact, that validates the associations
of a Fact. It checks the OCL constraints we have previously presented:

• All associations of a Fact must be aggregations.

• A Fact can only be associated to Dimension classes.

6 Conclusions

(Contar lo maravilloso que es UML y lo fantástico que es nuestro modelo para representar
las propiedades multidimensionales).

16It is also possible to compile a script source (.ebs extension) and create a compiled script (.ebx exten-
sion).

18



With the MDmodeling pro�le for UML, the UML fully supports MDmodeling needs. It
allows the support of software development and MD modeling with one uni�ed language.
Using this pro�le with Rational Rose uni�es software development teams with a single,
shared tool. It allows us to face up to the particular design challenges that MD modeling
poses.

7 Future work

• Extend UML to represent the dynamic part (cube classes).

• De�ne a methodology for MD modeling.

• Implement the automatic exportation of MD models into ROLAP tools, such as
Informix Metacube, from Rational Rose.

• Propose a method to translate a MD model de�ned in UML into object-relational
and object-oriented databases.

References

[1] A. Abelló, J. Samos, and F. Saltor. Bene�ts of an Object-Oriented Multidimensional
Data Model. In K. Dittrich, G. Guerrini, I. Merlo, M. Oliva, and E. Rodriguez, editors,
Proc. of the Symposium on Objects and Databases in 14th European Conference on
Object-Oriented Programming (ECOOP'00), volume 1944 of LNCS, pages 141�152.
Springer-Verlag, 2000.

[2] S. Ambler. Persistence Modeling in the UML. Software Development Online. Internet:
http://www.sdmagazine.com/documents/s=755/sdm9908q/, August 1999.

[3] G. Booch, J. Rumbaugh, and I. Jacobson. The Uni�ed Modeling Language: User
Guide. Object Technology Series. Addison-Wesley, 1999.

[4] J. Conallen. Building Web Applications with UML. Object Technology Series. Addison-
Wesley, 2000.

[5] W. Giovinazzo. Object-Oriented Data Warehouse Design. Building a star schema.
Prentice-Hall, New Jersey, USA, 2000.

[6] M. Golfarelli and S. Rizzi. A methodological Framework for Data Warehouse Design.
In Proc. of the ACM 1st Intl. Workshop on Data warehousing and OLAP (DOLAP'98),
pages 3�9, Washington D.C., USA, 1998.

[7] R. Kimball. The data warehousing toolkit. John Wiley, 2 edition, 1996.

[8] E. Marcos, B. Vela, and J. M. Cavero. Extending UML for Object-Relational Database
Design. In Martin Gogolla and Cris Kobryn, editors, Proc. of the 4th Intl. Conference
UML 2001, volume 2185 of LNCS, pages 225�239. Springer-Verlag, 2001.

19



[9] E.J. Naiburg and R.A. Maksimchuk. UML for Database Design. Object Technology
Series. Addison-Wesley, 2001.

[10] Object Management Group (OMG). Uni�ed Modeling Language Speci�cation 1.4.
Internet: http://www.omg.org/cgi-bin/doc?formal/01-09-67, September 2001.

[11] Rational Software Corporation. The UML and Data Modeling. Internet:
http://www.rational.com/media/whitepapers/Tp180.PDF, 2000.

[12] Rational Software Corporation. Using the Rose Extensibility Interface. Rational Soft-
ware Corporation, 2001.

[13] C. Sapia, M. Blaschka, G. Hö�ing, and B. Dinter. Extending the E/R Model for the
Multidimensional Paradigm. In Proc. of the 1st Intl. Workshop on Data Warehouse
and Data Mining (DWDM'98), volume 1552 of LNCS, pages 105�116. Springer-Verlag,
1998.

[14] J. Trujillo, M. Palomar, J. Gómez, and Il-Yeol Song. Designing Data Warehouses
with OO Conceptual Models. IEEE Computer, special issue on Data Warehouses,
34(12):66�75, 2001.

[15] N. Tryfona, F. Busborg, and J.G. Christiansen. starER: A Conceptual Model for Data
Warehouse Design. In Proc. of the ACM 2nd Intl. Workshop on Data warehousing and
OLAP (DOLAP'99), Kansas City, Missouri, USA, 1999.

[16] J. Warmer and A. Kleppe. The Object Constraint Language. Precise Modeling with
UML. Object Technology Series. Addison-Wesley, 1998.

20


