
Data Warehouse Design with UML

PhD Thesis

Sergio Luján-Mora

Advisor: Juan Trujillo

Department of Software and Computing Systems
University of Alicante

June 2005

Preface

Everything started in Argentina...
In the summer of 1998, I finished my Degree in Computer Science.

I did not want to take the obvious next step: find a job and start
to work for the rest of my life. So, I applied for a grant of the
Spanish Agency of International Cooperation (Agencia Española de
Cooperación Internacional1) and I chose three destinations: two in
Argentina and one in Chile. As was to be expected, my mother told
me I was mad and she asked me what I had lost in South America.

Fortunately, I got the grant and I spent two months in General
Pico (La Pampa, Argentina). During those two months, I made some
research on distributed databases with Dr. Hugo Alfonso at the Uni-
versidad Nacional de la Pampa2. I had such a good time, I ate many
churrascos (barbecued meat) and dulce de leche (caramelized con-
densed milk), and I met very nice people that, obviously, I wanted to
repeat next year. But I had to be related to the University in some
way.

Therefore, I enroled the PhD courses at the Department of Soft-
ware and Computing Systems (Departamento de Lenguajes y Sis-
temas Informaticos3) at the University of Alicante. And what you
have in your hands is the result of that simple and fast decision. By
the way, if you want to know it, the following year I did not go to
Argentina and little by little, I lost the contact with the friends I left
there. As John Lennon said, “Life is what happens while you are busy
making other plans”.

Seven years later, the end of the PhD is a good opportunity to take
a look backwards and meditate about those seven years. During this
journey, I have lost and won a lot of things. When I started to work
at the Department of Software and Computing Systems (my second
home due to the time I spend there), I asked Juan, who would be my
future PhD advisor, “Do we travel here? ”. And, of course, we travel
a lot here. Thanks to the papers I have got published, I have visited

1http://www.aeci.es/
2http://www.unlpam.edu.ar/
3http://www.dlsi.ua.es/

iii

iv Preface

Brazil, England, France, China, Czech Republic, Finland, Germany,
Austria, Greece, Portugal, Turkey, and USA.

Briefly, my last seven years can be divided in three parts. From
1998 to 2000, I attended the PhD program Linguistic Engineering,
Automatic Learning, and Pattern Recognition at the Department of
Software and Computing Systems, and I had to take eight different
courses: Computational Learning, Introduction to Natural Language
Processing, How to Write and Publish a Scientific Paper, Neural Net-
works for Sequence Processing, Automatic Translation: Foundation
and Applications, Logic Programming, Information Extraction for
Database Insertion, and Laboratory of Language Processing and In-
formation Systems. From 2000 to 2001, I worked in my project for
the PhD program and published my first papers in international con-
ferences. Then, in the middle of 2001, I started to work in data
warehouses until nowadays.

I owe my appreciation to many great people for contributing to
this work. First of all, I would like to thank my family for their
incredible support, understanding, and patience. There are no words
for their help.

I would like to express words of gratitude for my advisor, Dr. Juan
Trujillo, not only for his guidance in developing the present work, but
also for being so supportive, encouraging, and understanding in good
and bad times. The last years have been very difficult.

I would also like to show appreciation to Panos Vassiliadis, my
supervisor during the four months I stayed in Greece for my PhD.
During those months, we started a collaboration that continues nowa-
days.

Last, but certainly not least, I would like to thank my department
colleagues. The list is too long, so I would like to highlight only
two people. I give my thanks to Armando Suárez, because he wrote
a recommendation letter to my grant for Argentina; it was a little
effort, but a great contribution. And I also express my gratitude for
Manolo Palomar, because he offered me the opportunity to be part
of the Department of Software and Computing Systems.

Of course, I also give my thanks to Mario Piattini (University of
Castilla-La Mancha, Spain), Il-Yeol Song (Drexel University, USA),
Panos Vassiliadis (University of Ioannia, Greece), Jens Lechtenbörger
(University of Münster, Germany), and Jaime Gómez (University of
Alicante, Spain) for revising this PhD thesis and accepting being
part of the jury. I am also grateful to the external reviewers Jorge
Bernardino (Polytechnic of Coimbra, Portugal) and Timos Sellis (Na-
tional Technical University of Athens, Greece). All of them sent use-
ful, constructive, and instructive comments.

Finally, as we say in Spain, “a door closes, and another opens”. . .

Summary Table of
Contents

Preface iii

Summary Table of Contents v

Table of Contents vii

List of Figures xiii

List of Tables xvii

List of Acronyms xix

1 What Do We Have Here? 1

2 Introduction to Data Warehouses 11

3 Related Work 17

4 A Data Warehouse Engineering Process 31

I Conceptual Level 47

5 Conceptual Modeling of Data Sources 49

6 Multidimensional Modeling in Data Warehouses 53

7 Data Mapping Diagrams for Data Warehouses 97

v

vi Summary Table of Contents

II Logical Level 119

8 Logical Modeling of Data Sources and Data Ware-
houses 121

9 Modeling ETL Processes in Data Warehouses 133

III Physical Level 153

10 Physical Modeling of Data Warehouses 155

IV Finale 173

11 Contributions 175

12 Conclusions and Future Work 191

A Advantages of the UML Profile for Multidimensional
Modeling 197

B UML Particularities 211

C UML Extension Mechanisms 217

D Representation of Multidimensional Models with XML225

E Definition of an Add-in for Rational Rose 253

Bibliography 269

Alphabetic Index 285

Authors Index 289

Table of Contents

Preface iii

Summary Table of Contents v

Table of Contents vii

List of Figures xiii

List of Tables xvii

List of Acronyms xix

1 What Do We Have Here? 1
1.1 What is The Problem? 3
1.2 Why Not Use the Entity Relationship Model? 3
1.3 What is the Goal of this Thesis? 4
1.4 Why UML? . 4
1.5 Why Do We Extend UML? 5
1.6 What is a Method? . 6
1.7 Structure of the Thesis 7
1.8 Typographic Conventions 8
1.9 Cross-References . 10
1.10 Diagrams . 10

2 Introduction to Data Warehouses 11
2.1 What is a Data Warehouse? 13
2.2 Levels of Data Modeling 14

2.2.1 Conceptual Data Model 14
2.2.2 Logical Data Model 14
2.2.3 Physical Data Model 15
2.2.4 Data Modeling and UML 15

vii

viii Table of Contents

3 Related Work 17
3.1 Introduction . 19
3.2 Data Warehouse Engineering Process 19
3.3 Multidimensional Modeling 22
3.4 ETL . 25
3.5 Data Mapping . 26
3.6 Data Warehouse Deployment 27
3.7 Extending UML . 28

3.7.1 Defining Profiles 28
3.7.2 Using Packages 29
3.7.3 Attributes as First-Class Modeling Elements . 30

4 A Data Warehouse Engineering Process 31
4.1 Introduction . 33
4.2 Data Warehouse Development 33
4.3 Data Warehouse Diagrams 34
4.4 Data Warehouse Engineering Process 36

4.4.1 Requirements 38
4.4.2 Analysis . 38
4.4.3 Design . 39
4.4.4 Implementation 41
4.4.5 Test . 43
4.4.6 Maintenance 43
4.4.7 Post-development Review 43
4.4.8 Top-down or Bottom-up? 43

4.5 Conclusions . 45
4.6 Next Chapters . 45

I Conceptual Level 47

5 Conceptual Modeling of Data Sources 49
5.1 Introduction . 51
5.2 Entity-Relationship and UML 51
5.3 Source Conceptual Schema 52

6 Multidimensional Modeling in Data Warehouses 53
6.1 Introduction . 55
6.2 Multidimensional Modeling 56
6.3 Object-Oriented Multidimensional Modeling 61

6.3.1 Different Levels of Detail 62
6.3.2 Facts and Dimensions 71
6.3.3 Dimensions and Classification Hierarchy Levels 71
6.3.4 Categorization of Dimensions 74
6.3.5 Attributes . 75

Table of Contents ix

6.3.6 Degenerate Dimensions 76
6.3.7 Degenerate Facts 76
6.3.8 Additivity . 77
6.3.9 Merged Level 2 and 3 77
6.3.10 Metamodel . 78

6.4 A UML Profile for Multidimensional Modeling 80
6.4.1 Description . 82
6.4.2 Prerequisite Extensions 85
6.4.3 Stereotypes . 85
6.4.4 Well-Formedness Rules 93
6.4.5 Comments . 93

6.5 Implementation of Multidimensional Models 94
6.6 Conclusions . 96

7 Data Mapping Diagrams for Data Warehouses 97
7.1 Introduction . 99
7.2 Motivating Example 101
7.3 Attributes as First-Class Modeling Elements in UML . 103
7.4 The Data Mapping Diagram 107

7.4.1 The Data Mapping Diagram at the Table Level:
Segmenting Data Diagrams 111

7.4.2 The Data Mapping Diagram at the Attribute
Level: Integration in Detail 111

7.4.3 Motivating Example Revisited 114
7.5 Conclusions . 117

II Logical Level 119

8 Logical Modeling of Data Sources and Data Ware-
houses 121
8.1 Introduction . 123
8.2 The UML Profile for Database Design 124
8.3 Mapping Classes to Tables 126

8.3.1 Many-to-many Associations 126
8.3.2 Inheritance Hierarchy 126

8.4 Mapping Attributes to Columns 129
8.5 Mapping Types to Datatypes 129
8.6 Conclusions . 131

9 Modeling ETL Processes in Data Warehouses 133
9.1 Introduction . 135
9.2 ETL . 136
9.3 Modeling ETL processes 137

9.3.1 Aggregation . 138

x Table of Contents

9.3.2 Conversion . 140
9.3.3 Log . 142
9.3.4 Filter . 142
9.3.5 Join . 143
9.3.6 Loader . 144
9.3.7 Incorrect . 145
9.3.8 Merge . 145
9.3.9 Wrapper . 146
9.3.10 Surrogate . 146

9.4 ETL Examples . 147
9.4.1 Transform Columns into Rows 148
9.4.2 Merging Two Different Data Sources and Multi-

target Loading 148
9.4.3 Aggregate and Surrogate Key Process 150

9.5 Conclusions . 151

III Physical Level 153

10 Physical Modeling of Data Warehouses 155
10.1 Introduction . 157
10.2 UML Component and Deployment Diagrams 158

10.2.1 Component Diagram 158
10.2.2 Deployment Diagram 159

10.3 Data Warehouse Physical Design 162
10.3.1 Source Physical Schema 165
10.3.2 Data Warehouse Physical Schema 166
10.3.3 Integration Transportation Diagram 167
10.3.4 Client Physical Schema 169
10.3.5 Customization Transportation Diagram 169

10.4 Conclusions . 170

IV Finale 173

11 Contributions 175
11.1 Introduction . 177
11.2 Main Contributions . 177
11.3 Research Production 177

11.3.1 ICEIS’01 . 178
11.3.2 ADTO’01 . 180
11.3.3 XMLDM’02 . 180
11.3.4 PHDOOS’02 181
11.3.5 BNCOD’02 . 182
11.3.6 UML’02 . 182

Table of Contents xi

11.3.7 ER’02 . 183
11.3.8 IJCIS’02 . 183
11.3.9 DMDW’03 . 184
11.3.10ER’03 . 184
11.3.11ATDR’03 . 185
11.3.12JDM’04 . 186
11.3.13 ICEIS’04 . 186
11.3.14ADVIS’04 . 187
11.3.15ER’04 . 187
11.3.16DOLAP’04 . 188
11.3.17JDM’06 . 189

12 Conclusions and Future Work 191
12.1 Conclusions . 193
12.2 Future Work . 194

12.2.1 Short Term . 194
12.2.2 Medium Term 194
12.2.3 Long Term . 195

A Advantages of the UML Profile for Multidimensional
Modeling 197
A.1 Introduction . 199
A.2 Advantages for Multidimensional Modeling 199

A.2.1 Multistar Models 200
A.2.2 Support for Different Building Perspectives . . 200
A.2.3 Shared Dimensions 201
A.2.4 Shared Hierarchy Levels 202
A.2.5 Multiple and Alternative Classification Hierar-

chies . 203
A.2.6 Heterogeneous Dimensions 206
A.2.7 Shared Aggregation 206
A.2.8 Derivation Rules 209

A.3 Conclusions . 209

B UML Particularities 211
B.1 Introduction . 213
B.2 Association Classes . 213
B.3 Navigability . 214
B.4 Notes . 214
B.5 Packages . 215
B.6 Roles . 216

xii Table of Contents

C UML Extension Mechanisms 217
C.1 Introduction . 219

C.1.1 UML Standard Elements 220
C.1.2 Stereotypes . 220
C.1.3 Tag Definitions 221
C.1.4 Constraints . 221

C.2 Profile . 223

D Representation of Multidimensional Models with XML225
D.1 Introduction . 227
D.2 DTD . 227
D.3 XML Schema . 230
D.4 XSLT . 240

E Definition of an Add-in for Rational Rose 253
E.1 Introduction . 255
E.2 Rational Rose Extensibility Interface 255
E.3 Using Multidimensional Modeling in Rational Rose . . 256
E.4 Add-in Implementation 259

E.4.1 Register . 259
E.4.2 Configuration File 260
E.4.3 Tag Definitions 264
E.4.4 Menu Items . 266
E.4.5 Rose Script . 266

Bibliography 269

Alphabetic Index 285

Authors Index 289

List of Figures

1.1 Main chapters of the thesis 9

2.1 Conceptual, logical, and physical levels 15
2.2 Stages of modeling and related UML constructs . . . 16

4.1 Data warehouse design framework 35
4.2 DWEP workflows . 37
4.3 UML use case template 39
4.4 Source Logical Schema 40
4.5 Data Warehouse Conceptual Schema (level 1) 41
4.6 Data Warehouse Conceptual Schema (level 2) 41
4.7 Data Warehouse Conceptual Schema (level 3) 42
4.8 Data Warehouse Physical Schema 42
4.9 Top-down approach 44
4.10 Bottom-up approach 44
4.11 Schema shown at the beginning of every chapter . . . 46

6.1 A data cube and classification hierarchies defined on
dimensions . 59

6.2 Different representations for a stereotyped class 61
6.3 The three levels of a MD model explosion using packages 64
6.4 Model definition with and without cycles 65
6.5 Level 1: different star schemas of the running example 66
6.6 Level 2: Auto-sales schema 66
6.7 Level 2: Services schema 67
6.8 Level 3: Customer dimension 68
6.9 Level 3: Mechanic dimension 69
6.10 Level 3: Auto-sales fact 70
6.11 Classification hierarchy without cycles 72
6.12 Classification hierarchy with one cycle 73
6.13 Classification hierarchy with wrong and right naviga-

bility . 74
6.14 Level 3: Auto dimension 75

xiii

xiv List of Figures

6.15 Merged level 2: representation of all the fact and di-
mension packages together 78

6.16 Metamodel divided into three packages 78
6.17 Metamodel: level 1 . 79
6.18 Metamodel: level 2 . 79
6.19 Metamodel: level 3 . 80
6.20 Extension of the UML with stereotypes 83
6.21 Stereotype icons of Package 87
6.22 Stereotype icons of Class and AssociationClass 89
6.23 Stereotype icons of Attribute 92
6.24 Transformation of a Multidimensional Model 95

7.1 Bird’s eye view of the data warehouse 102
7.2 Source Conceptual Schema (SCS) 102
7.3 Data Warehouse Conceptual Schema (DWCS) 102
7.4 Dual view: class diagram and attribute/class diagram 105
7.5 Attributes represented as first-class modeling elements 108
7.6 Data mapping levels 110
7.7 Level 2 of a data mapping diagram 113
7.8 Level 3 of a data mapping diagram (compact variant) 113
7.9 Level 2 of a data mapping diagram 114
7.10 Dividing Mapping . 115
7.11 Filtering Mapping . 115
7.12 Aggregating Mapping 116

8.1 Diagram elements and their appropiate icons 125
8.2 Stereotype display: Icon 125
8.3 Stereotype display: Decoration 125
8.4 Stereotype display: Label 126
8.5 Transforming a many-to-many association 127
8.6 A conceptual data model with a inheritance hierarchy 128
8.7 Transforming a inheritance hierarchy: one table per

class . 128
8.8 Transforming a inheritance hierarchy: one table per

concrete class . 129
8.9 Transforming a inheritance hierarchy: one table per

hierarchy . 130

9.1 Aggregation example by using standard UML class
notation and the defined stereotype icons 140

9.2 An example of Conversion and Log processes 142
9.3 An example of Filter process 143
9.4 An example of Join process 144
9.5 An example of Loader and Incorrect processes 146
9.6 An example of Merge and Wrapper processes 147

List of Figures xv

9.7 An example of Surrogate process 148
9.8 Transform columns into rows (unpivot) 149
9.9 Merging two different data sources and multi-target

loading . 150
9.10 Aggregate and surrogate key process 151

10.1 Different component representations in a component
diagram . 159

10.2 Different node representations in a deployment diagram161
10.3 Different levels of detail in a deployment diagram . . . 161
10.4 Data Warehouse Conceptual Schema 163
10.5 Data Warehouse Conceptual Schema (level 3) 164
10.6 Logical model (ROLAP) of the data warehouse 165
10.7 Source Physical Schema: deployment diagram 166
10.8 Data Warehouse Physical Schema: component diagram 167
10.9 Data Warehouse Physical Schema: deployment dia-

gram (version 1) . 168
10.10 Data Warehouse Physical Schema: deployment dia-

gram (version 2) . 168
10.11 Integration Transportation Diagram: deployment di-

agram . 169
10.12 Customization Transportation Diagram: deployment

diagram . 170

11.1 Chronology of the contributions 179

A.1 Multistar multidimensional model 200
A.2 Level 2 of Inventory Snapshot Star 202
A.3 Level 2 of Inventory Delivery Status Star 202
A.4 Level 3 of Warehouse Dimension 204
A.5 Level 3 of Vendor Dimension 205
A.6 Level 3 of Product Dimension 207
A.7 Level 3 of Inventory Delivery Status Fact 208

B.1 Example of association class 213
B.2 Example of navigability in an association 214
B.3 Example of note . 215
B.4 Example of package 215
B.5 Example of role . 216

C.1 Extension Mechanisms package 219
C.2 Different representations for a stereotyped class 221
C.3 MOF levels . 222
C.4 A class with tagged values 222
C.5 UML class diagram with a constraint attached to an

association . 223

xvi List of Figures

D.1 XML Schema (part 1) 232
D.2 XML Schema (part 2) 233
D.3 Generating different presentations from the same mul-

tidimensional model 240

E.1 Rose Application and Extensibility Components . . . 256
E.2 A screenshot from Rational Rose: level 1 of a multi-

dimensional model . 257
E.3 A screenshot from Rational Rose: level 2 of a multi-

dimensional model . 258
E.4 A screenshot from Rational Rose: level 3 of a multi-

dimensional model . 259
E.5 Add-In Manager in Rational Rose 260
E.6 Subkeys of the add-in created in Microsoft Windows

registry . 261
E.7 New properties for a class element 264
E.8 New properties for an attribute element 265

List of Tables

3.1 Comparison of conceptual multidimensional models . 24

6.1 Multidimensional modeling guidelines for using packages 63
6.2 Extension definition schema 81
6.3 Stereotype definition schema 81
6.4 Tagged value definition schema 81
6.5 Concepts inherited from the UML metamodel 84

7.1 Example of transformation form 104

8.1 Generic types and their description 130
8.2 Generic types mapped to ANSI SQL datatypes 131

9.1 ETL mechanisms and icons 139

C.1 UML Standard Elements 220

xvii

List of Acronyms

API Application Program Interface
A set of routines, protocols, and tools for building software

applications. A good API makes it easier to develop a program
by providing all the building blocks and a programmer “only”
has to put the blocks together.

CASE Computer Aided Software Engineering
A category of software that provides tools to automate, manage
and simplify the development process of software.

CRM Customer Relationship Management
CRM entails all aspects of interaction a company has with

its customer, whether it be sales or service related. New tech-
nologies help to manage electronically the relationships with
customers.

CWM Common Warehouse Metamodel
CWM is an OMG specification whose purpose is to enable

easy interchange of metadata between data warehousing tools
and metadata repositories in distributed heterogeneous environ-
ments. CWM is based on three key industry standards: UML,
MOF, and XMI.

DBMS Database Management System
Software that enables you to store, modify, and extract in-

formation from a database. There are many different types of
DBMS, ranging from small systems that run on personal com-
puters to huge systems that run on mainframes. There exist
different DBMS, mainly relational, network, flat, and hierar-
chical.

See also RDBMS.

DM Data Mart
Whereas a DW combines databases across an entire enterprise,
DM are usually smaller and focus on a particular subject or

xix

xx List of Acronyms

department. Some DM, called dependent data marts, are sub-
sets of larger DW. DM are also called high performance query
structures by some authors.
See also DW.

DSS Decision Support System
An interactive computerized system that gathers and presents
data from a wide range of sources, typically for business pur-
poses. DSS applications help people make decisions based on
data that is gathered from a wide range of sources.

DTD Document Type Definition
A DTD defines the tags and attributes that can be used in an
SGML, XML or HTML document. Moreover, a DTD also
indicates which tags can appear within other tags. Due to the
limitations of the simple structuring and typing mechanisms in
DTD, XML Schema has been defined as a substitute.
See also XML.

DW Data Warehouse
A collection of data designed to support management decision
making about their business. DW contain a wide variety of
data that present a coherent picture of business conditions at
a single point in time. Bill Inmon defines a DW as “a subject-
oriented, integrated, time-variant, nonvolatile collection of data
in support of management’s decisions”.
See also DM.

EER Extended Entity-Relationship
The EER includes all ER semantics but it uses additional

semantic modeling concepts. For example, EER models can
show subclasses, superclasses, specializations, generalizations,
and categorization.
See also ER.

ER Entity-Relationship
The ER model was originally proposed by Peter Chen in 1976
as a way to unify the network and relational database views.
The ER model is a conceptual data model that views the real
world as entities (with attributes) and relationships.
See also EER.

ETL Extraction, Transformation, Loading
Process that extracts data out of one data source (most of

the times a database) and load it into a data target. These
activities can be defined as follows:

List of Acronyms xxi

• Extract : the process of reading data from a data source.

• Transform: the process of converting the extracted data
from its previous form into the form it needs to be in so
that it can be placed into the data target. Transformation
occurs by using rules or lookup tables or by combining the
data with other data.

• Load : the process of writing the data into the data target.

HOLAP Hybrid OLAP
A kind of OLAP. HOLAP products combine MOLAP and
ROLAP. With HOLAP products, a relational database stores
most of the data. A separate MD database stores the most
dense data, which is typically a small proportion of the data.

See also MOLAP, OLAP, ROLAP.

HTML HyperText Markup Language
The language used to create documents on the WWW. Basi-
cally, HTML is similar to SGML, although it is not a strict
subset. HTML defines the structure and layout of a web doc-
ument by using a variety of tags and attributes. W3C stan-
dardizes HTML.

See also SGML.

HTTP HyperText Transfer Protocol
The underlying protocol used by the WWW. HTTP defines
how messages are formatted and transmitted, and what actions
web servers and browsers should take in response to various
commands. Currently, HTTP 1.1 (RFC 2616, June 1999) is
the last version of this protocol.

ISO International Organization for Standards
An international organization composed of national standards
agencies from over 75 countries. For example, some of its mem-
bers are ANSI (United States of America), BSI (Great Britain),
AFNOR (France), DIN (Germany), and UNE (Spain).

MD Multidimensional
Applies to any system that is designed for analyzing large

groups of records organized in a dimensional space. For ex-
ample, MD databases are organized around groups of records
that share a common field value. OLAP is a related term.

See also MOLAP.

MDA Model Driven Architecture
An approach to application design and implementation. As

xxii List of Acronyms

defined by the OMG, “MDA is a way to organize and man-
age enterprise architectures supported by automated tools and
services for both defining the models and facilitating transfor-
mations between different model types”.

Software development in the MDA starts with a PIM of an
application. This model remains stable as technology evolves.
Then, MDA development tools convert the PIM first to a
PSM and finally to a working implementation (code).

See also PIM, PSM.

MOF Meta Object Facility
A standard from OMG that can be used to define and manipu-
late a set of interoperable meta-models and their corresponding
models.

MOLAP Multidimensional OLAP
A kind of OLAP. MOLAP provides MD analysis of data

by putting data in a cube structure. Most successful MOLAP
products use a multicube approach in which a series of small,
dense, precalculated cubes make up a hypercube.

See also HOLAP, OLAP, ROLAP.

OCI Oracle Call Interface
A low-level API used to interact with Oracle databases. OCI
provides access to all of the Oracle Database functionality.

OCL Object Constraint Language
An expression language that can be used to define expressions
in OO models, in particular UML models. These expressions
enrich the respective model with precise and unambiguous an-
notations, thus preserving precious information about the un-
derlying business domain.

ODBC Open Data Base Connectivity
A connection method to data sources (databases, plain text

files, spreadsheet files, etc). It requires that you set up a data
source using a specific driver. Most database systems support
ODBC.

OLAP OnLine Analytical Processing
A category of software tools that provides analysis of data

stored in a database. OLAP tools enable users to analyze
data thanks to special functions that manipulate data. Vendors
offer a variety of OLAP products that are grouped into three
categories: ROLAP, MOLAP, and HOLAP.

See also HOLAP, MOLAP, ROLAP.

List of Acronyms xxiii

Contrast with OLTP.

OLE Object Linking and Embedding
A technology by Microsoft Corporation. OLE enables you

to create objects with one application and then link or embed
them in a second application. Embedded objects retain their
original format and links to the application that created them.

OLEDB Object Linking and Embedding DataBase
The successor to ODBC, a set of software components that

allow an application to connect with a data source, such as flat
files, DBMS, etc.

OLTP OnLine Transaction Processing
The set of activities and systems associated with entering data
reliably into a database. According to Ralph Kimball, “The
point of transaction processing is to process a very large number
of tiny, atomic transactions without losing any of them”. Most
frequently used with reference to relational databases, although
OLTP can be used generically to describe any transaction pro-
cessing environment.

Contrast with OLAP.

OMG Object Management Group
An international consortium that aims to provide a common

framework for developing applications using OO programming
techniques. OMG is responsible for different specifications,
such as CORBA, MOF, UML, etc.

OO Object Oriented
A term that is generally used to describe a system that deals

primarily with different types of objects, and where the actions
you can take depend on what type of object you are manipu-
lating. OO can mean different things depending on how it is
being used:

• Object Oriented Language.

• Object Oriented Programming.

• Object Oriented Graphics.

• Object Oriented Database.

PIM Platform Independent Model
One of the models of the MDA. A highly abstracted model

that is independent of any implementation technology. It de-
scribes a software system that supports a part, or the whole, of

xxiv List of Acronyms

business. The software system is modeled from the perspective
of how it best supports the business. The type of technology
on which the PIM is to be implemented does not form a part
of the software system at all.

PSM Platform Specific Model
One of the models of the MDA. The PIM is transformed into
one or more PSM, which describes in detail how the PIM is
implemented on a specific platform, or technology.

QVT Query View Transformation
An OMG initiative that aims to provide a standard for ex-

pressing model transformations. The transformations are de-
fined precisely in terms of the relationships between a source
MOF metamodel and a target MOF metamodel.

RAID Redundant Array of Inexpensive Disk
A category of disk drives that employ two or more drives in

combination for fault tolerance and performance. There are dif-
ferent RAID levels, such as level 0 (Striped Disk Array with-
out Fault Tolerance), level 1 (Mirroring and Duplexing), level
2 (Error-Correcting Coding), level 3 (Bit-Interleaved Parity),
etc.

RDBMS Relational Database Management System
A DBMS that supports the relational model. In a RDBMS

data is stored in the form of related tables.

See also DBMS.

REI Rose Extensibility Interface
The mechanism that Rational Rose provides to extend and

customize its capabilities. REI allows the user to customize
menus, define new stereotypes and properties, execute Rose
Scripts, etc.

RFC Request For Comments
A series of documents about the Internet, started in 1969.

Each RFC is designated by a number. If a RFC gains enough
interest, it may evolve into an Internet standard.

ROLAP Relational OLAP
A kind of OLAP. ROLAP products adapt traditional rela-

tional databases to support OLAP. ROLAP is based on Ralph
Kimball’s star schema.

See also HOLAP, MOLAP, OLAP.

List of Acronyms xxv

SEP Software Engineering Process
SEP, also known as Software Development Process, defines a

process in which user requirements are transformed into soft-
ware.

SGML Standard Generalized Markup Language
A system for organizing and tagging elements of a document.
SGML was developed and standardized by the ISO in 1986.
SGML is used widely to manage large documents that are
subject to frequent revisions and need to be printed in different
formats.

See also HTML.

SQL Structured Query Language
A standardized query language for requesting information from
a database. There are different dialects of SQL because every
DBMS vendor defines extensions.

UML Unified Modeling Language
According to the UML Specification, “The Unified Modeling

Language (UML) is a graphical language for visualizing, speci-
fying, constructing, and documenting the artifacts of a software-
intensive system. The UML offers a standard way to write a
system’s blueprints, including conceptual things such as busi-
ness processes and system functions as well as concrete things
such as programming language statements, database schemas,
and reusable software components”. UML models can be ex-
changed between software tools as streams or files with XMI.

UP Unified Process
The Unified Software Development Process, also known as UP,
is an industry standard SEP from the authors of the UML.
Whereas the UML defines a visual modeling language, the UP
specifies how to develop software using the UML.

URL Universal Resource Locator
URL, also known as Uniform Resource Locator, is the global

address of documents and other resources on the WWW.

W3C World Wide Web Consortium
An international consortium of companies involved with the In-
ternet and the WWW. It was founded in 1994 by Tim Berners-
Lee, the “father” of the WWW. The purpose of this consortium
is to develop open standards, such as HTML or XML.

WWW World Wide Web
WWW, also known as the Web, is a worldwide computer

xxvi List of Acronyms

system connected through the Internet. The communication
protocol is called HTTP, the URL is used to locate a re-
source, and the documents are formatted in a markup language
called HTML that supports links to other documents, as well
as graphics, audio, and video files.

XHTML eXtensible HyperText Markup Language
HTML written following the rules and formats that XML

marks. XHTML is a markup language written in XML; there-
fore, it is an XML application.

XMI XML Metadata Interchange
An XML application that facilitates the standardized inter-

change of object models and metadata among tools and appli-
cations from multiple vendors. XMI is based on three industry
standards: XML, UML, and MOF.

XML Extensible Markup Language
Metalanguage based on the SGML and developed by the

W3C. It was initially designed especially for the WWW, but
nowadays XML is used in other scenarios. XML allows de-
signers to create their own customized tags.

See also DTD.

XSL Extensible Stylesheet Language
A language for expressing stylesheets. XSL defines how an

XML document should be styled, laid out, and paginated onto
some presentation medium, such as a window in a web browser
or a page in a book.

XSLT Extensible Stylesheet Language Transformations
A language for transforming XML documents into other XML
documents. XSLT is designed for use as part of XSL, which
is a stylesheet language for XML. Whereas XSL specifies the
styling of an XML document, XSLT describes how the doc-
ument is transformed into another XML document that uses
the formatting vocabulary. XSLT is also designed to be used
independently of XSL. However, XSLT is not intended as a
completely general-purpose XML transformation language.

Chapter 1

What Do We Have Here?

In this chapter, the content and rationale of this thesis is introduced with
a brief description of every chapter and appendix. Moreover, some basic
questions that we think the reader of this thesis can consider are an-
swered. Finally, some typographic conventions that are used throughout
this thesis are explained.

Contents
1.1 What is The Problem? 3
1.2 Why Not Use the Entity Relationship

Model? . 3
1.3 What is the Goal of this Thesis? 4
1.4 Why UML? 4
1.5 Why Do We Extend UML? 5
1.6 What is a Method? 6
1.7 Structure of the Thesis 7
1.8 Typographic Conventions 8
1.9 Cross-References 10
1.10 Diagrams 10

1

1.1. What is The Problem? 3

1.1 What is The Problem?
During the last ten years, the interest to analyze data has increased
significantly, because the competitive advantages that information
can provide for the decision-making process. Nowadays, a key to
survival in the business world is being able to analyze, plan and react
to changing business conditions as fast as possible.

Many organizations own billions of bytes of data, but they suffer
different problems that make difficult to take advantage of data: data
are spread through different computer systems, data from different
sources are incompatible, data are available too late, etc. In order
to solve these problems, new concepts and tools have evolved into a
new information technology called data warehousing.

Data Warehouse (DW) projects are expensive: they often need
years to implement correctly and require millions of dollars in hard-
ware, software, and consulting services.

The sales of DW and related products keep growing year after
year. The DW tool market reached $7.9 billion in 2003 and expe-
rienced 11 percent growth in that year, more than three times the
growth rate of the previous year [137]. Meanwhile, and according to
[89], the OnLine Analytical Processing (OLAP) market grew
from $1 billion in 1996 to $4.3bn in 2004 and showed an estimated
growth at 15.7 percent in 2004.

Although a lot of advances have been achieved in the field of DW,
nowadays there is not standard method or data model for the design
of DW. On the other hand, various reports suggest that about 40-
50% of DW projects fail [140, 32]. Therefore, a new DW method
based on standards may help to develop DW.

1.2 Why Not Use the Entity Relationship
Model?

The traditional data models and techniques, such as the well-known
Entity-Relationship (ER) [25] and the different extensions of ER
[126], are not appropriate for DW design, due to the complexity of
the corresponding models. Different authors have highlighted this
problem. For example, Ralph Kimball states in [63]:

Entity relation data models are a disaster for querying
because they cannot be understood by users and they
cannot be navigated usefully by DBMS software. Entity
relation models cannot be used as the basis for enterprise
data warehouses.

However, later data models adapted for DW, such as the famous

For more infor-
mation about the
data models for
data warehouses,
consult chapter 3,
pp. 17.

4 Chapter 1. What Do We Have Here?

star schema of Ralph Kimball [63], neither they are able to consider
the main peculiarities of DW. Moreover, every approach has its own
set of symbols and terminology, resulting in a lot of confusion and
frustration.

1.3 What is the Goal of this Thesis?
The aim of this thesis is to define a method that allows the designer
to tackle the different phases and steps in the design of a DW. Our
approach is based on three complementary parts:

• The visual modeling language we use is an extension of the
Unified Modeling Language (UML) [97], an Object Ori-
ented (OO) modeling language that has been widely accepted.

• The method we propose is based on the Unified Process
(UP) [59], that guides us how we perform OO analysis and
design.

• The use of standards in the development of a DW, such as
UML, Extensible Markup Language (XML) [143], OO
databases [22] and object-relational databases [11].

Moreover, one important requirement of our work is to define a
method with a set of models that can be used by the DW designer
to communicate the design to the end user.

1.4 Why UML?
Instead of defining a new modeling language, we propose the use
of UML, a widely accepted OO modeling that unifies the methods
most used around the world. UML combines elements from the
three major OO design methods: Rumbaugh’s OMT modeling [110],
Booch’s OO Analysis and Design [17], and Jacobson’s Objectory [60].

The UML Specification [97] defines:

UML
definition :
see UML
(Foreword,
XXV). The Unified Modeling Language (UML) is a graphical lan-

guage for visualizing, specifying, constructing, and docu-
menting the artifacts of a software-intensive system. The
UML offers a standard way to write a system’s blueprints,
including conceptual things such as business processes
and system functions as well as concrete things such as
programming language statements, database schemas, and
reusable software components.

The UML defines a rich set of graphical diagrams:

1.5. Why Do We Extend UML? 5

• Use case diagram.

• Class diagram.

• Behavior diagrams: statechart diagram, activity diagram, in-
teraction diagrams (sequence diagram, collaboration diagram).

• Implementation diagrams: component diagram, and deploy-
ment diagram.

We consider that the use of UML as the modeling language of our
approach is the best option nowadays1. This choice can be justified
along at least five considerations:

• UML follows the OO paradigm, which has been proved to be
semantically richer than other paradigms because OO models
are closer to the user conception [1].

• Nowadays UML is a well-known language for software engi-
neers. Therefore, any approach based on the UML will mini-
mize the effort of developers in learning new notations or method-
ologies for every subsystem to be modelled.

• The use of a UML profile makes the design easier, because
DW designers can use the concepts (fact, dimension, etc.) they
are used to apply. In this manner, designers do not need to
understand the entire UML. Therefore, DW designers can take
advantage of the UML without having to be experts in UML.

• UML is an standard of the Object Management Group
(OMG) and unifies many years of effort in OO analysis and
design.

• UML has been widely accepted by the scientific and indus-
trial communities and “has emerged as the software industry’s
dominant modeling language” [66]. Nowadays, there are many
Computer Aided Software Engineering (CASE) tools
that support UML.

1.5 Why Do We Extend UML?
In this research work, we propose the use of UML to design DW.
Although UML is a general modeling language, there are some situa-
tions in which it needs to be customized to specific problem domains.

1UML also has many detractors. For example, in [114] the author states “we
dare to classify the UML as a modern dinosaur: It is a semantically retarded,
mighty ruler oppressing the development of sophisticated methods for conceptual
modelling and information system design”.

6 Chapter 1. What Do We Have Here?

Nevertheless, an outstanding feature of the UML is that it is an
extensible language in the sense that it provides mechanisms (stereo-

For more infor-
mation about
UML extension
mechanisms,
consult appendix
C, pp. 217.

types, tagged values, and constraints) to introduce new elements for
specific domains if necessary, such as web applications, database ap-
plications, business modeling, software development processes, etc.
In the UML jargon, a collection of enhancements that extend an
existing diagram type to support a new purpose is called a profile.

Therefore, in this thesis we define four UML profiles for accu-
rately modeling different aspects of DW: the UML Profile for Mul-
tidimensional Modeling, the Data Mapping Profile, the ETL Profile,
and the Database Deployment Profile.

1.6 What is a Method?
There is some confusion around the terms “methodology” and
“method”. Firstly, both terms are poorly defined and are used very
loosely and yet are used very extensively [13]. Secondly, methodol-
ogy is often used when what is actually referred to is method [29].
Therefore, in this work we use the word method, as it refers to a spe-
cific way of approaching and solving problems, whereas methodology
is the study of the methods. Normally, UML community uses the
word “process” as synonym of method.

Basically, “A method is an explicit way of structuring one’s think-
ing and actions” [39]. Specifically, a method (process) “defines who
is doing what when and how to reach a certain goal ” and is “the total
set of activities needed to transform a customer’s requirement into a
consistent set of artifacts representing a software product and –at a
later point in time– to transform changes in those requirements into
new versions of the software product” [59].

On the other hand, the right characteristics of a method have not
formally defined. In [122], what a good “method(ology)” should be is
stated:

• Modular : divided into components, or steps, which can be in-
cluded or excluded, depending on the requirements.

• Scalable: equally applicable to any size project, from the small-
est customers to the largest.

• Sequential : start at the beginning and go to the end. The steps
of the methodology should provide for a structured approach
to implementation project planning and should be clearly de-
lineated.

• Comprehensive: cover everything. A good methodology will
not require the client to think of “the other things”. It will

1.7. Structure of the Thesis 7

include all possible items that could be required for a successful
implementation.

• Flexible: the methodology must be capable of being rearranged
and adjusted to meet the client-specific requirements.

1.7 Structure of the Thesis
This thesis is divided into 12 chapters and 5 appendixes. The con-
tent of this thesis is organized so the readers do not have to read
all the chapters to get the information they need. Therefore, some
concepts are repeated across several chapters. Moreover, extensive
cross-references point to other related sections in order to allow the
reader to elaborate on the content.

The following list briefly describes each chapter and appendix:

• Chapter 2 (Introduction to Data Warehouses) provides a
brief introduction to data warehousing and related technologies.

• Chapter 3 (Related Work) discusses the related work about
Multidimensional (MD) modeling, DW design, Extrac-
tion, Transformation, Loading (ETL) process, and other
related issues.

• Chapter 4 (A Data Warehouse Engineering Process) in-
troduces our Data Warehouse Engineering Process, an engineer-
ing process based on UP.

• Chapter 5 (Conceptual Modeling of Data Sources) is ded-
icated to conceptual modeling of data sources.

• Chapter 6 (Multidimensional Modeling in Data Ware-
houses) covers our OO MD modeling approach, based on the
UML, for the conceptual modeling of DW; our approach con-
siders major relevant MD properties at the conceptual level in
an elegant and easy way.

• Chapter 7 (Data Mapping Diagrams for Data Ware-
houses) presents a framework for the design of data mapping
diagrams at the conceptual level.

• Chapter 8 (Logical Modeling of Data Sources and Data
Warehouses) addresses the design at the logical level.

• Chapter 9 (Modeling ETL Processes in Data Ware-
houses) describes how to model ETL processes with UML
thanks to a set of mechanisms that represent the common op-
erations in ETL processes, such as the integration of different

8 Chapter 1. What Do We Have Here?

data sources, the transformation between source and target at-
tributes or the generation of surrogate keys.

• Chapter 10 (Physical Modeling of Data Warehouses) in-
troduces a proposal for the modeling of the physical design of
DW.

• Chapter 11 (Contributions) summarizes our main contribu-
tions.

• Chapter 12 (Conclusions and Future Work) presents the
main conclusions and the future work we plan to carry out in
a short, medium, and long term.

• Appendix A (Advantages of the UML Profile for Multidi-
mensional Modeling) discusses some of the main advantages
of our MD modeling approach presented in chapter 6.

• Appendix B (UML Particularities) clarifies some UML
mechanisms not normally used but that we use in our proposal.

• Appendix C (Extension Mechanisms in UML) presents the
UML Extensibility Mechanism and explains how to define a
UML profile.

• Appendix D (Multidimensional Model Representation
with XML) explains how to use XML and the different tech-
nologies it comprises to represent MD models.

• Appendix E (Definition of an Add-in for Rational Rose)
explains how to define an add-in for the CASE tool Rational
Rose.

This thesis ends with a list of the references used during the re-
search, an index of important terms, and an index of the authors
cited in the text.

In Figure 1.1, we graphically highlight the main chapters of this
thesis and relate them to the three traditional levels of data modeling.

To help to read this work, the first paragraph of each chapter
provides a synopsis of that chapter’s content. Moreover, beginning
in Chapter 5 and until Chapter 10, the chapters include a figure that
is used as a road map for presenting our approach.

1.8 Typographic Conventions
In order to improve the legibility of the text, different typographic
conventions have been applied across this thesis.

The typefaces used within the text are:

1.8. Typographic Conventions 9

Figure 1.1: Main chapters of the thesis

• Some care has been taken to provide a complete list of the
acronyms that appear throughout this work. If an acronym is
included in the list of acronyms, then it is emphasized in bold
type. For example: DW, MD, UML, etc.

• When an acronyms appears the first time, the full name is ex-
panded in italic type and bold type and the acronym is shown
between brackets and in bold type. For example: Extrac-
tion, Transformation, Loading (ETL), OnLine Analyt-
ical Processing (OLAP), etc.

• The names of the stereotypes are highlighted in sans serif and
delimited between guillemets2, and begin with uppercase3. For
example: «StarPackage», «Fact», etc.

• The names of the tagged values are emphasized in sans serif
and enclosed by a pair of braces ({ }). For example: {isTime},
{derivationRule}, {OS}, etc.

• The names of the diagrams we propose are highlighted in small
caps. For example: Source Conceptual Schema, Data
Warehouse Logical Schema, SPS, DWCS, etc.

• The text that appears in a figure is shown in sans serif. For
example: Level 1, Package, (from Core), etc.

2Guillemets are the quotation mark symbols used in French and certain other
languages. A guillemet looks like a double angle-bracket (« »), but it is a single
character in most extended fonts (� �). UML [97] states that “Double angle-
brackets may be used as a substitute by the typographically challenged”.

3To differentiate between the existing UML stereotypes and the ones that we
propose, the names of the stereotypes we propose begin with an uppercase letter,
whereas the existing UML stereotypes begin with a lowercase letter (as Naming
Conventions and Typography section defines in [97]).

10 Chapter 1. What Do We Have Here?

• Particular entities of the diagrams (classes, attributes, etc.) are
referred to using sans serif. For example: Customer, FullName,
Invoices, etc.

• The citations are shown in italic type and between the quotation
marks (“ ”). For example: “A data warehouse is a subject-
oriented, integrated, time-variant, nonvolatile collection of data
in support of management’s decisions”.

1.9 Cross-References
We have had some care to write each chapter as a whole, so the
chapters can be read independently. Nevertheless, in some situations
we have to refer some content that has previously appeared or that
will appear in a following chapter. In those cases, we have included
notes in the margin to provide extensive cross-references point to
other related sections.

There are two types of cross-references:
Analysis : see
UP chapter 8,
pp. 173.

• The notes without a bounding box reference to a related section
from UML [97] or UP [59]. For example, beside these lines
there are two notes, one references UP and another references

OCL : see UML
chapter 6, pp.
6-1. UML.

• The notes with a bounding box reference to a related section
from the thesis.

For more infor-
mation about the
logical modeling
of data sources,
consult chapter 8,
pp. 121.

1.10 Diagrams
Most of the diagrams in this thesis are UML diagrams. All the
UML diagrams have been designed using Rational Rose 2003 with
an add-in we have implemented for the DW design.

Chapter 2

Introduction to Data
Warehouses

In this chapter, we make a brief introduction to DW and data modeling.

Contents
2.1 What is a Data Warehouse? 13
2.2 Levels of Data Modeling 14

2.2.1 Conceptual Data Model 14
2.2.2 Logical Data Model 14
2.2.3 Physical Data Model 15
2.2.4 Data Modeling and UML 15

11

2.1. What is a Data Warehouse? 13

2.1 What is a Data Warehouse?
In the early nineties, Bill Inmon [57] coined the term DW: “A data
warehouse is a subject-oriented, integrated, time-variant, nonvolatile
collection of data in support of management’s decisions”. This defini-
tion contains four key elements that deserve a detailed explanation:

• Subject orientation means that the development of the DW
will be done in order to satisfy the analytical requirements of
managers that will query the DW. The topics of analysis differ
and depend on the kind of business activities; for example, it
can be product sales focusing on client interests in some sales
company, the client behavior in utilization of different banking
services, the insurance history of the clients, the railroad system
utilization or changes in structure, etc.

• Integration relates to the problem that data from different oper-
ational and external systems have to be joined. In this process,
some problems have to be resolved: differences in data format,
data codification, synonyms (fields with different names but the
same data), homonyms (fields with the same name but differ-
ent meaning), multiplicity of data occurrences, nulls presence,
default values selection, etc.

• Non-volatility implies data durability: data can neither be mod-
ified nor removed.

• Time-variation indicates the possibility to count on different
values of the same object according to its changes in time. For
example, in a banking DW, the average balances of client’s
account during different months for the period of several years.

On the other hand, Ralph Kimball [63] concisely defines a DW
as “a copy of transaction data specifically structured for query and
analysis”. He provides a more precise definition by means of require-
ments:

1. The data warehouse provides access to corporate or organiza-
tional data.

2. The data in a data warehouse is consistent.

3. The data in a data warehouse can be separated and combined
by means of every possible measure in a business (the classic
slice and dice requirement).

4. The data warehouse is not just data, but also a set of tools to
query, analyze, and present information.

14 Chapter 2. Introduction to Data Warehouses

5. The data warehouse is the place where we publish used data.

6. The quality of the data in the data warehouse is a driver of
business reengineering.

Alternatively, the Decision Support System (DSS) scientists
express that a DW is a database that is optimized for decision sup-
port. For example, in [100] the authors state that “The concept of
the data warehouse is often misunderstood. To minimize confusion,
we have chosen to define a data warehouse as a read-only analytical
database that is used as the foundation of a decision support system”.

Finally, other authors focus their interest on the final users of
the DW. For example, in [62], a DW is defined as a “collection
of technologies aimed at enabling the knowledge worker (executive,
manager, and analyst) to make better and faster decisions”.

2.2 Levels of Data Modeling

“Data modeling is a technique that records the inventory, shape, size,
contents, and rules of data elements used in the scope of a business
process” [7]. The result of data modeling is a kind of map (the model)
that describes the data used in a process.

Traditionally, there are three levels of data modeling in databases
and DW: conceptual, logical, and physical. These three levels pro-
vide a framework for developing a database structure or schema from
the top down. This section will briefly explain the difference among
the three and the order with which each one is created.

In Figure 2.1, we graphically represent the relationship among the
three levels of data modeling. Whereas the conceptual level is closer
to the user domain and the physical level is closer to the computer,
the logical level serves as a bridge between the conceptual and the
logical levels.

2.2.1 Conceptual Data Model

In the conceptual data model, we normally represent the important
entities and the relationships among them. The goal of conceptual
data modeling is to describe data in a way which is not governed by
implementation-level issues and details.

The conceptual data model is closer to the problem space (the
real world) than to the solution space (the implementation).

2.2.2 Logical Data Model

The logical data model usually includes:

2.2. Levels of Data Modeling 15

Figure 2.1: Conceptual, logical, and physical levels

• All entities and relationships among them.

• All attributes and the corresponding datatypes for each entity.

• The primary key for each entity specified.

• Foreign keys.

The goal of the logical data model is to describe the data in as
much detail as possible, without regard to how they will be physically
implemented in the database.

2.2.3 Physical Data Model
In the physical data model, we normally include the whole specifica-
tion of all tables and columns following the rules of the implementa-
tion platform.

The physical data model determines the actual design of a database.
This model is the basis of the code written to create tables, views,
and integrity constraints.

2.2.4 Data Modeling and UML
Nowadays, the dominant trend in data modeling is the OO paradigm,
because OO modeling supports complex and advanced data struc-
tures. The OO paradigm is semantically richer than others and it
offers numerous advantages, but “the most important advantage of
conceptualizing by means of an OO model is that the result is closer
to the user conception” [1].

In Figure 2.2, we show a flow diagram adapted from [90]. In this
diagram, each level of modeling (conceptual, logical, and physical)
is shown within the major activities performed and the key UML
elements that support that activity.

16 Chapter 2. Introduction to Data Warehouses

F
ig

ur
e

2.
2:

St
ag

es
of

m
od

el
in

g
an

d
re

la
te

d
U

M
L

co
ns

tr
uc

ts

Chapter 3

Related Work

In this section, we introduce the most important related work about
DW, MD modeling, and ETL processes published during the last few
years.

Contents
3.1 Introduction 19
3.2 Data Warehouse Engineering Process . 19
3.3 Multidimensional Modeling 22
3.4 ETL . 25
3.5 Data Mapping 26
3.6 Data Warehouse Deployment 27
3.7 Extending UML 28

3.7.1 Defining Profiles 28
3.7.2 Using Packages 29
3.7.3 Attributes as First-Class Modeling Ele-

ments 30

17

3.1. Introduction 19

3.1 Introduction

Although the complete definition of a DW engineering process is not
the main goal of this work, we have outlined a proposal based on the
UP. Therefore, in Section 3.2, we briefly present some of the most
important DW design methods proposed until now and point out
the main shortcomings.

The main contribution of our work is the proposal of a MD mod-
eling approach based on the UML. Hence, in Section 3.3, we sum-
marize the most relevant conceptual MD modeling approaches pro-
posed so far by the research community and we provide a comparison
framework between them.

In DW environments, ETL processes are responsible for the ex-
traction of data from heterogeneous operational data sources, their
transformation (conversion, cleaning, normalization, etc.) and their
loading into DW. We have proposed the modeling of ETL processes
as part of our integrated and global approach for DW design. In Sec-
tion 3.4, we review some works concerning the conceptual and logical
modeling of ETL processes.

From our ETL modeling approach, we have addressed the prob-
lem of modeling data mappings between source and target data sources
at the attribute level. In Section 3.5, we present some works related
to data mappings.

Although several approaches have been proposed to model differ-
ent aspects of a DW, few efforts have been dedicated to the model-
ing of the physical design (i.e. the physical structures that will host
data together with their corresponding implementations). We have
proposed an adaptation of the component and deployment diagrams
of UML for the modeling of the physical design of a DW. In Sec-
tion 3.6, we briefly comment some other works that have dealt with
the physical design and deployment of a DW.

In our work, we have needed to extend UML in different ways
in order to accomplish our research goals. In Section 3.7, we present
some related work with regard to extending UML, applying UML
packages, and using attributes as first-class modeling elements.

3.2 Data Warehouse Engineering Process

During the last few years, different data models [49, 20, 133, 55,
132] (see Section 3.3 for a review of the most important proposals),
both conceptual and logical, have been proposed for the DW design.
These approaches are based on their own visual modeling languages
or make use of a well-known graphical notation, such as the ER
model or the UML. However, none of these approaches has been

20 Chapter 3. Related Work

widely accepted as a standard DW model, because they present some
important lacks.

On the other hand, different DW methods [63, 50, 20, 48, 23, 87]
have also been proposed. However, all of them present some of these
problems: they do not address the whole DW process, they do not
include a visual modeling language, they do not propose a clear set of
steps or phases, or they are based on a specific implementation (e.g.,
the star schema in relational databases).

In [63], different case studies of Data Mart (DM) are presented.
The MD modeling is based in the use of the star schema and its dif-
ferent variations (snowflake and fact constellation). Moreover, the
BUS matrix architecture, which integrates the design of several DM,
is proposed. Although we consider this work as a fundamental refer-
ence in the MD field (R. Kimball provides a very sound discussion of
star schema design), we miss a formal method for the design of DW.
Furthermore, the conceptual and logical models coincide in this pro-
posal, and the concepts about the BUS matrix architecture are a
compilation of the personal experiences of the authors and the prob-
lems they have faced during the built of enterprise DW from DM.
In [65], the DW lifecycle with the most relevant phases is presented:
different tools and techniques are suggested, but a method (and a
model) for all the process is not proposed.

In [50], the authors propose the Dimensional-Fact Model (DFM),
a particular notation for the DW conceptual design. Moreover, they
also propose how to derive a DW schema from the data sources de-
scribed by ER schemas. From our point of view, this proposal is only
oriented to the conceptual and logical design of DW, because it does
not consider important aspects such as the design of ETL processes.
Furthermore, the authors assume a relational implementation of the
DW and the existence of all the ER schemas of the data sources,
what is impossible many times. Finally, we think that the use of a
particular notation makes difficult the application of this proposal.

In [20], the authors present the Multidimensional Model, a logi-
cal model for OLAP systems, and show how it can be used in the
design of MD databases. The authors also propose a general design
method, aimed at building an MD schema starting from an opera-
tional database described by an ER schema. Although the design
steps are described in a logic and coherent way, the DW design is
only based on the operational data sources, what is insufficient from
our point of view, because the final users’ requirements are very im-
portant in the DW design.

In [47], a framework to build a DW in three basic steps (plan-
ning, design and implementation, and support and enhancement) is
presented. The author highlights the importance of using a method:
“Successfully implementing a DW requires a proven framework, or

3.2. Data Warehouse Engineering Process 21

blueprint”. Nonetheless, a model for the analysis and design of a
DW is not provided: only the activities to be carried out and the
decisions to be taken are shown.

In [34], a method based on the UML for the DW design is pre-
sented. From our point of view, the most significant aspect of this
proposal is the incorporation of the UML use cases in order to specify
the roles of each one of the members of the DW development team.
Apart from that, this method does not study in depth some relevant
aspects such as the conceptual or logical design of the DW, or the
ETL processes; because of this, this approach cannot be considered
a detailed method.

In [28], different DW architectures and the activities needed for
the construction of a DW are discussed. Although the book has a
chapter dedicated to “DW design methodology”, only the steps needed
for the construction of the “preferred architecture of a DW ” are pre-
sented, and the modeling is based on the star schema.

In [87], the building of the star schema (and its different varia-
tions) from the conceptual schemas of the operational data sources
is proposed another time. And again, it is supposed that the data
sources are defined by means of ER schemas. This approach differs
in that it does not propose a particular graphical notation for the
conceptual design of the DW, but it uses the ER graphical nota-
tion.

In [6], the authors mainly focus on the definition of MD hierar-
chies, but they also sketch a DW design method based on the three
usual modeling levels (conceptual, logical, and physical). The con-
ceptual design is based on the UML, but the authors propose their
Unified Multidimensional Model for the logical design.

Most recently, in [23] another method for the DW design is pro-
posed. This method is based on a MD model called IDEA and it
proposes a set of steps that address the conceptual, logical, and phys-
ical design of a DW. One of the most important advantages, with
respect to the previous proposals, is that the operational data sources
together with the final users’ requirements are considered in the de-
sign. Nevertheless, this method only considers the data modeling and
does not address other relevant aspects, such as the ETL processes.

In [21], different DW development methods are analyzed and a
new method is proposed. This method stands out because it inte-
grates the management of metadata. However, it lacks a model that
can be used to reflect and document the DW design.

In [118], a comparison of DW methodologies is presented. The
comparison is based on using a common set of attributes to determine
which methodology to use in a particular data warehousing project.
Nevertheless, the authors only focus on commercial methodologies.
Moreover, the authors state that “...the field of data warehousing

22 Chapter 3. Related Work

is not very mature” and “None of the methodologies reviewed in this
article has achieved the status of a widely recognized standard as yet”.

Finally, the only work we know that uses the UML for the design
of DW is [51], which explains the modeling of the star and snowflake
schemas using the UML. However, this work only addresses a single
step of the DW design process and does not propose a UML exten-
sion for DW design: it only shows how to achieve the star schema
using the UML.

Therefore, and based on the previous considerations, we believe
that currently there is not a general and standard formal method
that comprises the main steps of the DW design.

3.3 Multidimensional Modeling

Lately, several MD data models have been proposed. Some of them
fall into the logical level (such as the well-known star-schema by
Ralph Kimball [63]). Others may be considered as formal models
as they provide a formalism to consider main MD properties. A re-
view of the most relevant logical and formal models can be found in
[16] and [2].

In this section, we will only make brief reference to the most rele-
vant models that we consider “pure” conceptual MD models. These
models provide a high level of abstraction for the main MD modeling
properties presented in Chapter 6 and are totally independent from
implementation issues. One outstanding feature provided by these
models is that they provide a set of graphical notations (such as the
classical and well-known Extended Entity-Relationship (EER)
model) that facilitates their use and reading. These are as follows:
The Dimensional-Fact (DF) Model by Golfarelli et al. [49], The Mul-
tidimensional/ER (M/ER) Model by Sapia et al. [113, 112], The
starER Model by Tryfona et al. [133], the Model proposed by Hüse-
mann et al. [55], and Yet Another Multidimensional Model (YAM2)
by Abelló et al. [3].

In [64], Kimball presents the dimensional modeling, a logical de-
sign technique used for DW. Kimball compares this new technique
and ER and points out the many differences between the two tech-
niques. Kimball considers that “Dimensional modeling is the only
viable technique for databases that are designed to support end-user
queries in a data warehouse”.

In Table 3.1, we provide the coverage degree of each above men-
tioned conceptual model regarding the main MD properties described
in the previous section. To start with, to the best of our knowledge,
only YAM2 provides a grouping mechanism to avoid flat diagrams
and simplify the conceptual design when a system becomes complex

3.3. Multidimensional Modeling 23

due to a high number of dimensions and facts sharing dimensions
and their corresponding hierarchies. In particular, this model struc-
tures the MD modeling into different levels of complexity considering
facts and dimensions at the first level, then classification hierarchies,
and finally, the whole model. However, from our point of view, even
though these different levels try to make the MD modeling easier,
YAM2 is a complex model not only for final users, but also for DW
designers; mainly due to the high number of relations and classes that
are needed in the design.

Regarding facts, only YAM2 explicitly manages the term of mul-
tistar, which means that we are able to represent more than one
fact in the same MD model (i.e. a star schema with more than one
fact). Only the starER model and YAM2 consider many-to-many
relationships between facts and particular dimensions by indicating
the exact cardinality (multiplicity) between them. However, none
of these models explicitly represents the term degenerate facts. We
understand by degenerate facts the measures recorded in a “intersec-
tion table” of many-to-many relationships [48]. Only YAM2 considers
derived measures together with their derivation rules as part of the
conceptual schema. The DF and the M/ER models represent derived
measures with the provided query patterns, but not as part of the
conceptual schema itself. The DF, the starER and YAM2 models con-
sider the additivity of measures by explicitly representing the set of
aggregation operators that can be applied on non-additive measures.

With reference to dimensions, only YAM2 is able to have only
one definition of a dimension and share it by different facts in mul-
tistar schemas, thereby avoiding defining the same dimension more
than once and allowing the use of conformed dimensions. Moreover,
only YAM2 is able to define more than one role for a dimension
regarding the same fact by connecting them through different as-
sociations. None of them allows us to share only few classification
hierarchy levels from dimensions, instead they force us to share the
whole classification hierarchy path including all levels. All of the
models consider multiple and alternative path classification hierar-
chies by means of Directed Acyclic Graphs (DAG) defined on certain
dimension attributes. However, only the starER and YAM 2 models
consider non-strict classification hierarchies by specifying the exact
cardinality between classification hierarchy levels, instead only the
starER model considers adequate to represent complete classification
hierarchies. As both the M/ER and the starER models are extensions
of the ER model, they easily consider the categorization of dimen-
sions by means of Is-a relationships. The YAM2 model represents the
categorization of dimensions by means of generalization relationships
of the OO paradigm.

With reference to the dynamic level of MD modeling, the starER

24 Chapter 3. Related Work

T
ab

le
3.

1:
C

om
pa

ri
so

n
of

co
nc

ep
tu

al
m

ul
ti

di
m

en
si

on
al

m
od

el
s

M
u
lt

id
im

en
si

on
al

m
od

el
in

g
p
ro

p
er

ti
es

M
od

el
D

F
M

/E
R

st
ar

E
R

H
ü
se

m
an

n
Y

A
M

2

S
tr

u
ct

u
ra

l
le

ve
l

G
ro

up
in

g
m

ec
ha

ni
sm

s
to

av
oi

d
fla

t
di

ag
ra

m
s

N
o

N
o

N
o

N
o

Y
es

Fa
ct

s
M

ul
ti
-s

ta
rs

N
o

N
o

N
o

N
o

Y
es

m
an

y-
to

-m
an

y
re

la
ti
on

s
w

it
h

pa
rt

ic
ul

ar
di

m
en

si
on

s
N

o
N

o
Y
es

N
o

Y
es

D
eg

en
er

at
e

fa
ct

s
N

o
N

o
N

o
N

o
N

o
A

to
m

ic
m

ea
su

re
s

Y
es

Y
es

Y
es

Y
es

Y
es

D
er

iv
ed

m
ea

su
re

s
N

o
N

o
N

o
N

o
Y
es

A
dd

it
iv

it
y

Y
es

N
o

Y
es

Y
es

Y
es

D
im

en
si

on
s

Sh
ar

in
g

di
m

en
si

on
s

(C
on

fo
rm

ed
di

m
en

si
on

s)
N

o
N

o
N

o
N

o
Y
es

D
iff

er
en

t
ro

le
s

of
a

di
m

en
si

on
w

it
h

th
e

sa
m

e
fa

ct
N

o
N

o
N

o
N

o
Y
es

Sh
ar

in
g

fe
w

hi
er

ar
ch

y
le

ve
ls

N
o

N
o

N
o

N
o

N
o

M
ul

ti
pl

e
an

d
al

te
rn

at
iv

e
pa

th
cl

as
si

fic
at

io
n

hi
er

ar
ch

ie
s

Y
es

Y
es

Y
es

Y
es

Y
es

N
on

-s
tr

ic
t

cl
as

si
fic

at
io

n
hi

er
ar

ch
ie

s
N

o
N

o
Y
es

N
o

Y
es

C
om

pl
et

e
cl

as
si

fic
at

io
n

hi
er

ar
ch

ie
s

N
o

N
o

Y
es

N
o

N
o

C
at

eg
or

iz
at

io
n

of
di

m
en

si
on

s
N

o
Y
es

Y
es

Y
es

Y
es

D
yn

am
ic

le
ve

l
Sp

ec
ify

in
g

in
it
ia

l
us

er
re

qu
ir

em
en

ts
Y
es

Y
es

N
o

N
o

Y
es

O
L
A

P
op

er
at

io
ns

N
o

Y
es

N
o

N
o

Y
es

M
od

el
in

g
th

e
be

ha
vi

or
of

th
e

sy
st

em
N

o
Y
es

N
o

N
o

N
o

G
ra

p
h
ic

al
n
ot

at
io

n
Y
es

Y
es

Y
es

Y
es

Y
es

A
u
to

m
at

ic
ge

n
er

at
io

n
in

to
a

ta
rg

et
co

m
m

er
ci

al
O

L
A

P
to

ol
N

o
Y
es

N
o

N
o

N
o

3.4. ETL 25

model is the only one that does not provide an explicit mechanism
to represent initial user requirements. On the other hand, only the
M/ER model and YAM2 provide a set of basic OLAP operations
to be applied from these initial user requirements. Instead, only the
M/ER model considers the behavior of the system by modeling the
evolution of initial user requirements with state diagrams.

Finally, we note that all the models provide a graphical notation
that facilitates the conceptual modeling task to the designer. On
the other hand, only the M/ER model provides a framework for an
automatic generation of the database schema into a target commer-
cial OLAP tool (particularly into Informix Metacube and Cognos
Powerplay).

From Table 3.1, one may conclude that none of the current con-
ceptual modeling approaches considers all MD properties at both the
structural and dynamic levels. From our point of view, the YAM2

model is the richest one as it considers most of the major MD prop-
erties, mainly because it is based on the OO paradigm; although as
previously-stated, we consider this model too complex to use and un-
derstand. Therefore, we claim that a standard conceptual model is
needed to consider all MD modeling properties at both the structural
and dynamic levels. We argue that an OO approach with the UML
is the right way of linking structural and dynamic level properties in
an elegant way at the conceptual level.

In [132], the authors propose an approach that provides a theo-
retical foundation for the use of OO databases and object-relational
databases in DW. This approach introduces a set of minimal con-
straints and extensions to the UML for representing MD modeling
properties for DW. However, the UML extension is not formally
defined as a UML profile.

3.4 ETL

Little effort has been dedicated to propose a conceptual model that
allows the DW designer to formally define ETL processes.

To the best of our knowledge, the best advance in this research
line has been accomplished by the Knowledge and Database Sys-
tems Laboratory from the National Technical University of Athens
(NTUA) [92]. In particular, they have proposed a conceptual model
that provides its own graphical notation that allows the designer to
formally define most of the usual technical problems regarding ETL
processes [134]. In [135], the conceptual modeling of ETL processes
is complemented with the logical design of ETL processes as graphs.
Furthermore, this approach is accompanied by an ETL tool called
ARKTOS as an easy framework for the design and maintenance of

26 Chapter 3. Related Work

these ETL processes [136].
Finally, Vassiliadis et al. do not employ standard UML nota-

tion because they need to treat attributes as “first class citizens” of
their model, what we believe complicates the resulting ETL mod-
els: a DW usually contains hundreds of attributes, and therefore,
an ETL model can become exceedingly complex if every attribute is
individually represented as a model element.

3.5 Data Mapping

There is a relatively small body of research efforts around the issue
of conceptual modeling of the DW back-stage.

In [14, 15], the model management, a framework for supporting
meta-data related applications where models and mappings are ma-
nipulated is proposed. In [15], two scenarios related to loading DW
are presented as case studies: on the one hand, the mapping between
the data sources and the DW, on the other hand, the mapping be-
tween the DW and a data mart. In this approach, a mapping is a
model that relates the objects (attributes) of two other models; each
object in a mapping is called a mapping object and has three prop-
erties: domain and range, which point to objects in the source and
the target respectively, and expr, which is an expression that defines
the semantics of that mapping object. This is an isolated approach
in which the authors propose their own graphical notation for repre-
senting data mappings. Therefore, from our point of view, there is a
lack of integration with the design of other parts of a DW.

In [134] the authors attempt to provide a first model towards the
conceptual modeling of the DW back-stage. The notion of provider
mapping among attributes is introduced. In order to avoid the prob-
lems caused by the specific nature of ER and UML, the authors
adopt a generic approach. The static conceptual model of [134] is
complemented in [135] with the logical design of ETL processes as
data-centric workflows. ETL processes are modeled as graphs com-
posed of activities that include attributes as first-class citizens. More-
over, different kinds of relationships capture the data flow between
the sources and the targets.

Regarding data mapping, in [35], the authors discuss issues related
to the data mapping in the integration of data. A set of mapping
operators is introduced and a classification of possible mapping cases
is presented. However, no graphical representation of data mapping
scenarios is provided, thereby making difficult using it in real world
projects.

In terms of industrial approaches, the model that stems from [65]
would be an informal documentation of the overall data mapping and

3.6. Data Warehouse Deployment 27

ETL process design. On the other hand, the Common Warehouse
Metamodel (CWM) [94] is an open industry standard of the OMG
for integrating data warehousing and business analysis tools, based on
the use of shared metadata. This standard is based on three key in-
dustry standards: Meta Object Facility (MOF), UML and XML
Metadata Interchange (XMI). These three standards provide the
CWM with the foundation technology to perfectly represent the se-
mantic of data warehousing by means of metadata, thereby allowing
us the intereoperability of DW applications by sharing a common
metadata specification. However, from our point of view, the CWM
is too general to represent all main MD properties at the conceptual
level.

3.6 Data Warehouse Deployment

So far, both the research community and companies have devoted few
effort to the physical design of DW from the early stages of a DW
project, and incorporate it within a global method that allows us to
design all main aspects of DW.

In [65], the authors deal with the lifecycle of a DW and propose
a method for the design, development and deployment of a DW.
In that book, we can find a chapter devoted to the planning of the
deployment of a DW and the authors recommend us documenting all
different deployment strategies. However, the authors do not provide
a standard technique for the formal modeling of the deployment of a
DW.

In [100], the authors deal with the design of a DW from the
conceptual modeling up to its implementation. They propose the use
of non-standard diagrams to represent the physical architecture of a
DW: on one hand, to represent data integration processes and, on the
other hand, to represent the relationship between the enterprise data
warehouse and the different data marts that are populated from it.
Nevertheless, these diagrams represent the architecture of the DW
from a high level, without providing different levels of detail of the
ulterior implementation of the DW.

In [48], several aspects of a DW implementation are discussed.
Also in that book, other aspects of a DW implementation such as
the parallelism, the partitioning of data in a Redundant Array
of Inexpensive Disk (RAID) system or the use of a distributed
database are addressed, but the authors do not provide a formal or
standard technique to model all these aspects.

Finally, in [108], we find that one of the current open problems
regarding DW is the lack of a formal documentation that covers all
design phases and provide multiple levels of abstraction (low level for

28 Chapter 3. Related Work

designers and people devoted to the corresponding implementation,
and high level for final users). The author argues that this docu-
mentation is absolutely basic for the maintenance and the ulterior
extension of the DW. In this work, three different detail levels for
DW are proposed: data warehouse level, data mart level and fact
level. At the first level, the use of the deployment diagrams of UML
are proposed to document a DW architecture from a high level o de-
tail. However, these diagrams are not integrated at all with the rest
of techniques, models and/or methods used in the design of other
aspects of the DW.

Therefore, we argue that there is a still a need for providing a
standard technique that allows us to model the physical design of a
DW from early stages of a DW project. Another important issue for
us is that this proposal is totally integrated in an overall approach
that allows us to cover other aspects of the DW design such the
conceptual or logical design of the DW or the modeling of ETL
processes.

3.7 Extending UML

In this section, we present some related work connected with the way
we use UML in our approach: in Section 3.7.1, we present some
works that propose some extensions of UML by defining UML pro-
files; in Section 3.7.2, we briefly comment some works that have dealt
with the use of layering modeling diagrams; finally, in Section 3.7.3,
we provide an overview of modeling approaches that treat attributes
as first-class modeling elements.

3.7.1 Defining Profiles

With relation to the subject of this work (DW, MD modeling, data
modeling), some proposals to extend the UML for database design
have been presented during the last few years, due to the fact that
the UML does not explicitly include a data model. In [8], “...a profile
that extends the existing class diagram definition to support persis-
tence modeling” is presented. This profile is intended to make objects
persistent in different storages: files, relational databases, object-
relational databases, etc. In [106], the Data Modeling Profile for the
UML is described, “...including descriptions and examples for each
concept including database, schema, table, key, index, relationship,
column, constraint and trigger ”. In [90], the process of UML-based
database modeling and design is explained: it presents the UML Pro-
file for Database Design created by Rational Software Corporation.
Finally, in [83] an Object-Relational Database Design Methodology

3.7. Extending UML 29

is presented. The methodology defines new UML stereotypes for
Object-Relational Database Design and proposes some guidelines to
translate a UML schema into an object-relational schema. However,
these proposals do not reflect the peculiarities of MD modeling.

In [9], the author complains that data modeling is not yet covered
by the UML and argues that the UML needs a data model. There-
fore, he proposes his own data modeling profile. Finally, the author
pleads for turning his proposal into an official UML profile.

Regarding other domains, some remarkable profiles have been pro-
posed. In [27], a profile for designing web applications with UML
is presented. In [96], a UML Profile for CORBA is presented; this
profile is designed to provide a standard means for expressing the
semantics of CORBA IDL using UML notation and thus to support
expressing these semantics with UML tools.

Finally, some authors have criticized the UML extension mecha-
nisms. For example, in [115], the attention is focused on the UML
Meta Model and its shortcomings. The authors highlight that many
adaptations often exceed the UML extension mechanisms and re-
sult in yet another UML variant. Therefore, the authors propose a
robust meta model extension capability to support domain specific
extensions in a standard way.

3.7.2 Using Packages

The benefits of layering modeling diagrams is widely recognized. Dif-
ferent modeling techniques, such as Data Flow Diagrams, Functional
Modeling - IDEF0, and ER make use of some kind of layering mech-
anism. The benefits of layering modeling diagrams are twofold: to
improve user understanding and to simplify documentation and main-
tenance.

If we focus on ER, different approaches can be commented. For
example, in [41], the Clustered Entity Model is presented, one of the
early attempts at layering ER diagrams. In this approach, an ER di-
agram at a lower level appears as an entity on the next level. In [125],
a model and a technique for clustering entities in an ER diagram is
described. This modeling technique refines ER diagrams into higher-
level objects that leads to a description of the conceptual database
on a single page. All the previous approaches are based on an al-
ready existing detailed ER diagram. Based on this, the diagrams are
built bottom-up. In [61], the previous approaches to entity model
clustering are extended to allow top-down design (in this proposal,
bottom-up design can be used too). Then, in [46], the Leveled Entity
Relationship Model, another layering formalism for ER diagrams, is
introduced. According to the authors, this new model resolves some
of the problems that the previously commented approaches present.

30 Chapter 3. Related Work

Finally, in [85, 86], the Levelled Data Model, a method for decom-
posing a large data model into a hierarchy of models, is defined. In
these works, a set of principles which prescribe the characteristics of
a good decomposition are proposed and a genetic algorithm is de-
scribed which automatically finds an optimal decomposition.

The UML mechanism for managing complex diagram is the pack-
age: it breaks a model into more manageable pieces. UML packages
are used to group elements (classes, components, interfaces, etc.) that
show strong cohesion with each other and loose coupling with ele-
ments in other packages. Every element in the model is owned by
exactly one package. In addition, a package provides a namespace
such that two different elements in two different packages can have
the same name.

UML [97] does not formally define how to apply packages. There-
fore, without some heuristics to group classes together, the use of
packages become arbitrary. Many text books and authors have pro-
vided general guidelines to develop them. In [116, 117], the authors
discuss the main drawbacks that the UML package presents, criticize
its current form, and present a compact and precise definition of its
visibility rules.

In [43], the author highlights the lack of semantics in the use of
UML packages and declares: “I use the term package diagram for a
diagram that shows packages of classes and the dependencies among
them”.

Regarding the use of UML for MD modeling, in [3], a grouping
mechanism to avoid flat diagrams and simplify the conceptual design
is provided. Thanks to the use of UML packages, the design is
simplified when a system becomes complex due to a high number
of dimensions and facts sharing dimensions and their corresponding
hierarchies. In particular, this approach structures the MD modeling
into different levels of complexity considering facts and dimensions at
the first level, then classification hierarchies, and finally, the whole
model.

3.7.3 Attributes as First-Class Modeling Elements
The issue of treating attributes as first-class modeling elements has
generated several debates from the beginning of the conceptual mod-
eling field [40]. More recently, some object-oriented modeling ap-
proaches such as OSM (Object Oriented System Model) [38] or ORM
(Object Role Modeling) [54] reject the use of attributes (attribute-
free models) mainly because of their inherent instability. In these
approaches, attributes are represented with entities (objects) and re-
lationships. However, an ORM diagram can be transformed into a
UML diagram and vice versa [53].

Chapter 4

A Data Warehouse
Engineering Process

Developing a DW is a complex, time consuming and prone to fail task.
Different DW models and methods have been presented during the last
few years. However, none of them addresses the whole development
process in an integrated manner. In this chapter, we outline a DW
development method, based on the UML and the UP, which addresses
the design and development of both the DW back-stage and front-end.
We extend the UML in order to accurately represent the different parts
of a DW. Our proposal provides a seamless method for developing DW.

Contents
4.1 Introduction 33
4.2 Data Warehouse Development 33
4.3 Data Warehouse Diagrams 34
4.4 Data Warehouse Engineering Process . 36

4.4.1 Requirements 38
4.4.2 Analysis 38
4.4.3 Design 39
4.4.4 Implementation 41
4.4.5 Test . 43
4.4.6 Maintenance 43
4.4.7 Post-development Review 43
4.4.8 Top-down or Bottom-up? 43

4.5 Conclusions 45
4.6 Next Chapters 45

31

4.1. Introduction 33

4.1 Introduction
Building a DW is a challenging and complex task because a DW
concerns many organizational units and can often involve many peo-
ple. Although various methods and approaches have been presented
for designing different parts of DW, no general and standard method
exists to date for dealing with the whole design of a DW.

In the light of this situation, the goal of our work is to develop
a DW engineering process1 to make the developing process of DW
more efficient. Our proposal is an OO method, based on the UML
[18, 111, 97] and the UP [59], which allows the user to tackle all
DW design stages, from the operational data sources to the final
implementation and including the definition of the ETL processes
and the final users’ requirements.

The rest of the chapter is structured as follows. In Section 4.2,
we summarize our DW engineering process. Then, in Section 4.3,
we present the diagrams we propose to model a DW. In Section 4.4,
we describe the different workflows that make up our process, and
we include an example in order to make easier the understanding of
our proposal. Finally, we present the main conclusions in Section 4.5
and we introduce the following chapters in Section 4.6.

4.2 Data Warehouse Development
The goal of our work is to develop a DW engineering process to make
the developing process of DW more efficient. In order to achieve this
goal, we consider the following premises:

• Our method should be based on a standard visual modeling
language.

• Our method should provide a clear and seamless method for
developing a DW.

• Our method should tackle all DW design stages in an inte-
grated manner, from the operational data sources to the final
implementation and including the definition of the ETL pro-
cesses and the final users’ requirements.

• Our method should provide different levels of detail.

Therefore, we have selected the UML as the visual modeling lan-
guage, our method is based on the well-accepted UP, we have ex-
tended the UML in order to accurately represent the different parts

1We use the terms “method” and “process” as synonyms: “A software devel-
opment process is the set of activities needed to transform a user’s requirements
into a software system” [59].

34 Chapter 4. A Data Warehouse Engineering Process

of a DW, and we extensively use the UML packages with the aim
of providing different levels of detail.

4.3 Data Warehouse Diagrams
The architecture of a DW is usually depicted as various layers of data
in which data from one layer is derived from data of the previous layer
[62]. Following this consideration, we consider that the development
of a DW can be structured into an integrated framework with five
stages and three levels that define different diagrams for the DW
model, as shown in Figure 4.1:

• Stages: we distinguish five stages in the definition of a DW:

– Source, which defines the structure of the operational data
sources of the DW, such as OnLine Transaction Pro-
cessing (OLTP) systems, external data sources (syndi-
cated data, census data), etc.

– Integration, which defines the mapping between the data
sources and the DW.

– Data Warehouse, which defines the structure of the DW.

– Customization, which defines the mapping between the DW
and the clients’ structures.

– Client, which defines special structures that are used by
the clients to access the DW, such as DM or OLAP
applications.

• Levels: each stage can be analyzed at three levels or perspec-
tives:

For more infor-
mation about lev-
els of data mod-
eling, consult sec-
tion 2.2, pp. 14. – Conceptual: it defines the DW from a conceptual point of

view.

– Logical: it addresses logical aspects of the DW design,
such as the definition of the ETL processes.

– Physical: it defines physical aspects of the DW, such as
the storage of the logical structures in different disks, or
the configuration of the database servers that support the
DW.

• Diagrams: each stage or level require different modeling for-
malisms. Therefore, our approach is composed of 15 diagrams,
but the DW designer does not need to define all the diagrams
in each DW project: for example, if there is a straightforward
mapping between the Source Conceptual Schema (SCS)

4.3. Data Warehouse Diagrams 35

Figure 4.1: Data warehouse design framework

and the Data Warehouse Conceptual Schema (DWCS),
the designer may not need to define the corresponding Data
Mapping (DM). In our approach, we use the UML [97] as the
modeling language, because it provides enough expressiveness
power to address all the diagrams. As the UML is a general
modeling language, we can use the UML extension mecha-
nisms (stereotypes, tag definitions, and constraints) to adapt

For more infor-
mation about
UML extension
mechanisms,
consult appendix
C, pp. 217.

the UML to specific domains. In Figure 4.1, we provide the
following information for each diagram:

– Name (in bold face): the name we have coined for this
diagram.

– UML diagram: the UML diagram we use to model this
DW diagram. Currently, we use class, deployment, and
component diagrams.

– Profile (in italic face): we show the diagrams where we
propose a new profile; in the other cases, we use a standard
UML diagram or a profile from other authors.

The best advantage of our global approach is that we always use
the same notation (based on UML) for designing the different DW
schemas and the corresponding transformations in an integrated man-
ner. Moreover, the different diagrams of the same DW are not inde-
pendent but overlapping: they depend on each other in many ways.
For example, changes in one diagram may imply changes in another,
and a large portion of one diagram may be created on the basis of
another diagram. For example, the DM is created by importing ele-
ments from the SCS and the DWCS.

We have presented in international conferences the different dia-
grams and the corresponding profiles we propose as follows:

• Multidimensional Profile, for the Data Warehouse Con-
ceptual Schema (DWCS) and the Client Conceptual
Schema (CCS), in [78, 79].

36 Chapter 4. A Data Warehouse Engineering Process

• Data Mapping Profile, for the Data Mapping (DM) between
the Source Conceptual Schema (SCS) and the DWCS,
and between the DWCS and the CCS, in [81].

• ETL Profile, for the ETL Process between the Source Log-
ical Schema (SLS) and the Data Warehouse Logical
Schema (DWLS), and the Exporting Process between the
DWLS and the Client Logical Schema (CLS), in [128].

• Database Deployment Profile, for the Source Physical
Schema (SPS), the Transportation Diagram, the Data
Warehouse Physical Schema (DWPS), and the Client
Physical Schema (CPS), in [75, 76].

4.4 Data Warehouse Engineering Process
Our method, called Data Warehouse Engineering Process (DWEP),
is based on the Unified Software Development Process, also known as
UP [59]. The UP is an industry standard Software Engineering
Process (SEP) from the authors of the UML. Whereas the UML
defines a visual modeling language, the UP specifies how to develop
software using the UML.

The UP is a generic SEP that has to be instantiated2 for an
organization, project or domain3. DWEP is our instantiation of the
UP for the development of DW. Some characteristics of our DWEP
inherited from UP are: use case (requirement) driven, architecture
centric, iterative and incremental. This three key words make the

Use-case
driven,
architecture
centric,
iterative and
incremental :
see UP chapter
1, pp. 4.

UP unique, therefore it is important to provide a brief overview of
them:

• Use case (requirement) driven: means that use cases are used
for specifying the requirements of a system, but they also drive
its design, implementation, and test.

• Architecture centric: the software architecture embodies the
most significant static and dynamic aspects of the system and
it is described as different views of the system being built.

• Iterative and incremental: the develop of the software products
is divided into smaller slices called iterations that results in an
increment that refers to growth in the product. Moreover, the
diagrams will not stay intact but should be expected to evolve

2Instantiate means add in-house standards, define a lifecycle strategy, select
what diagrams to use, define activities and workers, etc.

3Some popular instantiations of UP are Rational Unified Process [56] and
Enterprise Unified Process [109].

4.4. Data Warehouse Engineering Process 37

Figure 4.2: DWEP workflows

as time passes, as new requirements are uncovered, and as the
schedules changes, causing feature changes.

According to the UP, the project lifecycle is divided into four
phases (Inception, Elaboration, Construction, and Transition) and

Phases : see
UP chapter 1,
pp. 11.five core workflows (Requirements, Analysis, Design, Implementa-

tion, and Test). We have added two more workflows to the UP
workflows: Maintenance and Post-development review. During the
developing of a project, the emphasis shifts over the iterations, from
requirements and analysis towards design, implementation, testing,
and finally, maintenance and post-development review, but different
workflows can coexist in the same iteration.

In Figure 4.2 (adapted from [59]), we show that the seven work-
flows (listed in the left-hand column) take place over the four phases.
For each workflow, the curve represents approximately the extent to
which the workflow is carried out in each phase. Moreover, each phase
is usually subdivided into iterations, and an iteration goes through
all the seven workflows.

38 Chapter 4. A Data Warehouse Engineering Process

For each one of the workflows, we use different UML diagrams
(techniques) to model and document the development process, but a
model can be modified in different phases because models evolve over
time. In the following sections, we comment the main details of the
workflows and highlight the diagrams we use in each workflow.

4.4.1 Requirements

During this workflow, what the final users expect to do with the DW
Requirements :
see UP chapter
6, pp. 111. is captured: the final users should specify the most interesting mea-

sures and aggregations, the analysis dimensions, the queries used to
generate periodical reports, the update frequency of the data, etc.
As proposed in [19], we model the requirements with use cases. The
rationale of use cases is that focusing “on what the users need to do
with the system is much more powerful that other traditional elici-
tation approaches of asking users what they want the system to do”
[19]. Once the requirements have been defined, the DW project is
established and the different roles are designated.

Use case modeling is a simple way to [82]:

• Understand the system’s existing functions.

• Elicit the desired requirements and functions for the new system
is being created.

• Establish who will be interacting with the system and how.

The UML provides the use case diagram for visual modeling of
uses cases. Nevertheless, there is no UML standard for a use case
specification. However, we follow the common template defined in
[12], which specifies for every use case a name, a unique identifier,
the actor involved in the use case, the system state before the use can
begin (preconditions), the actual steps of the use case (flow of events),
and the system state when the use case is over (postconditions). In
[90], a more complex use case description template can be found.

For example, the use case in Figure 4.3 is about sales managers
making a query about the quarterly sales of the products in the com-
puter category.

4.4.2 Analysis

The goal of this workflow is to refine and structure the requirements
Analysis : see
UP chapter 8,
pp. 173. output in the previous workflow. Moreover, the pre-existing oper-

ational systems that will feed the DW are also documented: the
different candidate data sources are identified, the data content is
revised, etc.

4.4. Data Warehouse Engineering Process 39

Figure 4.3: UML use case template

We use the Source Conceptual Schema, Source Logical
Schema, and the Source Physical Schema (SCS, SLC, and SPS)
(Figure 4.1) to model the data sources at different levels of detail. To
get quality data in the DW, the different data sources must be well
identified.

For example, in Figure 4.4 we show the Source Logical Schema
(SLS) of a transactional system that manages the sales of a company.
This system will feed with data the DW that will be defined in the
following workflow. For the SLS we make use of the UML for Profile

For more infor-
mation about the
logical modeling
of data sources,
consult chapter 8,
pp. 121.

Database [90] that defines a series of stereotypes like «Database»,
«Schema», «Tablespace», or «Table». In the diagram shown in Fig-
ure 4.4, each element represents a class with the stereotype «Table»
that represents a table in a relational database4; we have hidden the
attributes (fields or columns) for the sake of simplicity.

4.4.3 Design
At the end of this workflow, the structure of the DW is defined.

Desgin : see
UP chapter 9,
pp. 215.The main output of this workflow is the conceptual model of the

DW. Moreover, the source to target data map is also developed at a
conceptual level.

In this workflow, the main diagrams are the Data Warehouse
Conceptual Schema (DWCS), the Client Conceptual Schema

4A class symbol with a stereotype icon may be “collapsed” to show just the
stereotype icon, with the name of the class either inside the class or below the
icon. Other contents of the class may be suppressed.

40 Chapter 4. A Data Warehouse Engineering Process

Figure 4.4: Source Logical Schema

(CCS), and the Data Mapping (DM). The DM shows the relation-
ships between the SCS and the DWCS and between the DWCS and
the CCS.

For the DWCS and the CCS, we have presented [78, 79] an exten-
sion of the UML by means of a UML profile. This profile is defined
by a set of stereotypes and tagged values to elegantly represent main
MD properties at the conceptual level. We make use of the Object

For more infor-
mation about the
multidimensional
profile, consult
chapter 6, pp.
53.

Constraint Language (OCL) to specify the constraints attached
to the defined stereotypes, thereby avoiding an arbitrary use of these
stereotypes. The main advantage of our proposal is that it is based
on a well-known standard modeling language, thereby designers can
avoid learning a new specific notation or language for MD systems.

For example, in Figure 4.5 we show level 1 of a Data Warehouse
Conceptual Schema, composed of three schemas (Production
schema, Sales schema, and Salesmen schema). The dashed arrows
that connect the different schemas indicate that the schemas share
some dimensions that have been firstly defined in the Sales schema.
In Figure 4.6 we show level 2 of the Sales schema from level 1, com-
posed of one fact (Sales fact) and four dimensions (Stores dimension,
Times dimension, Products dimension, and Customers dimension). Fi-
nally, in Figure 4.7, the definition of the Customers dimension with
the different hierarchy levels is showed.

For the DM, we have presented [81] the Data Mapping Profile

4.4. Data Warehouse Engineering Process 41

Figure 4.5: Data Warehouse Conceptual Schema (level 1)

Figure 4.6: Data Warehouse Conceptual Schema (level 2)

that introduces the data mapping diagram. In this new diagram, For more infor-
mation about the
data mapping,
consult chapter
7, pp. 97.

we treat attributes as first-class modeling elements of the model. In
this way, attributes can participate in associations that determine
the inter-attribute mapping, along with any necessary transformation
and constraints.

4.4.4 Implementation

During this workflow, the DW is built: the physical DW structures
are built, the DW is populated with data, the DW is tuned for an

Implementation :
see UP chapter
10, pp. 267.optimized running, etc. Different implementation diagrams can be

created to help this workflow.
The main diagrams in this workflow are the Data Warehouse

Logical Schema, the Data Warehouse Physical Schema, the
Client Logical Schema, the Client Physical Schema, the
ETL Process, the Exportation Process, and the Transporta-
tion Diagram. In the ETL Process, the cleansing and quality
control activities are modelled.

For more informa-
tion about ETL
process modeling,
consult chapter 9,
pp. 133.For example, in Figure 4.8 we show part of a Data Warehouse

Physical Schema. For this diagram, we have presented the Database
For more infor-
mation about
physical modeling
of data ware-
houses, consult
chapter 10, pp.
155.

Deployment Profile [76, 77]. In this example, both the components
and the nodes are stereotyped: the components are adorned with the
«Database» and «Tablespace» stereotypes, and the nodes with the
«Server» and «Disk» stereotypes.

42 Chapter 4. A Data Warehouse Engineering Process

Figure 4.7: Data Warehouse Conceptual Schema (level 3)

Figure 4.8: Data Warehouse Physical Schema

4.4. Data Warehouse Engineering Process 43

4.4.5 Test

The goal of this workflow is to verify that the implementation works
as desired. More specifically, the purposes of testing are to:

Test : see UP
chapter 11, pp.
295.

• Plan the tests required.

• Design and implement the tests by creating test cases.

• Perform the tests and analyze the results of each test.

No new diagrams are created, but previous diagrams (mainly de-
sign and implementation diagrams) may be modified according the
corrective actions that are taken.

4.4.6 Maintenance

Unlike most systems, the DW is never done. The goal of this work-
flow is to define the refresh and loading processes needed for keeping
the DW up to date. This workflow starts when the DW is built and
delivered to the final users, but it does not have an end date (it lasts
during the life of the DW).

During this workflow, the final users can state new requirements,
such as new queries, which triggers the beginning of a new iteration
(UP is an iterative process) with the Requirements workflow.

4.4.7 Post-development Review

This is not a workflow of the development effort, but a review process
for improving future projects. We look back at the development of
the DW, revise the documentation created, and try to identify both
opportunities for improvement and major successes that should be
taken into account. If we keep track of the time and effort spent on
each phase, this information can be useful in estimating time and
staff requirements for future projects.

4.4.8 Top-down or Bottom-up?

Nowadays, there are two basic strategies in the building of a DW:
the top-down and bottom-up approaches [52, 37, 138]. The top-down
approach recommends the construction of a DW first and then the
construction of DM from the parent DW. The bottom-up approach
uses a series of incremental DM that are finally integrated to build
the goal of the DW. Each approach has its own set of strengths and
weaknesses. However, in almost all projects, the DM are built rather
independently without the construction of an integrated DW, which

44 Chapter 4. A Data Warehouse Engineering Process

Figure 4.9: Top-down approach

Figure 4.10: Bottom-up approach

is indeed viewed no more as a monolithic repository but rather as a
collection of DM.

In the early years, the top-down approach was favored and it is
considered the most elegant design approach [52]. However, high rates
of failure for initial DW projects have led the majority of current
projects to the bottom-up approach. With the bottom-up approach,
the results are seen a lot sooner than implementing the DW using
a top-down approach. Moreover, risk is minimized and it is more
feasible to successfully deploy the DW in time.

Our method also allows both approaches. In the top-down ap-
proach (see Figure 4.9), the DW is built first and the data sources
are the transactional systems; then, each DM is built independently
by using our method, and the DW becomes the only data source

4.5. Conclusions 45

for all of them. Nevertheless, in the bottom-up approach (see Fig-
ure 4.10), the DM are built first from the transactional systems;
then, the DW is built and the data sources are the DM.

4.5 Conclusions
In this chapter, we have presented our Data Warehouse Engineering
Process (DWEP), a DW development process based on the UML
and the UP. UP is a generic and stable process that we have in-
stantiated to cover the development of DW. Our main contribution
is the definition of several diagrams (techniques) and UML profiles
[78, 79, 128, 81, 75] in order to model DW more properly. Whereas
the different diagrams provide different views or perspectives of a
DW, the engineering process specifies how to develop a DW and
ties up all the diagrams together. The main advantages of our ap-
proach are:

• The use of a development process, the UP, which is the out-
come of more than 20 years of experience.

• The use of the UML, a widely accepted visual modeling lan-
guage, for designing the different DW diagrams and the corre-
sponding transformations.

• The use of the UML as the modeling language provides much
better tool support than using an own modeling language.

• The proposal of a DW development process that addresses both
the back-end and the front-end of DW in an integrated manner.

4.6 Next Chapters
In the following chapters, the different diagrams that have been in-
troduced in this chapter will be presented. At the beginning of every
chapter, the schema shown in Figure 4.11 will be used as a road map
and will highlight the diagrams from our DW design framework that
are presented. The diagrams of our approach are presented as follows:

• Chapter 5 (Conceptual Modeling of Data Sources):
Source Conceptual Schema (SCS).

• Chapter 6 (Multidimensional Modeling in Data Ware-
houses): Data Warehouse Conceptual Schema (DWCS)
and Client Conceptual Schema (CCS).

• Chapter 7 (Data Mapping Diagrams for Data Ware-
houses): Data Mapping (DM).

46 Chapter 4. A Data Warehouse Engineering Process

Figure 4.11: Schema shown at the beginning of every chapter

• Chapter 8 (Logical Modeling of Data Sources and Data
Warehouses): Source Logical Schema (SLS), Data
Warehouse Logical Schema (DWLS), Client Logical
Schema (CLS).

• Chapter 9 (Modeling ETL Processes in Data Ware-
houses): ETL Process and Exporting Process.

• Chapter 10 (Physical Modeling of Data Warehouses):
Source Physical Schema (SPS), Transportation Di-
agram, Data Warehouse Physical Schema (DWPS),
Transportation Diagram, Client Physical Schema
(CPS).

Part I

Conceptual Level

47

Chapter 5

Conceptual Modeling of
Data Sources

In this chapter, we address the design of the Source Conceptual
Schema. The goal of this diagram is to have a good understanding of
the data sources that will feed the DW.

Contents
5.1 Introduction 51
5.2 Entity-Relationship and UML 51
5.3 Source Conceptual Schema 52

49

5.1. Introduction 51

5.1 Introduction

In 1974, the ANSI/X3/SPARC Study Group on Database Man-
agement System (DBMS) presented a status report where the
term “conceptual schema” was introduced for the first time [99]. In a
conceptual schema or conceptual data model, we normally represent
the important entities and the relationships among them from the
application world in terms independent of any particular data model.
A conceptual model permits the designer to focus on what is essential
in a problem, independently of the solution. One of the most popular
conceptual modeling approaches is the ER model.

Basically, the goals of the conceptual modeling are:

• To understand the real-world domain of a problem.

• To reason about the real-world domain.

• To achieve a consensus about the real-world domain.

In Section 5.2, we discuss the similarities and differences between
ER and UML regarding the conceptual data modeling. Then, in
Section 5.3 we explain how to achieve the conceptual modeling of the
data sources of a DW.

5.2 Entity-Relationship and UML

The ER model was originally proposed by Peter Chen in 1976 [25].
ER has been the conceptual data model par excellence during the
last twenty-five years. The ER model views the real world as enti-
ties and relationships. Since Peter Chen presented the ER, different
extensions have been introduced (e.g., EER) [126]. Nowadays, ER
is commonly used for database design because it maps well to the
relational model and it is simple and easy to understand with a min-
imum of training. However, ER suffers from three major problems
[101]:

1. There is no standard and several variations exist.

2. ER diagrams tend to be messy and difficult to read.

3. The ER approach is weak at handling object-oriented design
issues, such as inheritance (subtypes) and composition.

On the other hand, UML supports what ER notations support
and beyond. UML was built with ER in mind: UML is a superset of
ER notations. Therefore, UML allows the designer more flexibility

52 Chapter 5. Conceptual Modeling of Data Sources

to achieve “a valid representation of the entities, their attributes and
relationships that will fulfill the needs of the business” [82].

For data modelling purpose, UML uses the class diagram, which
resolves the problems that ER suffers by defining a standard dia-
gram that handles all of the situations needed by database designers.
Although class diagrams may include implementation details, it is
possible to use them for analysis by omitting such as details. When
used in this way, class diagrams provide an extended ER notation
[121]. For example, in [88], Robert Muller explains how to use the
UML to develop and implement databases and he states that “Ob-
ject modeling with the UML takes the place of ER modeling in modern
database design”.

According to [101], the basic similarities between ER and UML
class diagrams are:

1. Entities (classes) are drawn as boxes.

2. Binary relationships (associations) are drawn as connecting
lines.

3. N-ary associations (relationships) are drawn as diamonds.

But, the primary differences lie in the details:

1. Attributes are written in the class box.

2. Multiplicity of an association is shown as simple numerical no-
tation instead of a cryptic icon.

3. Several association (relationship) types have predefined drawing
methods.

4. Associations can be directionally named.

5. Comments and labels are explicitly supported.

6. Complex diagrams can be split into packages.

5.3 Source Conceptual Schema
The goal of the Source Conceptual Schema (SCS) is to know
what data is available for the DW. For the SCS, we apply UML in
a plain style by simply using classes, attributes and their associations
to other entities. As we have expound in the previous section, UML
is more powerful for conceptual modeling than ER.

Chapter 6

Multidimensional
Modeling in Data
Warehouses

MD modeling is the foundation of DW, MD databases, and OLAP
applications. In the past few years, there have been some proposals,
providing their own formal and graphical notations, for representing the
main MD properties at the conceptual level. However, unfortunately
none of them has been accepted as a standard for conceptual MD mod-
eling. In this chapter, we present an extension of the UML by means of
a UML profile. This profile is defined by a set of stereotypes and tagged
values to elegantly represent main MD properties at the conceptual level.
We make use of the OCL to specify the constraints attached to the de-
fined stereotypes, thereby avoiding an arbitrary use of these stereotypes.
The main advantage of our proposal is that it is based on a well-known
standard modeling language, thereby designers can avoid learning a new
specific notation or language for MD systems. Moreover, our proposal is
Model Driven Architecture (MDA) compliant and we use the Query
View Transformation (QVT) approach for an automatic generation of
the implementation in a target platform.

53

54 Chapter 6. Multidimensional Modeling in Data Warehouses

Contents
6.1 Introduction 55
6.2 Multidimensional Modeling 56
6.3 Object-Oriented Multidimensional Mod-

eling . 61
6.3.1 Different Levels of Detail 62
6.3.2 Facts and Dimensions 71
6.3.3 Dimensions and Classification Hierarchy

Levels 71
6.3.4 Categorization of Dimensions 74
6.3.5 Attributes 75
6.3.6 Degenerate Dimensions 76
6.3.7 Degenerate Facts 76
6.3.8 Additivity 77
6.3.9 Merged Level 2 and 3 77
6.3.10 Metamodel 78

6.4 A UML Profile for Multidimensional Mod-
eling . 80

6.4.1 Description 82
6.4.2 Prerequisite Extensions 85
6.4.3 Stereotypes 85
6.4.4 Well-Formedness Rules 93
6.4.5 Comments 93

6.5 Implementation of Multidimensional Mod-
els . 94

6.6 Conclusions 96

6.1. Introduction 55

6.1 Introduction

DW, MD databases, and OLAP applications provide companies
with many years of historical information for decision making pro-
cesses. It is widely accepted that these systems are based on MD
modeling. MD modeling structures information into facts and di-
mensions. A fact contains interesting measures of a business process
(sales, deliveries, etc.), whereas a dimension represents the context for
analyzing a fact (product, customer, time, etc.). The benefit of using
this MD modeling is two-fold. On the one hand, the MD model is
close to the way of thinking of data analyzers and, therefore, helps
users understand data. On the other hand, the MD model supports
performance improvement as its simple structure allows us to predict
final users’ intentions.

Some approaches have been proposed lately (see related work in
Section 3.3) to accomplish the conceptual design of these systems.
Unfortunately, none of them has been accepted as a standard for DW
conceptual modeling. These proposals try to represent main MD
properties at the conceptual level with special emphasis on MD data
structures (i.e. facts and dimensions). However, from our point of
view, none of them considers all the main properties of MD systems
at the conceptual level. Furthermore, these approaches provide their
own graphical notations, which forces designers to learn a new specific
model together with its corresponding MD modeling notation.

On the other hand, the UML [18, 97] has been widely accepted as
the standard object-oriented (OO) modeling language for modeling
various aspects of software systems. Therefore, any approach using
the UML will minimize the effort of developers in learning new nota-
tions or methodologies for every subsystem to be modeled. Another
outstanding feature of the UML is that it is an extensible language
in the sense that it provides mechanisms (stereotypes, tagged values,

For more infor-
mation about
UML extension
mechanisms,
consult appendix
C, pp. 217.

and constraints) to introduce new elements for specific domains if
necessary, such as web applications, database applications, business
modeling, software development processes, etc. [27, 90]. A collection
of enhancements that extend an existing diagram type to support a
new purpose is called a profile. Furthermore, the UML follows the
OO paradigm, which has been proved to be semantically richer than
other paradigms for MD modeling [1].

In this chapter, we present a UML profile for a coherent and
unified conceptual MD modeling. This profile expresses for each
measure its MD context in terms of relevant dimensions and their
hierarchies and allows us to easily and elegantly consider main MD
properties at the conceptual level, such as the many-to-many relation-
ships between facts and dimensions, degenerate dimensions and facts,
multiple and alternative path classification hierarchies, and non-strict

56 Chapter 6. Multidimensional Modeling in Data Warehouses

and complete hierarchies. Our extension uses the OCL [97, 139] forOCL : see UML
chapter 6, pp.
6-1. expressing well-formedness rules of the new defined elements, thereby

avoiding an arbitrary use of this extension. Moreover, we program
this extension in a well-known model-driven development tool such

For more infor-
mation about our
Rational Rose
add-in, consult
appendix E, pp.
253.

as Rational Rose [107] to show its applicability.
In summary, we intend to achieve a proposal with the following

properties:

• Accurate: a profile that allows us to represent all major impor-
tant features of MD modeling at the conceptual level.

• Consistent: we allow to import a previously-defined element
in our model whenever is possible so we avoid having different
definitions and properties for the same concept throughout a
model.

• Simple: as simple as possible, but not too simple. We limit our
graphical notation to a subset of the UML notation that allows
us to correctly describe main MD properties at the conceptual
level.

• Understandable: we attempt to make a proposal understand-
able for the intended audience (both DW designers and final
users). When complex and huge DW systems are built, it is
highly important to have a modeling approach to successfully
communicate the different actors that take part in the DW
design.

The remainder of this chapter is structured as follows: to avoid
misunderstanding resulting from the great amount of terminology
in MD modeling, Section 6.2 introduces the main properties and
aspects that a conceptual approach for MD modeling should take into
consideration. Section 6.3 describes how we make use of the UML to
consider all major properties of MD modeling at the conceptual level.
Section 6.4 formally defines the new UML extension (profile) we
propose for MD modeling. Section 6.5 describes the transformation
of MD models based on the QVT approach. Finally, Section 6.6
presents the main conclusions.

6.2 Multidimensional Modeling
In MD modeling, information is structured into facts and dimen-
sions1. A fact is an item of interest for an enterprise, and is described

1We avoid the terms fact table or dimension table during conceptual model-
ing, as table suggests logical storage in a Relational Database Management
System (RDBMS).

6.2. Multidimensional Modeling 57

through a set of attributes called measures or fact attributes
(atomic or derived), which are contained in cells or points in the
data cube. A data cube is a MD representation of data that can be
viewed from different perspectives. Therefore, a data cube is based
on a set of dimensions that determine the granularity adopted for
representing facts. On the other hand, dimensions provide the con-
text in which facts are to be analyzed. Moreover, dimensions are
also characterized by attributes, which are usually called dimension
attributes.

Let us introduce a DW modeling example inspired by a case
study presented by Giovinazzo in [48], which will be used through-
out the rest of this chapter. This example relates to a company that
comprises different dealerships that sell automobiles (cars and vans)
across several states. The DW contains three DM2, such as automo-
bile sales, part sales and service works (they are separated because
they are going to be used by different final users). However, these
data marts share some common dimensions3 such as dealership or
time, although they also have their own particular dimensions, such
as salesperson or service:

• Automobile sales (AS): considers the sales of automobiles.

• Part sales (PS): represents the sales of parts of automobiles such
as spare wheels or light bulbs.

• Service works (SW): considers the services realized by dealer-
ships such as the change of lubricating oil or brake oil.

Every one of these models has the corresponding fact which con-
tains the specific measures to be analyzed. Furthermore, they con-
sider the following dimensions to analyze measures: dealership, time,
customer, salesperson and auto for the AS; dealership, time, service,
mechanic and parts for the SW; and dealership, time, service, me-
chanic and parts for the SW. On the left hand side of Figure 6.1,
we can observe a data cube typically used for representing a MD
model. In this particular case, we have defined a cube for the AS for
analyzing measures along the auto, customer and time dimensions.

We note that many-to-one relationships exist between the fact and
every particular dimension, and thus facts are usually considered to

2A DM is a type of DW primarily designed for addressing a specific function
or department’s needs: whereas a DW combines databases across an entire enter-
prise, a DM is usually smaller and focus on a particular subject or department.
According to [48], there are two kinds of DM: “dependent data marts receive
their data from the enterprise data warehouse; independent data marts receive
data directly from the operational environment”.

3Common dimensions used in different data marts are usually called conformed
dimensions[63].

58 Chapter 6. Multidimensional Modeling in Data Warehouses

have many-to-many relationships between any of two dimensions. In
the previous AS, an autosales fact is related to only one auto that
is sold by one dealership and purchased by just one customer at one
time.

Nevertheless, there are some cases in which many-to-many rela-
tionships may exist between the fact and some particular dimensions.
For example, the autosales fact of AS is considered to have a particu-
lar many-to-many relationship to the salesperson dimension, as more
than one salesperson may have participated in selling one auto (al-
though every auto is still purchased by only one customer in just one
dealership store and at one time).

When having a many-to-many relationship with a particular di-
mension as previously-described, we usually need to consider specific
attributes to provide further features for every instance combination
in this particular relationship. In doing so, the measures provided
are usually called degenerated facts [63, 48]. In the previous ex-
ample, we may be interested in recording the specific commission
that a salesperson obtains for every particular auto sales he/she par-
ticipates.

There are some cases in which we do not consider a dimension
explicitly because we believe that most of its properties is already
represented throughout other elements (facts and dimensions) in our
MD model. However, we still believe that we need some attribute
or property in the fact to uniquely identify fact instances. When
this occurs, we usually call these dimensions as degenerated di-
mensions [63, 48]. Therefore, a degenerate dimension is one whose
identifier exists only in a fact, but which is not materialized as an
actual dimension. This provides other fact features in addition to
the measures for analysis. In our example, instead of considering the
autosales, we could had represented the bill of an autosales and con-
sider the bill and bill line numbers as other bill features (while not
having a bill dimension materialized).

With reference to measures, the concept of additivity or sum-
maribility [16, 49, 63, 132, 133] on measures along dimensions is cru-
cial for MD data modeling. A measure is additive along a dimension
if the SUM operator can be used to aggregate attribute values along
all hierarchies defined on that dimension. The aggregation of some
fact attributes (roll-up4 in OLAP terminology), however, might not
be semantically meaningful along all dimensions. For example, all
measures that record a static level, such as inventory levels, financial
account balances or temperatures, are not inherently additive along
the time dimension. In our particular warehouse example, the mea-
sure quantity from that records the quantity of a specific auto in a

4Roll-up is the presentation of data at a higher level of detail, whereas drill-
down is the presentation of data at a lower level of detail.

6.2. Multidimensional Modeling 59

Figure 6.1: A data cube and classification hierarchies defined on di-
mensions

sale at a given time is not additive along the salesperson dimension.
However, other aggregation operators (e.g. MAX, MIN and AVG)
could still be used along the same salesperson dimension. Moreover,
quantity can be additive along the auto dimension. Thus, a measure
such as quantity is called semiadditive since it is additive along one
dimension, but non-additive along another dimension.

Regarding dimensions, the classification hierarchies defined on
certain dimension attributes are crucial because the subsequent data
analysis will be addressed by these classification hierarchies. A di-
mension attribute may also be aggregated (related) to more than
one hierarchy, and therefore, multiple classification hierarchies
and alternative path hierarchies are also relevant. For this rea-
son, a common way of representing and considering dimensions with
their classification hierarchies is by means of Directed Acyclic Graphs
(DAG).

On the right hand side of Figure 6.1, we can observe different
classification hierarchies defined on the auto, customer and time di-
mensions from the AS5. On the auto dimension, we have considered
a multiple classification hierarchy to be able to aggregate data values
along two different hierarchy paths: (i) auto, model, manufacturer
and (ii) auto, type. There may exist other attributes that are not
used for aggregating purposes and provide features for other dimen-
sion attributes (e.g. auto description). On the customer dimension,
we have defined an alternative path classification hierarchy with two
different paths that converge into the same hierarchy level: (i) cus-
tomer, city, state and (ii) customer, region and state. Finally, we
have also defined another multiple classification hierarchy with the
following paths on the time dimension: (i) time, month, semester,
year and (ii) time and season.

5These classification hierarchies are different from those specifically presented
by Giovinnazo in [48] as ours will allow us to consider more peculiarities.

60 Chapter 6. Multidimensional Modeling in Data Warehouses

Nevertheless, classification hierarchies are not so simple in most
cases. The concepts of strictness and completeness are important,
not only for conceptual purposes, but also for further design steps of
MD modeling [133]. “Strictness” means that an object of a lower
level of a hierarchy belongs to only one of a higher level, e.g. a city
is related to only one state. “Completeness” means that all members
belong to one higher-class object and that object consists of those
members only. For example, suppose we say that the classification
hierarchy between the state and city levels is “complete”. In this case,
a state is formed by all the cities recorded and all the cities that form
the state are recorded.

OLAP scenarios sometimes become very large as the number of
dimensions increases significantly, and therefore, this fact may lead
to extremely sparse dimensions and data cubes. In this way, there are
attributes that are normally valid for all elements within a dimension
while others are only valid for a subset of elements (also known as the
categorization of dimensions [68, 133]). For example, attributes
number of passengers and number of airbags would only be valid for
cars and will be “null” for vans. Thus, a proper MD data model
should be able to consider attributes only when necessary, depending
on the categorization of dimensions.

Furthermore, let us suppose that apart from a high number of
dimensions (e.g. 20) with their corresponding hierarchies, we have a
considerable number of facts (e.g. 8) sharing dimensions and clas-
sification hierarchies. This would lead us to a very complex de-
sign, thereby increasing the difficulty in reading the modeled system.
Therefore, a MD conceptual model should also provide techniques
to avoid flat diagrams, allowing us to group dimensions and facts
under some criteria to simplify the final model.

Once the structure of the MD model has been defined, final users
usually identify a set of initial queries as a starting point for the sub-
sequent data analysis phase. From these initial queries, users can
apply a set of operations (usually called OLAP operations [24, 63])
to the MD view of data for further data analysis. These OLAP
operations are usually as follows: roll-up (increasing the level of ag-
gregation) and drill-down (decreasing the level of aggregation) along
one or more classification hierarchies, slice-dice (selection and pro-
jection) and pivoting (re-orienting the MD view of data which also
allows us to exchange dimensions for facts; i.e., symmetric treatment
of facts and dimensions).

6.3. Object-Oriented Multidimensional Modeling 61

Figure 6.2: Different representations for a stereotyped class

6.3 Object-Oriented Multidimensional Mod-
eling

Throughout this section, we will use a running example to illustrate
the basics and the applicability of our OO MD approach. We use
the same example presented in Section 6.2 and inspired by a case
study from [48].

As our proposal addresses the DW design at a conceptual level,
some implementation issues such as primary and foreign keys or data
types are not our first priority. Therefore, the goal of our proposal
is the representation of the main structural aspects of MD modeling
at the conceptual level.

In our approach, the main structural properties of MD models
Class diagram :
see UML (3.19,
3-34).are specified by means of a UML class diagram in which the informa-

tion is clearly separated into facts and dimensions. The main features
considered are the many-to-many relationships between facts and di-
mensions, degenerate facts and dimensions, multiple and alternative
path classification hierarchies, and non-strict and complete hierar-
chies. Our approach proposes the use of UML packages in order to

Packages : see
UML (2.15.2.4,
2-184), (3.13,
3-16).group classes together into higher level units creating different levels

of abstraction, and therefore, simplifying the final model. In this way,
when modeling complex and large DW systems, the designer is not
restricted to use flat UML class diagrams.

Our proposal is formally defined as a UML extension by means
of a UML profile. Although we provide the complete formal defi-

Profile :
see UML
(2.6, 2-73),
(2.15.4.2,
2-193).nition of our extension in the next section, we introduce the main

stereotypes and some tagged values in this section. In a diagram,
UML allows us to represent a stereotype in four different ways. In
Figure 6.2, we show four possible representations of a class with the
«Fact» stereotype (one of the stereotypes we propose): icon (the
stereotype icon is displayed), decoration (the stereotype decoration
is displayed inside the element), label (the stereotype name is dis-
played and appears inside guillemets), and none (the stereotype is
not indicated).

62 Chapter 6. Multidimensional Modeling in Data Warehouses

6.3.1 Different Levels of Detail

Style issues, such as avoiding crossing lines, affect understandability
of diagrams: messy diagrams are harder to read than clean ones.
Moreover, the level of detail in models, also affect understandability
because a highly detailed model is harder to comprehend than a less
detailed one. In our MD modeling approach, thanks to the use of
UML packages, we can elegantly represent huge and complex models
at different levels of complexity.

Based on our experience in real-world cases, we have developed a
set of design guidelines for using UML packages6 in MD modeling.
In UML, a package defines a namespace, so that two distinct elements
contained in two distinct packages may have the same name. We
summarize all the design guidelines in Table 6.1.

Guideline 0a is the foundation of the rest of the guidelines and
summarizes our overall approach. This guideline closely resembles
how data analyzers understand MD modeling. We have divided the
design process into three levels (Figure 6.3 shows a summary of our
proposal and in Table 6.1 we indicate in which level each guideline is
applied):

Level 1 : Model definition. A package represents a star schema7 of
a conceptual MD model. A dependency between two packages

Dependency :
see UML
(2.5.2.15,
2-33), (3.51,
3-90). at this level indicates that the star schemas share at least one

dimension, allowing us to consider conformed dimensions.

Level 2 : Star schema definition. A package represents a fact or a
dimension of a star schema. A dependency between two dimen-
sion packages at this level indicates that the packages share at
least one level of a dimension hierarchy.

Level 3 : Dimension/fact definition. A package is exploded into a
set of classes that represent the hierarchy levels defined in a
dimension package, or the whole star schema in the case of the
fact package.

The MD model is designed in a top-down fashion by further de-
composing a package. We have limited our proposal to three levels
because “deep hierarchies tend to be difficult to understand, since each
level carries its own meanings” [27].

6Package diagrams are a subset of class diagrams, but developers sometimes
treat them as a separate technique.

7Although we use the concept star schema, it does not imply any relational
implementation of the DW. We prefer to use a well-known concept instead of
inventing a new term.

6.3. Object-Oriented Multidimensional Modeling 63

No Level Guideline
0a At the end of the design process, the MD model will

be divided into three levels: model definition, star
schema definition, and dimension/fact definition

0b Before starting the modeling, define facts and dimen-
sions and remark the shared dimensions and dimen-
sions that share some hierarchy levels

1 1 Draw a package for each star schema, i.e., for every
fact considered

2a 1 Decide which star schemas will host the definition
of the shared dimensions; according to this decision,
draw the corresponding dependencies

2b 1 Group together the definition of the shared dimen-
sions in order to minimize the number of dependen-
cies

2c 1 Avoid cycles in the dependency structure
3 2 Draw a package for the fact (only one in a star pack-

age) and a package for each dimension of the star
schema

4a 2 Draw a dependency from the fact package to each one
of the dimension packages

4b 2 Never draw a dependency from a dimension package
to a fact package

5 2 Do not define a dimension twice; if a dimension has
been previously defined, import it

6 2 Draw a dependency between dimension packages in
order to indicate that the dimensions share hierarchy
levels

7 3 In a dimension package, draw a class for the dimen-
sion class (only one in a dimension package) and a
class for every classification hierarchy level (the base
classes)

8 3 In a fact package, draw a class for the fact class
(only one in a fact package) and import the dimension
classes with their corresponding hierarchy levels

9 3 In a dimension package, if a dependency from the
current package has been defined at level 2, import
the corresponding shared hierarchy levels

10 3 In a dimension package, when importing hierarchy
levels from another package, it is not necessary to
import all the levels

Table 6.1: Multidimensional modeling guidelines for using packages

64 Chapter 6. Multidimensional Modeling in Data Warehouses

Figure 6.3: The three levels of a MD model explosion using packages

Guidelines 2b and 2c make sure that cross-package dependen-
cies result only in acyclic graphs8 in order to keep things simple.
Circular dependencies may be reduced by:

• Splitting one of the questionable packages into two smaller pack-
ages.

• Introducing a third intermediate package (try to factor the com-
mon elements out into a third package).

• Merging the questionable packages.

For example, in Figure 6.4 (a) the two «StarPackage» (stereo-
typed packages represented by means of icons) form a cycle that has
been broken in Figure 6.4 (b) thanks to the introduction of a third
«StarPackage» that contains the shared dimensions; this new pack-
age, that we call utility package, does not contain a «FactPackage»,
just the definition of the common elements to both packages. In Fig-
ure 6.4 (c) we show an alternative solution: the two «StarPackage»
have been merged into a single one called StarPackage1-2, eliminat-
ing the shared elements, and therefore, avoiding repeating already-
defined elements.

Applying Package Design Guidelines

The DW of our running example consists of three data marts: au-
tomobile sales, part sales, and service works. Figure 6.5 shows the
first level of the model: on the left hand side, the packages are dis-
played with the normal UML presentation and the corresponding
stereotype icon is placed in the upper right corner of the package

8Fowler states: “As a rule of thumb, it is a good idea to remove cycles in the
dependency structure” [43].

6.3. Object-Oriented Multidimensional Modeling 65

(a) (b) (c)

Figure 6.4: Model definition with and without cycles

symbol; on the right hand side, the entire package symbol has been
“collapsed” into the corresponding stereotype icon. Through the rest
of this chapter, we have adopted the second form of representing the
stereotypes, because we consider it more expressive and symbolic, as
well as it is also more understandable for the final users.

In the example shown in Figure 6.5, the first level is formed by
three «StarPackage» that represent the different data marts that form
the DW (G.1). A dashed arrow from one package to another one de-
notes a dependency between packages, i.e., the packages have some
dimensions in common (G.2a). The direction of the dependency indi-
cates that the common dimensions shared by the two packages were
first defined in the package pointed to by the arrow (to start with, we
have to choose a «StarPackage» to define the dimensions, and then,
the other «StarPackage» can use them with no need to define them
again). If the common dimensions had been first defined in another
package, the direction of the arrow would have been different. In any
case, it is highly recommended to group together the definition of the
common dimensions in order to reduce the number of dependencies
(G.2b) and also to avoid circular dependencies (G.2c).

At any level of our proposal, the DW designer can use UML
notes to add more information, remark some characteristic, clarify

Note : see UML
(3.11, 3-13),
(3.16, 3-26).some ambiguous situation, or describe some concept in final users’

terms. For example, in Figure 6.5, we have used three UML notes
to remark the content of each package.

A package that represents a star schema is shown as a simple icon
with names. The content of a package can be dynamically accessed
by “zooming-in” to a detailed view. For example, Figure 6.6 shows
the content of the package Auto-sales schema (level 2). The «Fact-
Package» Auto-sales fact is represented in the middle of Figure 6.6,

66 Chapter 6. Multidimensional Modeling in Data Warehouses

(a) (b)

Figure 6.5: Level 1: different star schemas of the running example

Figure 6.6: Level 2: Auto-sales schema

while the different «DimensionPackage» are placed around the «Fact-
Package» (G.3). As seen in Figure 6.6, a dependency is drawn from
the «FactPackage» to each one of the «DimensionPackage», because
the «FactPackage» comprises the whole definition of the star schema,
and therefore, uses the definitions of dimensions related to the fact
(G.4a). At level 2, it is possible to create a dependency from a «Fact-
Package» to a «DimensionPackage» or between «DimensionPackage»,
but we do not allow a dependency from a «DimensionPackage» to a
«FactPackage», since it is not semantically correct in our proposal
(G.4b).

Figure 6.7 shows the content of the package Services schema (level
2). As in the Auto-sales schema, the «FactPackage» is placed in the

6.3. Object-Oriented Multidimensional Modeling 67

Figure 6.7: Level 2: Services schema

middle of Figure 6.7 and the «DimensionPackage» are placed around
the «FactPackage» in a star fashion. The three «DimensionPackage»
(Customer dimension, Dealership dimension, and Time dimension) have
been previously defined in the Auto-sales schema (Figure 6.6), and
Parts dimension has been previously defined in the Parts schema (not
shown in this chapter), so all of them are imported in this package

Importing :
see UML
(2.5.2.32,
2-47), (3.38,
3-62).(G.5). Our approach does not forbid to define another dimension with

or without the same name or properties in different «StarPackage».
However, we highly recommend not to do it as we believe that this
situation can lead us to a confusing or misleading diagram. There-
fore, the name of the «StarPackage» where they have been previously
defined appears below the package name (from Auto-sales schema and
from Parts schema respectively). In this example, we can notice that
it is possible to import packages defined in different «StarPackage».
On the other hand, since Mechanic dimension and Service dimension
have been defined in the current package, they do not show a pack-
age name. At this level, a dependency between «DimensionPackage»
indicates that they share some hierarchy levels (G.6). For example,
a dependency between Mechanic dimension and Customer dimension
is represented because there is a shared hierarchy9 (City, Region, and
State), as we will see next.

The benefit of the UML importing mechanism is twofold. On
9We have decided to share a hierarchy for both dimensions to obtain a clearer

design, although the designer may have decided not to do it if such sharing is not
totally feasible.

68 Chapter 6. Multidimensional Modeling in Data Warehouses

Figure 6.8: Level 3: Customer dimension

one hand, the DW designer only needs to define the different MD
elements once, and therefore, they can be used anywhere in the model.
On the other hand, as the MD elements are defined only once, any
possibility of duplication and ambiguity is removed.

The content of the «DimensionPackage» and «FactPackage» is
represented at level 3. The diagrams at this level are only comprised
of classes and associations among them. For example, Figure 6.8
shows the content of the package Customer dimension (level 3), that
contains the definition of the «Dimension» class (Customer) and the
different hierarchy levels (Customer personal data, City, Region, and
State) that are represented by «Base» classes (G.7). The hierarchy
of a dimension defines how the different OLAP operations (roll-up,
drill-down, etc.) can be applied [63].

As previously commented, Mechanic dimension and Customer di-
mension share some hierarchy levels, and therefore, there is a depen-
dency between them (see Figure 6.7). Figure 6.9 shows the content
of Mechanic dimension: this dimension contains six hierarchy levels,
but three of them (City, Region and State) have been imported from
another dimension.

Regarding «FactPackage», Figure 6.10 shows the content of the
package Auto-sales fact (level 3). In this package, the whole star
schema is displayed: the «Fact» class is defined with the correspond-
ing measures (Commission and Price), and the «Dimension» classes
with their corresponding hierarchy levels are imported (G.8). This
level may become very complex because the dimensions may be very
complex and of a considerable size due to a high number of dimension

6.3. Object-Oriented Multidimensional Modeling 69

Figure 6.9: Level 3: Mechanic dimension

70 Chapter 6. Multidimensional Modeling in Data Warehouses

Figure 6.10: Level 3: Auto-sales fact

levels. However, the DW designer only has to import them from the
corresponding «DimensionPackage». In Figure 6.10, we have hidden
a part of the attributes and methods of some «Base» classes for the
sake of simplicity.

Advantages of multi-fact schemas

Our approach allows DW designers to define a MD model that com-
prises multiple facts (multiple «StarPackage») linked between them
by shared dimensions. This feature, commonly known as fact con-
stellation, provides the structure to allow the final user to traverse
the schema to perform an analysis known as drill-across. Moreover,
keeping common dimensions will facilitate the future implementa-

6.3. Object-Oriented Multidimensional Modeling 71

tion of the MD model, e.g., in the case of a DW, the loading and
refreshment processes will be simpler.

6.3.2 Facts and Dimensions

Facts and dimensions are represented by «Fact» and «Dimension»
classes, respectively. Then, «Fact» classes are specified as com-
posed classes by means of aggregation relationships of n «Dimen-
sion» classes, represented by a hollow diamond attached to the end
of the relationship next to the «Fact» class. The flexibility of the
aggregation in the UML allows us to represent many-to-many rela-
tionships between «Fact» and particular «Dimension» by indicating
the 1..* cardinality at the end of the aggregation near the «Dimen-
sion». In our example shown in Figure 6.10, we can see how the
«Fact» class Auto-sales has a many-to-one relationship with Auto,
Dealership, Time, and Customer dimensions, but a many-to-many re-
lationship with the Salesperson dimension.

6.3.3 Dimensions and Classification Hierarchy Lev-
els

«Dimension» classes are composed of classification hierarchy levels;
every classification hierarchy level is specified by a class called «Base»
class. An association (represented by a stereotype called «Rolls-
upTo») between «Base» classes specifies the relationship between
two levels of a classification hierarchy. The only prerequisite is that
these classes must define a Directed Acyclic Graph (DAG) rooted
in the «Dimension» class. The DAG structure can represent both
alternative path and multiple classification hierarchies.

Following Hüsemann’s definitions [55], a «Dimension» contains a
unique first hierarchy (or dimension) level called terminal dimension
level. A roll-up path (or aggregation path in [55]) is a subsequence
of dimension levels, which starts in a terminal dimension level (lower
detail level) and ends in an implicit dimension level (not graphically
represented) that represents all the dimension levels.

We use roles to represent the way the two classes see each other in
Rolename : see
UML (3.43.2.6,
3-72).a «Rolls-upTo» association: role r represents the direction in which

the hierarchy rolls-up, whereas role d represents the direction in
which the hierarchy drills-down. Moreover, we use roles to detect
and avoid cycles in a classification hierarchy, and therefore, help us
to achieve the DAG condition. For example, on the left hand side
of Figure 6.11, a classification hierarchy composed of three «Base»
classes is represented. On the right hand side of Figure 6.11, a graph
that symbolizes the classification hierarchy is shown and the direction
of the arrows is based on the roles of the «Rolls-upTo» associations:

72 Chapter 6. Multidimensional Modeling in Data Warehouses

Figure 6.11: Classification hierarchy without cycles

from role d to role r (in the direction of rolling-up). As we can see
in this figure, this classification hierarchy does not contain any cycle.
However, the classification hierarchy shown in Figure 6.12 presents a
cycle («Base» classes B2, B3, and B4), and therefore, this classifica-
tion hierarchy is absolutely incorrect in our model.

In UML, an arrow may be attached to the end of an association
to indicate that navigation is supported toward the class attached

Navigability :
see UML
(3.43.2.4,
3-72). to the arrow. In our proposal, the navigation is always supported

toward both ends of an association (it is always possible to roll-up
or drill-down on both directions), but the DW designer can use the
UML navigability to deliberately represent a default roll-up or drill-
down path when a «Base» class participates in multiple classifica-
tion hierarchies10. However, only one default roll-up and one default
drill-down path can start from a «Base» class. For example, in Fig-
ure 6.13 (a) we have represented a classification hierarchy that is
incorrect because two default roll-up paths start from B1 (B1 rolls-
up to B2 and B1 rolls-up to B3), and two default drill-down paths
start from B4 (B4 drills-down to B2 and B4 drills-down to B3). The
default roll-up and drill-down paths that are in conflict have been
remarked with a dashed circle. This same classification hierarchy is

10Please, note that the navigability is an optional feature of our approach and it
is not mandatory to always specify a roll-up or drill-down default path. Moreover,
it is not necessary to draw the navigability when there is only one roll-up or drill-
down path.

6.3. Object-Oriented Multidimensional Modeling 73

Figure 6.12: Classification hierarchy with one cycle

correctly represented in Figure 6.13 (b); note that it would have also
been possible to define other default paths, such as B1 rolls-up to B3
and B4 drills-down to B3. Regarding our running example, we can
see the use of the navigability (default path) concept in Figure 6.8,
6.9, and 6.10.

The multiplicity 1 and 1..* defined in the role r of a classifi-
cation hierarchy level addresses the concepts of strictness and non-
strictness, respectively. Strictness means that an object at a hierar-
chy’s lower level belongs to only one higher-level object (e.g., as one
month can be related to more than one season, the relationship be-
tween them is non-strict). In a DW, it is very important to identify
and define non-strict hierarchies, because if they are not correctly
treated, some problems such as double-counting can appear when
aggregations are calculated in further design steps.

Moreover, defining an association as «Completeness» addresses
the completeness of a classification hierarchy. By completeness we
mean that all members belong to one higher-class object and that
object consists of those members only; for example, all the recorded
seasons form a year, and all the seasons that form the year have been
recorded. Our approach assumes all classification hierarchies are non-
complete by default.

In a DW, time is the dominant dimension. Many forms of anal-
ysis involve either trends or inter-period comparisons. Inmon [57]
defines “A data warehouse is a subject-oriented, integrated, time-
variant, nonvolatile collection of data in support of management’s

74 Chapter 6. Multidimensional Modeling in Data Warehouses

(a) (b)

Figure 6.13: Classification hierarchy with wrong and right navigabil-
ity

decisions”, and Kimball [63] says that “The time dimension is the
one dimension virtually guaranteed to be present in every data ware-
house, because virtually every data warehouse is a time series”. Due
to this important fact, in our proposal a «Dimension» class includes
a boolean tagged value called {isTime} that indicates whether it is a
time dimension or not11.

6.3.4 Categorization of Dimensions

The categorization of dimensions, used to model additional features
for a class’s subtypes, is represented by means of UML generalization-
specialization12 relationships in our approach. However, only the

Generalization :
see UML
(2.5.2.24,
2-38), (3.50,
3-86). parent of a categorization can belong to both a classification and

generalization-specialization hierarchy at the same time. Moreover,
multiple inheritance is not allowed in our approach.

An example of categorization for the Auto dimension is shown in
Figure 6.14: Car and Van belong to a generalization-specialization
relationship rooted in Auto general information; we have created this

11This will allow us an automatically generation of particular time structures
in a target commercial OLAP tool.

12Generalization is a relationship between model elements indicating that one
element (child or subclass) is a “type of” another element (parent or superclass).
Objects of the child are substitutable for objects of the parent.

6.3. Object-Oriented Multidimensional Modeling 75

Figure 6.14: Level 3: Auto dimension

categorization because Car and Van contain different attributes.

6.3.5 Attributes
Only «Fact», «Base», and «DegenerateFact» (see Section 6.3.7)
classes can have attributes. «Dimension» classes do not contain at-
tributes, because they represent the concept of dimension and they
are used as “anchorage points”: the information about a dimension is
represented in the corresponding hierarchy levels («Base» classes).

«Fact» classes consist of two kinds of attributes: «FactAttribute»,
which represent measures (the transactions or values being analyzed),
and «DegenerateDimension» (see Section 6.3.6).

On the other hand, «Base» classes consist of three kinds of at-
tributes: «OID», «Descriptor», and/or «DimensionAttribute». Ev-
ery «Base» class can have one «OID» attribute (an identifying at-
tribute) and must have one «Descriptor» attribute13. These at-
tributes are necessary for an automatic exportation process into com-

13A descriptor attribute will be used as the default label in the data analysis
in OLAP tools.

76 Chapter 6. Multidimensional Modeling in Data Warehouses

mercial OLAP tools, as these tools store this information in their
metadata (if the «OID» attribute is not provided, then it will be
automatically created in the exportation process). A «DimensionAt-
tribute» provides descriptive information about dimension instances.
A «DimensionAttribute» can be optional: it needs not be specified
for each element of the corresponding level and therefore may con-
tain null values. As a «DimensionAttribute» can be used to delimit
the resulting set of a query, it is important to know if an attribute
is optional (considered in our approach as tagged values, see Section
6.4.3), because then the results may be incomplete [55].

«FactAttribute», «Descriptor», and «DimensionAttribute» can also
be derived attributes. This situation is indicated by placing / be-

Derived
element : see
UML (2.5.2.27,
2-42), (3.52,
3-93). fore the corresponding name, and the derivation rule is defined as a

tagged value called {derivationRule} of the corresponding stereotype.
For example, in Figure 6.10, FullName attributes of SP personal data
and Customer personal data are derived, because they are obtained
by joining Name and Surname attributes (the derivation rules are not
shown in order to avoid a cluttered diagram).

6.3.6 Degenerate Dimensions

Our approach also allows the DW designer to define degenerate di-
mensions in the «Fact» class, by using the stereotype «DegenerateDi-
mension» for an attribute. A degenerate dimension is a «Dimension»
that is stored as an attribute of the «Fact» class, but we do not
explicitly represent it as a dimension in our diagram. Degenerated
dimensions are useful when attempting to associate the facts in the
DW with the original data sources [48, 63]. For example, in Fig-
ure 6.10, ContractN is a «DegenerateDimension» of Auto-sales that
represents the identification number of the sale contract.

6.3.7 Degenerate Facts

In [48], the degenerate fact concept is defined as a measure recorded
in the intersection table of a many-to-many relationship between the
fact table and a dimension table. In our approach, we represent a
«DegenerateFact» as a UML association class attached to a many-

Association
class : see
UML (2.5.2.4,
2-21), (3.46,
3-77). to-many aggregation relationship between a «Fact» class and a «Di-

mension» class14. This «DegenerateFact» class can contain «FactAt-
tribute» and «DegenerateDimension».

For example, in Figure 6.10, SP commision is a «DegenerateFact»
attached to the aggregation relationship between Auto-sales fact and

14Actually, an association class is an association that also has class proper-
ties (or a class that has association properties). Even though it is drawn as an
association or a class, it is really just a single model element containing attributes.

6.3. Object-Oriented Multidimensional Modeling 77

Salesperson dimension. This «DegenerateFact» is the commission per-
centage that a salesperson received for a particular sale. The rela-
tionship between Auto-sales and Salesperson is many-to-many because
different salespersons can take part in the same sale (they share the
total commission), and a salesperson can also take part in different
sales.

6.3.8 Additivity

We consider all measures as additive by default, i.e. the SUM op-
erator can be applied to aggregate their measure values along all
dimensions. Non-additivity and semi-additivity are considered by
defining constraints on measures between brackets and placing them
somewhere around the fact class. These constraints are represented
in a property tag of the UML notation for clarity reasons, although
they have formal underlying formulae and contain the allowed oper-
ators, if any, along the dimension that the measure is not additive.
However, in large MD models, the readability can be reduced due
to a great amount of additivity rules shown in a diagram. In these
cases, we use summarizability appendices, as described in [55].

For example, in Figure 6.10, we can see that the attribute Quantity
in the Auto-sales class cannot be aggregated along the Salesperson
dimension by using the SUM operator. However, the AVG, MIN and
MAX aggregation operators can still be applied to aggregate this
attribute along the Salesperson dimension.

6.3.9 Merged Level 2 and 3

In some occasions, the DW designer needs to have a general overview
of all facts, dimensions, and dependencies that a DW comprises. In
our approach, this can be achieved if all the star schema definitions
(level 2) are merged into one diagram. This diagram is automatically
built and the DW designer cannot make changes in it because it
is read-only. The same can be done at level 3, but the resulting
diagram can be extraordinary complex in a big real DW with tens
of dimensions and hundreds of hierarchy levels.

For example, in Figure 6.15 we show the merged level 2 of our
running example with the three «FactPackage» and the different
«DimensionPackage»; for each one of them, the legend (from . . .)
indicates in which «StarPackage» it has been defined. Moreover, the
dependencies show where each «DimensionPackage» is used.

78 Chapter 6. Multidimensional Modeling in Data Warehouses

Figure 6.15: Merged level 2: representation of all the fact and dimen-
sion packages together

Figure 6.16: Metamodel divided into three packages

6.3.10 Metamodel

In this section, we present the metamodel of our OO conceptual MD
approach using a UML class diagram. For the sake of simplicity,
we have divided this diagram into three packages, as it is shown in
Figure 6.16.

In Figure 6.17 we show the content of the package Level1. This
package specifies the modeling elements that can be applied in the
level 1 of our approach. In this level, only the «StarPackage» model
element is allowed. We use the navigability of an association to
denote the direction of a dependency or an importation. For ex-
ample, a «StarPackage» may import «DimensionPackage»s from an-
other «StarPackage». We also show the modeling elements that a

6.3. Object-Oriented Multidimensional Modeling 79

Figure 6.17: Metamodel: level 1

Figure 6.18: Metamodel: level 2

«StarPackage» can contain: «FactPackage» and «DimensionPack-
age».

In Figure 6.18 we show the content of the package Level2. In this
level, the modeling elements that can be used are «FactPackage»
and «DimensionPackage». A «FactPackage» may contain only one
«Fact» and various «DegenerateFact», whereas a «DimensionPack-
age» may contain only one «Dimension» and various «Base».

Finally, in Figure 6.19 we show the content of the package Level3.
This diagram represents the main MD properties of our modeling
approach. In this way, dimensions and facts are represented using
the classes «Dimension» and «Fact», respectively.

80 Chapter 6. Multidimensional Modeling in Data Warehouses

Figure 6.19: Metamodel: level 3

6.4 A UML Profile for Multidimensional
Modeling

In this section, we present an extension to the UML in the form
of a profile. Unfortunately, there does not exist a standard way for
defining a UML profile.

According to [27], “An extension to the UML begins with a brief
description and then lists and describes all of the stereotypes, tagged
values, and constraints of the extension. In addition to these ele-
ments, an extension contains a set of well-formedness rules. These
rules are used to determine whether a model is semantically consistent
with itself ”. Therefore, based on this quote and our personal experi-
ence, we define our UML extension for MD modeling following the
schema shown in Table 6.2.

For the definition of the stereotypes and tagged values, we follow
the structure of the examples included in the UML [97]. In Table 6.3
and Table 6.4 we show the schemas followed in our definition of the
stereotypes and the tagged values, respectively.

For the definition of well-formedness rules and constraints we use
the OCL [97]. In this way, we avoid an arbitrary use of the pro-
file. Moreover, using OCL has several benefits: it is a well-known
constraint language, we do not need invest effort on defining a new
language, and there is tool support for OCL. For the sake of read-
ability, in the constraint definitions we use the conventions stated in
the UML:

Conventions :
see UML (2.3.3,
2-10).

• self, which can be omitted as a reference to the element defin-
ing the context of the invariant, has been kept for clarity. For
example, we write self.feature instead of only feature.

6.4. A UML Profile for Multidimensional Modeling 81

• Description: A little description of the extension in natural
language.

• Prerequisite Extensions: It indicates whether the current
extension needs the existence of previous extensions.

• Stereotypes: The definition of the stereotypes.

• Well-Formedness Rules: The static semantics of the
metaclasses are defined as a set of invariants defined by means
of OCL expressions.

• Comments: Any additional comment, decision or example,
usually written in natural language.

Table 6.2: Extension definition schema

• Name: The name of the stereotype.

• Base class (also called Model class): The UML metamodel
element that serves as the base for the stereotype.

• Description: An informal description with possible explana-
tory comments.

• Icon: It is possible to define a distinctive visual cue (an icon).

• Constraints: A list of constraints defined by means of OCL
expressions associated with the stereotype, with an informal
explanation of the expressions.

• Tagged values: A list of all tagged values that are associ-
ated with the stereotype.

Table 6.3: Stereotype definition schema

• Name: The name of the tagged value.

• Type: The name of the type of the values that can be asso-
ciated with the tagged value.

• Multiplicity: The maximum number of values that may be
associated with the tagged value.

• Description: An informal description with possible explana-
tory comments.

Table 6.4: Tagged value definition schema

82 Chapter 6. Multidimensional Modeling in Data Warehouses

• In expressions where a collection is iterated, an iterator is used
for clarity, even when formally unnecessary. However, the type
of the iterator is usually omitted. For example, we write:
self.contents->forAll(me | not me.oclIsKindOf(Package))
instead of
self.contents->forAll(not me.oclIsKindOf(Package)).

• The collect operation is left implicit where possible.For ex-
ample, we write:
self.connection.participant
instead of
self.connection->collect(participant).

We have defined fourteen stereotypes: three specialize in the Pack-
age model element15, three specialize in the Class model element, one
specializes in the AssociationClass model element, five specialize in
the Attribute model element, and two specialize in the Association
model element. In Figure 6.20, we have represented a portion of the
UML metamodel16 to show where our stereotypes fit. We have only

Metamodel :
see UML (2.2.1,
2-4), (2.4,
2-11). represented the specialization hierarchies, as the most important fact

about a stereotype is the base class that the stereotype specializes.
In this figure, new stereotypes are colored in grey, whereas classes
from the UML metamodel remain white.

Some issues of our MD approach, such as the derivation rule or
the initial value of an attribute, are not defined in our stereotypes
because these concepts have already been defined in the UML meta-
model. We provide a list of these concepts in Table 6.5.

In the following, we present our extension following the extension
definition schema shown in Table 6.2.

6.4.1 Description
This UML extension defines a set of stereotypes, tagged values, and
constraints that enable us to design MD models. The stereotypes are
applied to certain components that are particular to MD modeling,
allowing us to represent them in the same model and on the same
diagrams that describe the rest of the system. The MD models
are divided into three levels: model definition (level 1), star schema
definition (level 2), and dimension/fact definition (level 3).

The major elements to MD modeling are the Fact class and the
Dimension class. A Fact class consists of FactAttributes and Degen-
erateDimensions. The hierarchy levels of a Dimension are represented

15We have based our MD extension on the most semantically similar constructs
in the UML metamodel.

16All the metaclasses come from the Core Package, a subpackage of the Foun-
dation Package.

6.4. A UML Profile for Multidimensional Modeling 83
F
ig

ur
e

6.
20

:
E

xt
en

si
on

of
th

e
U

M
L

w
it

h
st

er
eo

ty
pe

s

84 Chapter 6. Multidimensional Modeling in Data Warehouses

T
ab

le
6.

5:
C

on
ce

pt
s

in
he

ri
te

d
fr

om
th

e
U

M
L

m
et

am
od

el

C
on

ce
p
t

C
om

es
fr

om
D

es
cr

ip
ti
on

U
se

d
by

na
m

e
Mo

de
lE

le
me

nt
It

is
an

id
en

ti
fie

r
fo

r
th

e
Mo

de
l-

El
em

en
t

B
as

e,
C

om
pl

et
en

es
s,

D
es

cr
ip

to
r,

D
i-

m
en

si
on

,
D

im
en

si
on

A
tt

ri
bu

te
,

Fa
ct

,
Fa

ct
A

tt
ri

bu
te

,O
ID

do
cu

m
en

ta
ti

on
El

em
en

t
It

is
a

co
m

m
en

t,
de

sc
ri

pt
io

n
or

ex
pl

an
at

io
n

of
th

e
El

em
en

t
to

w
hi

ch
it

is
at

ta
ch

ed

B
as

e,
C

om
pl

et
en

es
s,

D
es

cr
ip

to
r,

D
i-

m
en

si
on

,
D

im
en

si
on

A
tt

ri
bu

te
,

Fa
ct

,
Fa

ct
A

tt
ri

bu
te

,O
ID

ty
pe

St
ru

ct
ur

al
Fe

at
ur

e
D

es
ig

na
te

s
th

e
cl

as
si

fie
r

w
ho

se
in

st
an

ce
s

ar
e

va
lu

es
of

th
e

fe
a-

tu
re

D
es

cr
ip

to
r,

D
im

en
si

on
A

tt
ri

bu
te

,
Fa

ct
-

A
tt

ri
bu

te
,O

ID

in
it

ia
lV

al
ue

At
tr

ib
ut

e
A

n
ex

pr
es

si
on

sp
ec

ify
in

g
th

e
va

lu
e

of
th

e
At

tr
ib

ut
e

up
on

in
i-

ti
al

iz
at

io
n

D
es

cr
ip

to
r,

D
im

en
si

on
A

tt
ri

bu
te

,
Fa

ct
-

A
tt

ri
bu

te
,O

ID

de
ri

ve
d

Mo
de

lE
le

me
nt

A
tr

ue
va

lu
e

in
di

ca
te

s
th

at
th

e
Mo

de
lE

le
me

nt
ca

n
be

co
m

pl
et

el
y

de
ri

ve
d

fr
om

ot
he

r
m

od
el

el
e-

m
en

ts
an

d
is

th
er

ef
or

e
lo

gi
ca

lly
re

du
nd

an
t

D
es

cr
ip

to
r,

D
im

en
si

on
A

tt
ri

bu
te

,
Fa

ct
-

A
tt

ri
bu

te

6.4. A UML Profile for Multidimensional Modeling 85

by means of Base classes. A Base class consists of OIDs, Descriptors,
and DimensionAttributes. Finally, Rolls-upTo and Completeness as-
sociation are also defined.

The correct use of this extension is assured thanks to the definition
of 51 constraints specified both in natural language and in OCL
expressions (to avoid redundancy).

6.4.2 Prerequisite Extensions

No other extension to the language is required for the definition of
this extension.

6.4.3 Stereotypes

The stereotypes are presented depending on the base class that spe-
cializes: Package, Class, AssociationClass, Attribute, and Associa-
tion.

Stereotypes of Package

Three stereotypes have been defined from the Package model element:
StarPackage, DimensionPackage, and FactPackage.

• Name: StarPackage
• Base class: Package

• Description: Packages of this stereotype represent MD star schemas

• Icon: Figure 6.21 (a)

• Constraints:

– A StarPackage can only contain FactPackages or DimensionPack-
ages:17
self.contents->forAll(me | me.oclIsTypeOf(FactPackage) or
me.oclIsTypeOf(DimensionPackage))

– A StarPackage can only contain one FactPackage:18
self.ownedElement->select(me | me.oclIsTypeOf(FactPackage))->size
<= 1

– A StarPackage cannot import a FactPackage from another StarPack-
age (only DimensionPackage):
self.importedElement->forAll(me | me.oclIsTypeOf(DimensionPackage))

17Some operations used in our extension are not from the OCL standard. For
example, contents is an additional operation defined in the UML Specification [97]:
“The operation contents results in a Set containing the ModelElements owned by
or imported by the Package”.

18It is not mandatory that every StarPackage has a FactPackage, because it
is possible to have utility packages with only DimensionPackages for defining
conformed dimensions to be imported by by other packages.

86 Chapter 6. Multidimensional Modeling in Data Warehouses

– There are no cycles in the dependency structure:19
not self.allSuppliers->includes(self)

• Tagged values: None

• Name: DimensionPackage
• Base class: Package

• Description: Packages of this stereotype represent MD dimensions

• Icon: Figure 6.21 (b)

• Constraints:

– It is not possible to create a dependency from a DimensionPackage
to a FactPackage (only to another DimensionPackage):
self.clientDependency->forAll(d | d.supplier->forAll(me |
me.oclIsTypeOf(DimensionPackage)))

– There are no cycles in the dependency structure:
not self.allSuppliers->includes(self)

– A DimensionPackage cannot contain Packages:
self.contents->forAll(me | not me.oclIsKindOf(Package))

– A DimensionPackage can only contain Dimension or Base classes:
self.contents->select(co | co.oclIsKindOf(Class))->forAll(f |
f.oclIsTypeOf(Dimension) or f.oclIsTypeOf(Base))

– A DimensionPackage must have a Dimension class (and only one):
self.contents->select(me | me.oclIsTypeOf(Dimension))->size = 1

• Tagged values: None

• Name: FactPackage
• Base class: Package

• Description: Packages of this stereotype represent MD facts

• Icon: Figure 6.21 (c)

• Constraints:

– There are no cycles in the dependency structure:
not self.allSuppliers->includes(self)

– A FactPackage cannot contain Packages:
self.contents->forAll(me | not me.oclIsKindOf(Package))

– A FactPackage can only contain Fact, DegenerateFact, Dimension or
Base classes:
self.contents->select(co | co.oclIsKindOf(Class))->forAll(f |
f.oclIsTypeOf(Fact) or f.oclIsTypeOf(DegenerateFact) or
f.oclIsTypeOf(Dimension) or f.oclIsTypeOf(Base))

– A FactPackage must have a Fact class (and only one):
self.contents->select(me | me.oclIsTypeOf(Fact))->size = 1

• Tagged values: None

19allSuppliers is an additional operation defined in the UML Specification [97]:
“The operation allSuppliers results in a Set containing all the ModelElements
that are suppliers of this ModelElement, including the suppliers of these Mod-
elElements. This is the transitive closure”.

6.4. A UML Profile for Multidimensional Modeling 87

StarPackage DimensionPackage FactPackage
(a) (b) (c)

Figure 6.21: Stereotype icons of Package

Stereotypes of Class

Three stereotypes have been defined from the Class model element:
Fact, Dimension, and Base.

• Name: Fact
• Base class: Class

• Description: Classes of this stereotype represent facts in a MD model

• Icon: Figure 6.22 (a)

• Constraints:

– All attributes of a Fact must be DegenerateDimension or FactAt-
tribute:
self.feature->select(fe | fe.oclIsKindOf(Attribute))->forAll(f |
f.oclIsTypeOf(DegenerateDimension) or f.oclIsTypeOf(FactAttribute))

– All associations of a Fact must be aggregations20 (neither none nor
composite):
self.association->forAll(as | as.aggregation = #aggregate)

– A Fact can only be associated with Dimension classes:21
self.allOppositeAssociationEnds->forAll(ae |
ae.participant.oclIsTypeOf(Dimension))

• Tagged values: None

• Name: Dimension
• Base class: Class

• Description: Classes of this stereotype represent dimensions in a MD
model

• Icon: Figure 6.22 (b)

• Constraints:

– A Dimension cannot have neither attributes nor methods:
self.feature->size = 0

– All associations of a Dimension with a Fact must be aggregations at
the end of the Fact (the opposite end):
self.association.association->forAll(as |
as.associationEnd.participant.oclIsTypeOf(Fact) implies
as.associationEnd.aggregation = #aggregate)

20The part may be contained in other aggregates.
21allOppositeAssociationEnds is an additional operation defined in the UML

specification [97]: “The operation allOppositeAssociationEnds results in a set
of all AssociationEnds, including the inherited ones, that are opposite to the
Classifier ”.

88 Chapter 6. Multidimensional Modeling in Data Warehouses

– All associations of a Dimension with a Fact must not be aggregations
at the end of the Dimension (the current end):
self.association.association->forAll(as |
as.associationEnd.participant.oclIsTypeOf(Fact) implies
as.aggregation <> #aggregate)

– A Dimension can only be associated with Fact or Base classes:
self.allOppositeAssociationEnds->forAll(ae |
ae.participant.oclIsTypeOf(Fact) or ae.participant.oclIsTypeOf(Base))

– A Dimension can only be associated with one Base class:
self.allOppositeAssociationEnds->select(ae |
ae.participant.oclIsTypeOf(Base))->size <= 1

• Tagged values:

– isTime:

∗ Type: UML::Datatypes::Boolean
∗ Multiplicity: 1
∗ Description: Indicates whether the dimension represents a time

dimension or not22

• Name: Base
• Base class: Class

• Description: Classes of this stereotype represent dimension hierarchy levels
in a MD model

• Icon: Figure 6.22 (c)

• Constraints:

– All attributes of a Base must be OID, Descriptor, or DimensionAt-
tribute:
self.feature->select(fe | fe.oclIsKindOf(Attribute))->forAll(f |
f.oclIsTypeOf(OID) or f.oclIsTypeOf(Descriptor) or
f.oclIsTypeOf(DimensionAttribute))

– A Base must have a Descriptor attribute (and only one):
self.feature->select(fe | fe.oclIsKindOf(Attribute))->select(f |
f.oclIsTypeOf(Descriptor))->size = 1

– A Base may have an OID attribute:
self.feature->select(fe | oclIsKindOf(Attribute))->select(f |
f.oclIsTypeOf(OID))->size <= 1

– A Base can only be associated with Dimension or Base classes:
self.allOppositeAssociationEnds->forAll(ae |
ae.participant.oclIsTypeOf(Dimension) or
ae.participant.oclIsTypeOf(Base))

– A Base cannot be associated with itself (in order to avoid cycles):
self.allOppositeAssociationEnds->forAll(ae | ae.participant <> self)

– A Base class may only inherit from another Base class:
self.generalization->size > 0 implies self.generalization.parent->
forAll(me | me.oclIsTypeOf(Base))

– A Base class may only be parent of another Base class:
self.specialization->size > 0 implies self.specialization.child->forAll(me
| me.oclIsTypeOf(Base))

22The “Time dimension” is treated differently from the others in OLAP tools.

6.4. A UML Profile for Multidimensional Modeling 89

Fact Dimension Base Degenerate
Fact

(a) (b) (c) (d)

Figure 6.22: Stereotype icons of Class and AssociationClass

– A Base can only be child in one generalization (no multiple inheri-
tance):
self.generalization->size <= 1

– A Base cannot simultaneously be a child in a generalization or spe-
cialization hierarchy and belong to an association hierarchy:
(self.generalization->size = 1) implies (self.association->size = 0)

• Tagged values: None

Stereotypes of AssociationClass

One stereotype has been defined from the AssociationClass model
element: DegenerateFact.

• Name: DegenerateFact

• Base class: AssociationClass

• Description: Classes of this stereotype represent degenerate facts in a MD
model

• Icon: Figure 6.22 (d)

• Constraints:

– All attributes of a DegenerateFact class must be DegenerateDimen-
sion or FactAttribute:
self.feature->select(fe | fe.oclIsKindOf(Attribute))->forAll(f |
f.oclIsTypeOf(DegenerateDimension) or f.oclIsTypeOf(FactAttribute))

– A DegenerateFact association can only be connected to two ele-
ments23:
self.connection->size = 2

– One of the ends of a DegenerateFact has to be a Fact and the other
end has to be a Dimension:
self.connection.participant->exist(me | me.oclIsTypeOf(Fact)) and
self.connection.participant->exist(me | me.oclIsTypeOf(Dimension))

• Tagged values: None

23In UML, an association can be connected to two or more elements.

90 Chapter 6. Multidimensional Modeling in Data Warehouses

Stereotypes of Attribute

Five stereotypes have been defined from the Attribute model element:
DegenerateDimension, FactAttribute, OID, Descriptor, and Dimen-
sionAttribute.

• Name: DegenerateDimension
• Base class: Attribute

• Description: Attributes of this stereotype represent degenerate dimensions
in a MD model

• Icon: Figure 6.23 (a)

• Constraints:

– A DegenerateDimension cannot be derived:
not self.derived

– A DegenerateDimension can only belong to a Fact or a Degenerate-
Fact:
self.owner.oclIsTypeOf(Fact) or self.owner.oclIsTypeOf(DegenerateFact)

• Tagged values: None

• Name: FactAttribute
• Base class: Attribute

• Description: Attibutes of this stereotype represent attributes of Fact or
DegenerateFact classes in a MD model

• Icon: Figure 6.23 (b)

• Constraints:

– A FactAttribute can only belong to a Fact or a DegenerateFact:
self.owner.oclIsTypeOf(Fact) or self.owner.oclIsTypeOf(DegenerateFact)

– If a FactAttribute is derived, then it needs a derivation rule (an OCL
expression):
self.derived implies self.derivationRule.oclIsTypeOf(OclExpression)

• Tagged values:

– derivationRule:

∗ Type: UML::Datatypes::String
∗ Multiplicity: 1
∗ Description: If the attribute is derived, this tagged value rep-

resents the derivation rule

• Name: OID
• Base class: Attribute

• Description: Attributes of this stereotype represent OID attributes of Base
classes in a MD model24

• Icon: Figure 6.23 (c)

• Constraints:

24See Section 3 or [132] for further information on OID and Descriptor at-
tributes.

6.4. A UML Profile for Multidimensional Modeling 91

– An OID can only belong to a Base:
self.owner.oclIsTypeOf(Base)

– An OID cannot be derived:
not self.derived

• Tagged values: None

• Name: Descriptor
• Base class: Attribute
• Description: Attributes of this stereotype represent descriptor attributes

of Base classes in a MD model
• Icon: Figure 6.23 (d)
• Constraints:

– A Descriptor can only belong to a Base:
self.owner.oclIsTypeOf(Base)

– If a Descriptor is derived, then it needs a derivation rule (an OCL
expression):
self.derived implies self.derivationRule.oclIsTypeOf(OclExpression)

• Tagged values:

– derivationRule:
∗ Type: UML::Datatypes::String
∗ Multiplicity: 1
∗ Description: If the attribute is derived, this value represents the

derivation rule

• Name: DimensionAttribute
• Base class: Attribute
• Description: Attributes of this stereotype represent attributes of Base

classes in a MD model
• Icon: Figure 6.23 (e)
• Constraints:

– A DimensionAttribute can only belong to a Base:
self.owner.oclIsTypeOf(Base)

– If a DimensionAttribute is derived, then it needs a derivation rule
(an OCL expression):
self.derived implies self.derivationRule.oclIsTypeOf(OclExpression)

• Tagged values:

– derivationRule:
∗ Type: UML::Datatypes::String
∗ Multiplicity: 1
∗ Description: If the attribute is derived, this value represents the

derivation rule
– isOptional:

∗ Type: UML::Datatypes::Boolean
∗ Multiplicity: 1
∗ Description: An optional attribute needs not be specified for

each element of the corresponding Base class and therefore may
contain “null” values

92 Chapter 6. Multidimensional Modeling in Data Warehouses

Degenerate OID Fact Descriptor Dimension
Dimension Attribute Attribute

(a) (b) (c) (d) (e)

Figure 6.23: Stereotype icons of Attribute

Stereotype of Association

Two stereotypes have been defined from the Association model ele-
ment: Rolls-upTo and Completeness.

• Name: Rolls-upTo
• Base class: Association
• Description: Associations of this stereotype represent associations between

Base classes
• Icon: None
• Constraints:

– The ends of a Rolls-upTo association can only be Base classes:
self.connection.participant->forAll(pa | pa.oclIsTypeOf(Base))

– A Rolls-upTo association can only be connected to two elements:25
self.connection->size = 2

– In a Rolls-upTo association, one of the ends contains the role r and
the other end contains the role d:26
self.associationEnd->exists(ae | ae.name = ’r’) and self.associationEnd-
>exists(ae | ae.name = ’d’)

• Tagged values: None

• Name: Completeness
• Base class: Association
• Description: Associations of this stereotype represent complete associa-

tions27 between Base classes
• Icon: None
• Constraints:

– The ends of a Completeness association can only be Base classes:
self.connection.participant->forAll(pa | pa.oclIsTypeOf(Base))

– A Completeness association can only be connected to two elements:
self.connection->size = 2

– In a Completeness association, one of the ends contains the role r
and the other end contains the role d:
self.associationEnd->exists(ae | ae.name = ’r’) and self.associationEnd-
>exists(ae | ae.name = ’d’)

• Tagged values: None

25In the UML, an association can have more that two association ends.
26The role is the name of the AssociationEnd.
27A complete association means that all members belong to one higher-class

object and that object consists of those members only.

6.4. A UML Profile for Multidimensional Modeling 93

6.4.4 Well-Formedness Rules

Namespace

• All the classes in a MD model must be Fact, Dimension, or Base:28
self.allContents->forAll(oclIsKindOf(Class) implies (oclIsTypeOf(Fact) or
oclIsTypeOf(Dimension) or oclIsTypeOf(Base)))

• All the packages in a MD model must be StarPackage, FactPackage, or
DimensionPackage:
self.allContents->forAll(oclIsKindOf(Package) implies
(oclIsTypeOf(StarPackage) or oclIsTypeOf(FactPackage) or
oclIsTypeOf(DimensionPackage)))

6.4.5 Comments

Next, we summarize the UML elements we have just used or defined
to consider the main relevant MD properties:

• Facts and dimensions: they are represented by means of Fact
and Dimension stereotypes.

• Many-to-many relationships: thanks to the flexibility of the
shared-aggregation relationships, we can consider many-to-many
relationships between facts and particular dimensions by means
of the 1..* cardinality on the dimension class role. In these
cases, a DegenerateFact can be defined to add more informa-
tion.

• Derived measures: they are represented by means of derived at-
tributes from the UML metamodel and the tagged value deriva-
tionRule we have defined in the Descriptor, DimensionAttribute,
and FactAttribute stereotypes.

• Classification hierarchies: they are considered by means of the
association between Dimension and Base stereotypes.

• Strictness: the multiplicity 1 and 1..* defined in the target asso-
ciated class role of a classificaton hierarchy address the concepts
of strictness and nonstrictness.

• Completeness: the stereotype Completeness addresses the com-
pleteness of a classification hierarchy.

• Categorizing dimensions: we use generalization-specialization
relationships to categorize a Dimension.

28allContents is an additional operation defined in the UML specification [97]:
“The operation allContents results in a Set containing all ModelElements con-
tained by the Namespace”.

94 Chapter 6. Multidimensional Modeling in Data Warehouses

6.5 Implementation of Multidimensional
Models

MDA [98] is an OMG standard that addresses the complete life
cycle of designing, deploying, integrating, and managing applications.
MDA separates the specification of system functionality from the
specification of the implementation of that functionality on a specific
technology platform, i.e. a Platform Independent Model (PIM)
can be transformed into multiple Platform Specific Model (PSM)
in order to execute on a concrete platform (see left hand side of
Figure 6.24).

MOF 2.0 QVT is an under-developing standard for expressing
model transformations, which can define transformation rules be-
tween two MOF compliant models. In response to the Request for
Proposal (RFP) of QVT, different transformation approaches have
been proposed over the last two years [33]. One of the most remark-
able approaches is QVT-Partners [103].

QVT-Partners proposes a possibly extended version of OCL 2.0
as the query language and provides a standard language called MTL29

(Model Transformation Language) for relations and mappings. In
QVT-Partners, complex transformations can be built by compos-
ing simpler transformations using composition functions. Moreover,
QVT-Partners suggests a sequence of steps that lead to an executable
transformation that can be executed thanks to a model transforma-
tion engine (e.g. Inria MTL Engine [58]).

Model transformation is the process of converting one model to
another model. In [44], model transformations are categorized along
vertical (a source model is transformed into a target model at a dif-
ferent level of abstraction) and horizontal (a source model is trans-
formed into a target model that is at the same level of abstraction)
dimensions.

We have aligned our MD proposal with the MDA approach;
thus, as presented through this chapter, we accomplish the conceptual
modeling of a DW without considering any aspect of the implementa-
tion in a concrete target platform, thereby providing a PIM. We have
developed an algorithm that, from the MD models accomplished by
using our UML profile, generates the corresponding implementation
in different platforms (relational, object-relational, etc.) through a
vertical transformation, thereby allowing different PSM. In this sec-
tion, we present the transformation process from an MD model to a
relational one; on the right hand side of Figure 6.24, we show a high-
level view of a transformation process from an MD model to the
relational model, in which we generate the specific platform struc-

29The syntax of this language resembles C, C++ and Java language family.

6.5. Implementation of Multidimensional Models 95

Figure 6.24: Transformation of a Multidimensional Model

tures according to the modeling elements.
For example, the next code represents the QVT implementation

of the mapping for the «Fact» class into a table. The body of a map-
ping contains an object expression that creates an object (method
new) and produces the output. In the body of a mapping, OCL is
used to select and filter the model elements.

mapping FactToTable {
domain {

(Fact)[name = fn, attibutes = atts, associations = ass]
}
body {

ta = new Table()
ta.name = fn
ta.columns = atts->iterate(a cols = {} | cols +

FactAttributeToColumn(a))
ta.keys = atts->forAll(a keys = {} | keys + DDToKey(a))
ta.foreignKeys = ass->forAll(a fkeys = {} | fkeys +

AggregationToForeignKey(a))
}

}

mapping FactAttributeToColumn {
domain {

(FactAttribute)[name = fn, type = ty]
}
body {

co = new Column()
co.name = fn
co.type = ty

}
}

mapping DDToKey {
domain {

96 Chapter 6. Multidimensional Modeling in Data Warehouses

(DegenerateDimension)[name = fn, type = ty]
}
body {

ke = new Key()
ke.name = fn
ke.type = ty

}
}

mapping AggregationToForeignKey {
domain {

(Association)[name = fn, source = aggS , destination = aggD]
}
body {

fk = new ForeignKey()
fk.name = fn
// ForeignKey is autoincrement
fk.type = ’auto’

}
}

6.6 Conclusions
In this chapter, we have presented an extension of the UML as a
profile that allows us to accomplish the conceptual modeling of DW
by representing the major relevant MD properties at the conceptual
level. We have invested some effort on ensuring that all the concepts
have a well-defined semantic basis. Therefore, this extension contains
the needed stereotypes, tagged values and constraints for a complete
and powerful MD modeling. We have used the OCL to specify the
constraints attached to these new defined elements, thereby avoiding
an arbitrary use of them. We have also programmed this extension
in a well-known visual modeling tool, Rational Rose. The main rel-

For more infor-
mation about our
add-in for Ratio-
nal Rose, consult
appendix E, pp.
253.

evant advantage of our approach is that it uses the UML, a widely-
accepted object-oriented modeling language, which saves developers
from learning a new model and its corresponding notations for specific
MD modeling. Furthermore, the UML allows us to represent some
MD properties that are hardly considered by other conceptual MD
proposals. On the other hand, a frequent criticism highlighted at
diagrammatic notations is their scalability; in our approach, thanks
to the use of packages, we can elegantly represent huge and complex
models at different levels of complexity without suffering the scala-
bility problem.

Chapter 7

Data Mapping Diagrams
for Data Warehouses

In DW scenarios, ETL processes are responsible for the extraction of
data from heterogeneous operational data sources, their transformation
(conversion, cleaning, normalization, etc.) and their loading into the
DW. In this chapter, we present a framework for the design of the DW
back-stage (and the respective ETL processes) based on the key obser-
vation that this task fundamentally involves dealing with the specificities
of information at very low levels of granularity including transforma-
tion rules at the attribute level. Specifically, we present a disciplined
framework for the modeling of the relationships between sources and
targets in different levels of granularity (including coarse mappings at
the database and table levels to detailed inter-attribute mappings at the
attribute level). In order to accomplish this goal, we extend UML (Uni-
fied Modeling Language) to model attributes as first-class citizens. In
our attempt to provide views of the design artifacts in different levels of
detail, our framework is based on a principled approach in the usage of
UML packages, to allow zooming in and out the design of a scenario.

97

98 Chapter 7. Data Mapping Diagrams for Data Warehouses

Contents
7.1 Introduction 99
7.2 Motivating Example 101
7.3 Attributes as First-Class Modeling Ele-

ments in UML 103
7.4 The Data Mapping Diagram 107

7.4.1 The Data Mapping Diagram at the Table
Level: Segmenting Data Diagrams . . . 111

7.4.2 The Data Mapping Diagram at the At-
tribute Level: Integration in Detail . . . 111

7.4.3 Motivating Example Revisited 114
7.5 Conclusions 117

7.1. Introduction 99

7.1 Introduction

In DW scenarios, ETL processes are responsible for the extraction
of data from heterogeneous operational data sources, their transfor-
mation (conversion, cleaning, normalization, etc.) and their loading
into the DW. DW are usually populated with data from different

For more informa-
tion about ETL,
consult chapter 9,
pp. 133.and heterogeneous operational data sources such as legacy systems,

relational databases, COBOL files, Internet (XML, web logs) and so
on. It is well recognized that the design and maintenance of these
ETL processes (also called DW back stage) is a key factor of success
in data warehousing projects for several reasons, the most prominent
of which is their critical mass; in fact, ETL development can take
up as much as 80% of the development time in a data warehousing
project [123, 124].

As in most Information System projects, the early stages of a DW
project are crucial for the success of the overall project. First of all,
a DW conceptual model should be used to obtain a DW conceptual
schema based on main user requirements. Although some authors do
not pay too much attention to this phase ([65]), we argue that a DW
conceptual model is a valuable tool in the design process, for various
reasons to be explained in the next paragraphs. Still, a key obser-
vation should be made at this point: the conceptual modeling that
concerns the integration of computerized, database-centric systems is
fundamentally different from the one involving the capturing of user
requirements from the part of humans. In particular, whereas the lat-
ter can afford to be imprecise, in order to capture the time-varying,
possibly fuzzy, user requirements, or even to direct the end-user to-
wards a reasonable goal, the former simply cannot afford this luxury.
In fact, if any integration is ever to take place, the analysis of the
involved systems must eventually deal with the lowest granule of in-
formation (typically attributes) in a precise manner. At the same
time, interaction is absolutely difficult: it is practically impossible to
alter the data sources in order to fit the needs of the integration ef-
fort. To make the problem harder, flexibility is another desideratum:
the overall design process requires several levels of abstraction as it
evolves over time. Therefore, the conceptual modeling for the integra-
tion of data-centric systems has to retain flexibility without paying the
price of imprecision. As we will briefly show in this chapter, the spec-
ification of these transformations in real world projects lead us to a
very complex documentation and is difficult to read and understand.

Despite the importance of designing the mapping of the data
sources to the DW structures along with any necessary constraints
and transformations, unfortunately, there are few models that can be
used by the designers to this end. So far, the front end of the DW has
monopolized the research on the conceptual part of DW modeling,

100 Chapter 7. Data Mapping Diagrams for Data Warehouses

while few attempts have been made towards the conceptual model-
ing of the back stage [134, 128]. Still, to this day, there is no model
that can combine (a) the desired detail of modeling data integration
at the attribute level and (b) a widely accepted modeling formalism
such as the ER model or UML. One particular reason for this, is
that both these formalisms are simply not designed for this task; on
the contrary, they treat attributes as second-class, weak entities, with
a descriptive role. Of particular importance is the problem that in
both models attributes cannot serve as an end in an association or
any other relationship.

One might argue that the current way of modeling is sufficient
and there is no real need to extend it in order to capture mappings
and transformations at the attribute level. There are certain reasons
that we can list against this argument:

• The design artifacts are acting as blueprints for the subsequent
stages of the DW project. If the important details of this de-
sign (e.g., attribute interrelationships) are not documented, the
blueprint is problematic. Actually, one of the current issues in
DW research involves the efficient documentation of the overall
process [108]. Since design artifacts are means of communicat-
ing ideas, it is best if the formalism adopted is a widely used
one (e.g., UML or ER).

• The design should reflect the architecture of the system in a
way that is formal, consistent and allows the what-if analysis of
subsequent changes. Capturing attributes and their interrela-
tions as first-class citizens improves the design significantly with
respect to all these goals. At the same time, the way this issue
is handled now would involve a naive, informal documentation
through UML notes.

• Thanks to modeling attribute interrelationships, we can treat
the design artifact as a graph and actually measure the afore-
mentioned design goals. Again, this would be impossible with
the current modeling formalisms.

To address all the aforementioned issues, in this chapter, we present
an approach that enables the tracing of the DW back-stage (ETL
processes) particularities at various levels of detail. This is enabled
by an additional view of a DW, called the Data mapping. In this
new diagram, we treat attributes as first-class modeling elements of
the model. This gives us the flexibility of defining models at various
levels of detail. Naturally, since UML is not initially prepared to
support this behavior, we solve this problem thanks to the exten-
sion mechanisms that it provides. Specifically, we employ a formal,

7.2. Motivating Example 101

strict mechanism that maps attributes to proxy classes that represent
them. Once mapped to classes, attributes can participate in associ-
ations that determine the inter-attribute mappings, along with any
necessary transformations and constraints.

In summary, the main contributions of this chapter are:

• The presentation of a design diagram, called the data mapping
diagram, defined at various levels of granularity, that imple-
ments the flexibility desideratum: while concepts are still fuzzy,
the designers can choose high level representations of the DW
back-stage scenario, whereas in later stages they can specialize
the design all the way to the attribute level.

• The representation of attributes as first-class modeling elements
in UML class diagrams for the purpose of tracing the particu-
larities of the integration, filtering, and transformation of data
at the attribute level (as required in designing ETL processes).
This involves the extension of UML and the definition of the
intra-attribute mappings.

• The definition of new stereotypes to accommodate the extension
of UML and the specificities of the data mapping diagram:
«Attribute» and «Contain» for representing attributes as first-
class modeling elements, and «Mapping», «Map», «MapObj»,
«Domain», «Range», «Input», «Output», and «Intermediate»
for the definition of data mappings.

The rest of this chapter is structured as follows. In Section 7.2, we
introduce a motivating example that will be followed throughout the
chapter. In Section 7.3, we show how attributes can be represented as
first-class modeling elements in UML. In Section 7.4, we present our
approach to model data mappings in ETL processes at the attribute
level. Finally, in Section 7.5 we present the main conclusions.

7.2 Motivating Example
To motivate our discussion we will introduce a running example in-
spired by the example presented in [30]. In our setting, we consider
that the designer wants to build a DW from the retail system of
a company. Naturally, we consider only a small part of the DW,
where the target fact table has to contain only the quarterly sales of
the products belonging to the computer category, whereas the rest of
the products are discarded.

In Figure 7.1, we show a bird’s eye view of the DW, composed of
three stereotyped packages that represent the SCS (Source Con-
ceptual Schema), the DWCS (Data Warehouse Conceptual

102 Chapter 7. Data Mapping Diagrams for Data Warehouses

Figure 7.1: Bird’s eye view of the data warehouse

Figure 7.2: Source Conceptual Schema (SCS)

Schema) and the DM (Data Mapping) that define the mapping
between the SCS and the DWCS.

Naturally, this high-level view can be further explored and de-
tailed. In Figure 7.2, we zoom-in the definition of the SCS, which
represents the sources that feed the DW with data. In this exam-
ple, the data source is composed of four entities represented as UML
classes: Cities, Customers, Orders, and Products. The meaning of the
classes and their attributes, as depicted in Figure 7.2 is straightfor-
ward. The “...” shown in this figure simply indicates that other
attributes of these classes exist, but they are not displayed for the
sake of simplicity (this use of “ ...” is not a UML notation).

Finally, the DWCS of our motivating example is shown in Fig-
ure 7.3. The DW is composed of one fact (ComputerSales) and two
dimensions (Products and Time).

In Table 7.1, we show a partial example of a basic form [48] for
documenting an ETL transformation process between data sources
and a DW. The form is composed of three main columns: source (it
identifies the system and the field from which the data originates),
transformation (it describes the transformation that must be per-
formed), and destination (it describes the target in the DW). Nev-

Figure 7.3: Data Warehouse Conceptual Schema (DWCS)

7.3. Attributes as First-Class Modeling Elements in UML 103

ertheless, documenting a transformation process in this way presents
some important problems, such as the lack of coherence between the
model diagrams and the transformation form, or the difficulty in un-
derstanding and managing a transformation form in the case of huge
DW in real world projects. Therefore, and based on our experience
in designing real world DW, we argue that these transformation pro-
cesses should be defined in the model diagrams as other parts of the
DW.

In this chapter, we present an additional view of a DW, called
the Data Mapping that shows the relationships between the data
sources (SCS) and the DW (DWCS) and between the DW (DWCS)
and the clients’ structures (CCS) at the conceptual level. In this new
diagram, we need to treat attributes as first-class modeling elements
of the models, since we need to depict their relationships at attribute
level. Therefore, we also propose a UML extension to accomplish this
goal in this chapter. To the best of our knowledge, this is the first
proposal of representing attributes as first-class modeling elements in
UML diagrams.

7.3 Attributes as First-Class Modeling El-
ements in UML

Both in the ER model and in UML, attributes are embedded in
the definition of their comprising “element” (an entity in the ER or a
class in UML), and it is not possible to create a relationship between
two attributes. As we have already explained in the introduction of

Association :
see UML
(2.5.2.3,
2-19).this chapter, in some situations (e.g., data integration, constraints

over attributes, etc.) it is desirable to represent attributes as first-
class modeling elements. Therefore, in this section we will present an
extension of UML to accommodate attributes as first-class citizens.
We have chosen UML instead of ER on the grounds of its higher
flexibility in terms of employing complementary diagrams for the de-
sign of a certain system. We anticipate that a similar extension is
also feasible for the ER model, too.

Throughout this chapter, we frequently use the term first-class
citizens for elements of our modeling languages. Conceptually, first-
class citizens refer to fundamental modeling concepts, on the basis
of which our models are built. Technically, first-class citizens involve
an identity of their own, and they are possibly governed by integrity
constraints (e.g., relationships must have at least two ends refering to
classes.). In a UML class diagram, two kinds of modeling elements
are treated as first-class citizens. Classes, as abstract representations
of real-world entities are naturally found in the center of the model-
ing effort. Being first-class citizens, classes stand-alone entities also

104 Chapter 7. Data Mapping Diagrams for Data Warehouses

T
ab

le
7.

1:
E

xa
m

pl
e

of
tr

an
sf

or
m

at
io

n
fo

rm

S
ou

rc
e

T
ra

n
sf

or
m

at
io

n
D

es
ti

n
at

io
n

S
ys

te
m

T
ab

le
or

F
ie

ld
or

T
ab

le
F
ie

ld
or

fi
le

co
lu

m
n

co
lu

m
n

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

O
LT

P
O

rd
er

s
da

te
C

he
ck

no
t

nu
ll

C
om

pu
te

rS
al

es
qu

ar
te

r_
id

T
ra

ns
fo

rm
in

to
qu

ar
te

r
..

.
..

.
..

.
..

.
..

.
..

.
..

.
..

.
..

.
..

.
..

.
..

.
O

LT
P

O
rd

er
s

pr
od

_
lis

t
Sp

lit
pr

od
_

lis
t

C
om

pu
te

rS
al

es
sa

le
s

to
ob

ta
in

qu
an

ti
ty

O
LT

P
P

ro
du

ct
s

pr
ic

e
SU

M
(q

ua
nt

it
y

*
pr

ic
e)

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

O
LT

P
P

ro
du

ct
s

pr
od

_
id

G
en

er
at

e
su

rr
og

at
e

P
ro

du
ct

s
pr

od
_

id
ke

y
by

lo
ok

up
O

LT
P

P
ro

du
ct

s
pr

od
_

na
m

e
C

he
ck

no
t

nu
ll

P
ro

du
ct

s
pr

od
_

na
m

e
..

.
..

.
..

.
..

.
..

.
..

.
..

.
..

.
..

.
..

.
..

.
..

.

7.3. Attributes as First-Class Modeling Elements in UML 105

Figure 7.4: Dual view: class diagram and attribute/class diagram

acting as attribute containers. The relationships between classes are
captured by associations. Associations can be also first-class model-
ing elements, called association classes. Even though an association
class is drawn as an association and a class, it is really just a single
model element [97]. An association class can contain attributes or
can be connected to other classes. However, the same is not possible
with attributes.

Naturally, in order to allow attributes to play the same role in cer-
tain cases, we propose the representation of attributes as first-class
modeling elements in UML. In our approach, classes and attributes
are defined as normally in UML. However, in those cases where it is
necessary to treat attributes as first-class modeling elements, classes
are imported to the attribute/class diagram, where attributes are au-
tomatically represented as classes; in this way, the user only has to
define the classes and the attributes once1. In Figure 7.4 we schemat-
ically represent this dual “view” we propose in terms of packages: our
proposed attribute/class diagram imports the elements from the class
diagram; we use a UML standard «import» dependency because “the
public contents of the target package are added to the namespace of
the source package” [97], and therefore it is not necessary to qualify
the element names with the package name.

In the importing process from the class diagram to the attribute/-
class diagram, we refer to the class that contains the attributes as the
container class and to the class that represents an attribute as the
attribute class. In the sequel, we formally define attribute/class dia-
grams, along with the new stereotypes, «Attribute» and «Contain».

Definition. Attribute classes are materializations of the «At-
tribute» stereotype, introduced specifically for representing the attributes
of a class.

The following constraints apply for the correct definition of an
attribute class as a materialization of an «Attribute» stereotype:

• Naming convention: the name of the attribute class is the name
1Obviously, this is a CASE tool functionality: the corresponding CASE tool

that supports this kind of diagram should dynamically generate the corresponding
attribute/class diagram.

106 Chapter 7. Data Mapping Diagrams for Data Warehouses

of the corresponding container class, followed by a dot and the
name of the attribute.

• No features: an attribute class can contain neither attributes
nor methods.

• Tag definitions: an attribute class contains the following tag
definitions that represent the properties of an attribute model
element:

Attribute :
see UML
(2.5.2.6,
2-24), (3.25,
3-41).

– changeability: a characterization that determines whether
the value of the attribute may be modified after the object
is created. Valid values for this property are changeable,
frozen, and addOnly.

– initialValue: an expression specifying the value of the at-
tribute upon initialization.

– multiplicty: the possible number of data values for the at-
tribute that may be held by an instance.

– ordering: specifies whether the set of values is ordered.
This property is only relevant if the multiplicty is greater
than one. Possibilities are unordered, ordered, and user-
defined values (such as sorted).

– ownerScope: specifies whether the attribute appears in
each instance of the classifier2 or whether there is just
a single instance of the attribute for the entire classifier.
Valid values for this property are instance and classifier.

– property-string: indicates property values that apply to the
attribute.

– stereotype: in case the attribute is stereotyped, it indicates
the name of the stereotype.

– type: designates the classifier whose instances are values
of the attribute. Possible values are a Class, an Interface,
or a DataType (Date, Long, String, etc.).

– visibility: specifies whether the attribute can be used by
other Classifiers. Possible values are public, protected, pri-
vate, and package.

In an attribute/class diagram, the involved container class is im-
ported from its respective package and linked to its attribute classes

2The abstract notion of a type of an object is a classifier (Class, Interface,
etc.), and the specific, concrete objects themselves are instances of these types.

7.4. The Data Mapping Diagram 107

through instances of the «Contain» stereotype. A «Contain» rela-
tionship is formally defined as follows:

Definition. A contain relationship is a composite aggregation be-
tween a container class and its corresponding attribute classes, orig-
inated at the end near the container class and highlighted with the
«Contain» stereotype3.

Once having defined «Attribute» classes and «Contain» relation-
ships we are ready to define attribute/class diagrams.

Definition. An attribute/class diagram is a regular UML class
diagram extended with «Attribute» classes and «Contain» relation-
ships.

Coming back to our motivating example (Figure 7.2), on the left
hand side of Figure 7.5, the traditional UML representation of a class
called Orders that contains four attributes (order_id, cust_id, date,
and prod_list) is shown. On the right hand side of the same figure,
the same class is represented by means of our approach: the container
class has been imported from another package (the legend (from OLTP
system) indicates the package where it has been defined firstly, see
Figure 7.1); with respect to the naming convention, the names of
the four attribute classes follow our naming convention (container
class name + “.” + attribute name); the attribute classes are labeled
with the «Attribute» stereotype; finally, the container class and the
attribute classes are related by a «Contain» composite aggregation.
In order to avoid a complex diagram, we assume some default values
for the tag definitions of the attribute classes (1 for multiplicity, public
for visibility, etc.); therefore, the type is the only tag definition shown
in this diagram.

7.4 The Data Mapping Diagram

Once we have introduced the extension mechanism that enables UML
to treat attributes as first-class citizens, we can proceed in defining
a framework on its usage. In this section, we will introduce the data
mapping diagram, which is a new kind of diagram, particularly cus-
tomized for the tracing of the data flow, at various degrees of detail,
in a DW environment. Data mapping diagrams are complementary
to the typical class and interaction diagrams of UML and focus on

3In the composite aggregation, the part is strongly owned by the composite
and may not be part of any other composite. This means that the composite
object is responsible for the creation and destruction of the parts.

108 Chapter 7. Data Mapping Diagrams for Data Warehouses

Figure 7.5: Attributes represented as first-class modeling elements

the particularities of the data flow and the interconnections of the
involved data stores. A special characteristic of data mapping dia-
grams is that a certain DW scenario is practically described by a set
of complementary data mapping diagrams, each defined at a different
level of detail. In this section, we will introduce a principled approach
to deal with such complementary data mapping diagrams.

To capture the interconnections between design elements, in terms
of data, we employ the notion of mapping. Broadly speaking, when
two design elements (e.g., two tables, or two attributes) share the
same piece of information, possibly through some kind of filtering
or transformation, this constitutes a semantic relationship between
them. In the data warehousing context, this relationship, involves
three logical parties: (a) the provider entity (schema, table, or at-
tribute), responsible for generating the data to be further propagated,
(b) the consumer, that receives the data from the provider and (c)
their intermediate matching that involves the way the mapping is
done, along with any transformation and filtering.

Mappings can be defined in all levels of granularity, i.e., at the
schema, table or attribute level. A mapping consists of connections
between instances of two models that belong to the same or differ-
ent model schemas. Most of the time, mappings are defined among
entities of the same granularity (i.e., attributes are mapped to at-
tributes, tables to tables, etc). In a DW setting, a data mapping
diagram typically relates tables/attributes at the data sources (the
SCS) and the DW (the DWCS), and the DW (the DWCS) and
the clients’ structures (CCS).

As explained in [14], there are different levels of detail at which to
specify mappings: at one extreme, a mapping could specify the full
semantic relationships between the two models; at the other extreme,
a mapping could be structural, specifying only the objects in the
two models that are related to each other, without any mapping

7.4. The Data Mapping Diagram 109

semantics. Our approach allows the DW designer to address different
possibilities between both extremes.

Since a data mapping diagram can be very complex, our approach
offers the possibility to organize it in different levels thanks to the use
of UML packages. Our layered proposal consists of four levels (see
Figure 7.6), with one data mapping diagram per level:

Database Level (or Level 0). In this level, each schema of the DW
environment (e.g., data sources at the conceptual level in the
SCS, conceptual schema of the DW in the DWCS, etc.) is rep-
resented as a package [73]. The mappings among the different
schemata are modeled in a single mapping package, encapsu-
lating all the lower-level mappings among different schemata.

Dataflow Level (or Level 1). This level describes the data re-
lationship among the individual source tables of the involved
schemata towards the respective targets in the DW. Practically,
a data mapping diagram at the database level is zoomed-in to
a set of more detailed data mapping diagrams, each capturing
how a target table is related to source tables in terms of data.

Table Level (or Level 2).Whereas the mapping diagram of the
dataflow level describes the data relationships among sources
and targets using a single package, the data mapping diagram
at the table level, details all the intermediate transformations
and checks that take place during this flow. Practically, if a
data mapping is simple, a single package that represents the
data mapping can be used at this level; otherwise, a set of pack-
ages is used to segment complex data mappings in sequential
steps.

Attribute Level (or Level 3). In this level, the data mapping dia-
gram involves the capturing of inter-attribute mappings. Prac-
tically, this means that the diagram of the table is zoomed-in
and the mapping of provider to consumer attributes is traced,
along with any intermediate transformation and cleaning. As
we shall describe later, we provide two variants for this level.

At the leftmost part of Figure 7.6, a simple relationship among
the DWCS and the SCS exists: this is captured by a single Data
Mapping package and these three design elements constitute the data
mapping diagram of the database level (or Level 0). Assuming that
there are three particular tables in the DW that we would like to
populate, this particular Data Mapping package abstracts the fact
that there are three main scenarios for the population of the DW,
one for each of this tables. In the dataflow level (or Level 1) of our

110 Chapter 7. Data Mapping Diagrams for Data Warehouses

Figure 7.6: Data mapping levels

framework, the data relationships among the sources and the targets
in the context of each of the scenarios, is practically modeled by the
respective package. If we zoom in one of these scenarios, e.g., Mapping
1, we can observe its particularities in terms of data transformation
and cleaning: the data of Source 1 are transformed in two steps
(i.e., they have undergone two different transformations), as shown
in Figure 7.6. Observe also that there is an Intermediate data store
employed, to hold the output of the first transformation (Step 1),
before passed on to the second one (Step 2). Finally, at the right
lower part of Figure 7.6, the way the attributes are mapped to each
other for the data stores Source 1 and Intermediate is depicted. Let
us point out that in case we are modeling a complex and huge DW,
the attribute transformation modelled at level 3 is hidden within a
package definition, thereby avoiding the use of cluttered diagrams.

The constructs that we employ for the data mapping diagrams at
different levels are as follows:

• The database and dataflow diagrams (Levels 0 and 1) use tradi-
tional UML structures for their purpose. Specifically, in these
diagrams we employ (a) packages for the modeling of data re-
lationships and (b) simple dependencies among the involved
entities. The dependencies state that the mapping packages
are dependent upon the changes of the employed data stores.

• The table level (Level 2) diagram extends UML with three
stereotypes: (a) «Mapping», used as a package that encapsu-
lates the data interrelationships among data stores, (b) «In-
put» and «Output» which explain the roles of providers and
consumers for the «Mapping».

7.4. The Data Mapping Diagram 111

• The diagram at the attribute level (Level 3) is also using sev-
eral newly introduced stereotypes, namely «Map», «MapObj»,
«Domain», «Range», «Input», «Output», and «Intermediate»
for the definition of data mappings.

We will detail the stereotypes of the table level in the next section
and defer the discussion for the stereotypes of the attribute level to
Section 7.4.2.

7.4.1 The Data Mapping Diagram at the Table
Level: Segmenting Data Diagrams

During the integration process from data sources into the DW, source
data may undergo a series of transformations, which may vary from
simple algebraic operations or aggregations to complex procedures.
In our approach, the designer can segment a long and complex trans-
formation process into simple and small parts represented by means
of UML packages that are materialization of a «Mapping» stereo-
type and contain an attribute/class diagram. Moreover, «Mapping»
packages are linked by «Input» and «Output» dependencies that rep-
resent the flow of data. During this process, the designer can create
intermediate classes, represented by the «Intermediate» stereotype,
in order to simplify or clarify the models. These classes represent
intermediate storage that may or may not exist actually, but they
help to understand the mappings.

In Figure 7.7, a schematic representation of a data mapping di-
agram at the table level is shown. This level specifies data sources
and target sources, to which these data are directed. At this level,
the classes are represented as usually in UML with the attributes
depicted inside the container class. Since all the classes are imported
from other packages, the legend (from ...) appears below the name
of each class. The mapping diagram is shown as a package deco-
rated with the «Mapping» stereotype and hides the complexity of
the mapping, because a vast number of attributes can be involved
in a data mapping. This package presents two kinds of stereotyped
dependencies: «Input» to the data providers (i.e., the data sources)
and «Output» to the data consumers (i.e., the tables of the DW).

7.4.2 The Data Mapping Diagram at the Attribute
Level: Integration in Detail

As already mentioned, in the attribute level, the diagram includes
the relationships between the attributes of the classes involved in a
data mapping. At this level, we offer two design variants:

• Compact variant: the relationship between the attributes is

For more infor-
mation about
UML notes,
consult appendix
B, pp. 211.

112 Chapter 7. Data Mapping Diagrams for Data Warehouses

represented as an association, and the semantic of the mapping
is described in a UML note attached to the target attribute of
the mapping.

• Formal variant: the relationship between the attributes is rep-
resented by means of a mapping object, and the semantic of the
mapping is described in a tag definition of the mapping object.

For more infor-
mation about
UML tag defi-
nitions, consult
appendix C, pp.
217. With the first variant, the data mapping diagrams are less clut-

tered, with less modeling elements, but the data mapping semantics
are expressed as UML notes that are simple comments that have no
semantic impact. On the other hand, the size of the data mapping
diagrams obtained with the second variant is larger, with more mod-
eling elements and relationships, but the semantics are better defined
as tag definitions.

Compact Variant

In this variant, the relationship between the attributes is represented
as an association decorated with the stereotype «Map», and the se-
mantic of the mapping is described in a UML note attached to the
target attribute of the mapping.

The content of the package Mapping diagram from Figure 7.7 is
defined in the following way (recall that Mapping diagram is a «Map-
ping» package that contains an attribute/class diagram):

• The classes DS1, DS2, . . . , and Dim1 are imported in Mapping
diagram.

• The attributes of these classes are suppressed because they are
shown as «Attribute» classes in this package.

• The «Attribute» classes are connected by means of association
relationships and we use the navigability property to specify

For more informa-
tion about UML
navigability, con-
sult appendix B,
pp. 211. the flow of data from the data sources to the DW.

• The association relationships are adorned with the stereotype
«Map» to highlight the meaning of this relationship.

• A UML note can be attached to each one of the target at-
tributes to specify how the target attribute is obtained from the
source attributes. The language for the expression is a choice
of the designer (e.g., a LAV vs. a GAV approach [69] can be
equally followed).

In Figure 7.8, we show a data mapping diagram according to this
variant. The classes shown in Figure 7.7 have been imported and
their attributes are shown as «Attribute» classes. Different «Map»

7.4. The Data Mapping Diagram 113

Figure 7.7: Level 2 of a data mapping diagram

Figure 7.8: Level 3 of a data mapping diagram (compact variant)

114 Chapter 7. Data Mapping Diagrams for Data Warehouses

Figure 7.9: Level 2 of a data mapping diagram

associations have been defined and the semantic of the mappings is
described in UML notes. In this example, Dim1.Att1 and Dim1.Att2
depend on different source attributes and the notes attached to them
define the semantic of the mapping. However, Dim1.Att3 does not
depend on the data sources and it always takes the same value (a
constant named “C”), but a function that generates a timestamp, a
random number or other kinds of values can also be specified instead
of a constant.

7.4.3 Motivating Example Revisited
From the DW example shown in Figures 7.1, 7.2, and 7.3, we define
the corresponding data mapping diagram shown in Figure 7.9. The
goal of this data mapping is to calculate the quarterly sales of the
products belonging to the computer category. The result of this trans-
formation is stored in ComputerSales from the DWCS. The transfor-
mation process has been segmented in three parts: Dividing, Filter-
ing, and Aggregating; moreover, DividedOrders and FilteredOrders, two
«Intermediate» classes, have been defined.

Following with the data mapping example shown in Figure 7.9,
attribute prod_list from Orders table contains the list of ordered prod-
ucts with product ID and (parenthesized) quantity for each. There-
fore, Dividing splits each input order according to its prod_list into
multiple orders, each with a single ordered product (prod_id) and
quantity (quantity), as shown in Figure 7.10. Note that in a data
mapping diagram the designer does not specify the processes, but
only the data relationships. We use the one-to-many cardinality
in the association relationships between Orders.prod_list and Divide-
dOrders.prod_id and DividedOrders.quantity to indicate that one input
order produces multiple output orders. We do not attach any note in
this diagram because the data are not transformed, so the mapping

7.4. The Data Mapping Diagram 115

is direct.

Figure 7.10: Dividing Mapping

Filtering (Figure 7.11) filters out products not belonging to the
computer category. We indicate this action with a UML note at-
tached to the prod_id mapping, because it is supposed that this at-
tribute is going to be used in the filtering process.

Figure 7.11: Filtering Mapping

Finally, Aggregating (Figure 7.12) computes the quarterly sales for
each product. We use the many-to-one cardinality to indicate that
many input items are needed to calculate a single output item. More-
over, a UML note indicates how the ComputerSales.sales attribute is
calculated from FilteredOrders.quantity and Products.price. The car-
dinality of the association relationship between Products.price and
ComputerSales.sales is one-to-many because the same price is used

116 Chapter 7. Data Mapping Diagrams for Data Warehouses

in different quarters, but to calculate the total sales of a particular
product in a quarter we only need one price (we consider that the
price of a product never changes along time).

Figure 7.12: Aggregating Mapping

At this point we would like to come back to our original statements
at the introductory section and discuss briefly our gains by adopting
attribute-level modeling.

• We can easily detect inconsistencies, either though some com-
putational engine or even by simple observation of the diagram.
For example, if the attributes of a DW table are not populated,
then, an inconsistency occurs.

• We can treat the design artifact as a graph [135], where provider
and consumer relationships are treated as incoming and outgo-
ing edges. In this sense, we can even measure the properties
of our modeling in a straightforward fashion. For example, we
can measure the aforementioned inconsistencies or we can even
highlight hot-spots in our design: for example, in Figure 7.10
we can observe that the attribute Orders.prod_list is responsible
for populating more than one target attribute in the DW.

• Both the visualization and the measurement of the design prop-
erties can significantly aid the impact analysis that needs to be
performed in the presence of changes in the design. As an exam-
ple, assume the case where a source attribute is to be deleted, or

7.5. Conclusions 117

the definition of a primary key to be altered. Our data mapping
diagrams can easily depict and measure the affected attributes.
Hot-spots are really important, in that sense.

7.5 Conclusions
In this chapter, we have presented a framework for the design of the
DW back-stage (and the respective ETL processes) based on the key
observation that this task fundamentally involves dealing with the
specificities of information at very low levels of granularity. Specif-
ically, we have presented a disciplined framework for the modeling
of the relationships between sources and targets in different levels of
granularity (i.e., from coarse mappings at the database level to de-
tailed inter-attribute mappings at the attribute level). Unfortunately,
standard modeling languages like the ER model or UML are funda-
mentally handicapped in treating low granule entities (i.e., attributes)
as first class modeling elements. Therefore, in order to formally ac-
complish the aforementioned goal, we have extended UML to model
attributes as first-class citizens. In our attempt to provide comple-
mentary views of the design artifacts in different levels of detail, we
have based our framework on a principled approach in the usage of
UML packages, to allow zooming in and out the design of a scenario.

Although we have developed the representation of attributes as
first-class modeling elements in UML in the context of data ware-
housing, we believe that our solution can be applied in other appli-
cation domains as well, e.g., definition of indexes and materialized
views in databases, modeling of XML documents, specification of
web services, etc.

Part II

Logical Level

119

Chapter 8

Logical Modeling of Data
Sources and Data
Warehouses

In this chapter, we address the design of the Source Logical
Schema, the Data Warehouse Logical Schema, and the Client
Logical Schema. These diagrams can be defined independently, or
they can be derived from the corresponding conceptual models (Source
Conceptual Schema, Data Warehouse Conceptual Schema,
and Client Conceptual Schema). We use the UML Profile for
Database Design to model these diagrams that define the database struc-
tures.

Contents
8.1 Introduction 123
8.2 The UML Profile for Database Design . 124
8.3 Mapping Classes to Tables 126

8.3.1 Many-to-many Associations 126
8.3.2 Inheritance Hierarchy 126

121

122
Chapter 8. Logical Modeling of Data Sources and Data

Warehouses

8.4 Mapping Attributes to Columns 129
8.5 Mapping Types to Datatypes 129
8.6 Conclusions 131

8.1. Introduction 123

8.1 Introduction

In the previous chapters, we have tackled the conceptual modeling of
the data sources and the DW itself. In this chapter, the modeling
effort transitions from the conceptual analysis to the logical design of
the database. In the following, we will focus on relational databases
[26], the most popular DBMS nowadays, and we will leave the study
of other DBMS for the future.

The UML offers some advantages for the logical database design
that are not generally considered in traditional notations. For ex-
ample, the UML provides full support for modeling generalization
and specialization relationships or stored procedures. Moreover, the
UML provides the concept of packages, which logically group the
elements of a model in different units.

To achieve the logical modeling of the data sources (Source Log-
ical Schema), the DW (Data Warehouse Logical Schema),
and the structures used by the final users (Client Logical Schema)
we apply the UML Profile for Database Design [90].

There are two basic directions on where to go next. One direction
is to build the logical models from the conceptual models by means of
a mapping between the different diagrams. The other direction is to
build the logical models independently from the conceptual models;
however, we advise against this last direction because the advantages
of starting from the conceptual level and maintaining a coherent map-
ping between the two levels are lost. Therefore, we recommend to
build the logical models based on the conceptual models.

There are multiple ways to map models. In our approach, the
classes are mapped to tables, attributes to columns, types to datatypes,
and associations to relationships. In this mapping process, some sit-
uations have to be considered: not all elements in each model will
be mapped, e.g., some attributes from the conceptual model may not
be represented in the logical model because they are not stored in
the database. For example, an attribute called Total_Sales, which
represents the sum of multiple columns in the database is not stored
because it is just a calculation in the application (it is a derived at-
tribute).

The remainder of this chapter is structured as follows: Section 8.2
introduces the UML Profile for Database Design; Section 8.3 focuses
on mapping classes to tables; then, Section 8.4 moves into mapping
attributes of a class to columns of a table; and Section 8.5 discusses
mapping types to datatypes. Finally, Section 8.6 points out some
conclusions.

124
Chapter 8. Logical Modeling of Data Sources and Data

Warehouses

8.2 The UML Profile for Database Design
The UML Profile for Database Design [90] developed by Rational
Software Corporation provides stereotypes and tagged values that
represent tables, views, columns, relationships, triggers, etc. This
profile also includes some icons to more easily visualize the database
elements and rules to enforce about the creation of a relational database
design.

The main diagram elements that this profile defines are described
below and their associated graphical representations are shown in
Figure 8.1:

• Table: a grouping of information in a database about the same
subject, made up to columns.

• View: a virtual table that, from the user’s perspective, behaves
exactly like a typical table but has no independent existence of
its own.

• Domain: the valid set of values for an attribute or column.

• Column: a component of a table that holds a single attribute
of the table.

• Primary key: the candidate key that is chosen to identify
rows in a table.

• Foreign key: a column or set of columns within a table that
map to the primary key of another table.

• Identifying relationship: a relationship between two tables
in which the child table must coexist with the parent table.

• Non-identifying relationship: a relationship between two
tables in which each table can exist independently of the other.

In addition to the elements shown in Figure 8.1, the UML Profile
for Database Design defines more stereotypes, such as «Database»,
«Schema», «Tablespace», «Index», «Check», etc. The common pre-
sentation of a stereotype is to use the standard symbol for the base
element but to place the name of the stereotype above the name of
the element.

However, in order to permit limited graphical extension of the
UML notation as well, a graphic icon can be associated with a stereo-
type . The icon can be used in one of two ways:

Stereotype
notation : see
UML (3.18.2,
3-31).

• It may be used instead of, or in addition to, the stereotype
keyword string as part of the symbol for the base model element
that the stereotype is based on.

8.2. The UML Profile for Database Design 125

Figure 8.1: Diagram elements and their appropiate icons

Figure 8.2: Stereotype display: Icon

• The entire base model element symbol may be “collapsed” into
an icon containing the element name or with the name above
or below the icon.

For example, in Figure 8.2, Figure 8.3, and Figure 8.4 we illus-
trate various notational forms of the stereotype notation. The three
figures are alternatives of each other. In Figure 8.2, the icon of the
stereotype is used instead of the symbol of the base element. How-
ever, in Figure 8.3, the icon is placed in the upper right corner of the
class compartment. Finally, in Figure 8.4, the stereotype is placed
above the name of the class being described.

Figure 8.3: Stereotype display: Decoration

126
Chapter 8. Logical Modeling of Data Sources and Data

Warehouses

Figure 8.4: Stereotype display: Label

8.3 Mapping Classes to Tables
There are four basic ways to map classes to tables: one-to-one, one-to-
many, many-to-one, and many-to-many. There are different reasons
for selecting the right mapping, but there exist some mappings that
occur based on general relational database approaches. In the follow-
ing, we are going to study two of the most common mappings: many-
to-many associations and inheritance hierarchies (supertype/subtype
relationships).

8.3.1 Many-to-many Associations

Many-to-many associations must be broken into two one-to-many re-
lationships by creating an auxiliary table. This table contains foreign
keys to the two tables that the classes of the many-to-many associ-
ation map to. Moreover, the auxiliary table may have additional
columns.

For example, on the left hand side of Figure 8.5 we represent the
conceptual model of a data source. This data source stores the sales
of a company and a sale comprises some products and a product
can appear in different sales. Therefore, there is a many-to-many
association between Sales and Products. On the right hand side, we
show the mapping of the conceptual model to the logical model. In
this mapping, one table per class has been created and a new table
called SalesLines corresponds to the many-to-many association. This
table contains two primary keys that are also foreign keys: idsale to
Sales table and codeproduct to Products.

8.3.2 Inheritance Hierarchy

When mapping inheritance hierarchies to tables, there are three basic
choices: one table per class, one table per concrete class, and one table
per hierarchy.

In one table per class, each class is mapped directly to a corre-
sponding table. One table per concrete class is also known as “rolling
down” the supertype table into its subtypes: the attributes from the
superclass are placed as columns in tables that map to the subtype

8.3. Mapping Classes to Tables 127

Figure 8.5: Transforming a many-to-many association

classes. Finally, one table per hierarchy is also known as “rolling up”
the subtypes to the supertype: the attributes in the subtype classes
are placed as column in a single table that maps both the supertype
and subtypes.

For example, in Figure 8.6 we show a conceptual data model that
represents the products that a company sales. There three types of
products: TV, Radio, and Video_player, and each type has its own
attributes. Therefore, an inheritance hierarchy has been modelled,
with a supertype class and three subtype classes.

In Figure 8.7, we show a one table per class mapping. The trans-
formation is direct, and the only outstanding situation is the trans-
formation of the generalization/specialization relationships into com-
mon associations. These associations represent one-to-one relation-
ships between the Products table and the subtype tables.

In Figure 8.8, we show a one table per concrete class mapping.
Three tables that map to the subtype classes have been defined. The
attributes from the supertype class have been replicated in every
table.

Finally, in Figure 8.9, we show a one table per hierarchy mapping.
The whole inheritance hierarchy is represented as a single table. This
table maps to both the supertype and subtypes and it contains the
attributes from all the classes of the hierarchy. Moreover, there is
a new column created (product_type) that does not map to any at-
tribute in the classes of the hierarchy. This column defines the type

128
Chapter 8. Logical Modeling of Data Sources and Data

Warehouses

Figure 8.6: A conceptual data model with a inheritance hierarchy

Figure 8.7: Transforming a inheritance hierarchy: one table per class

8.4. Mapping Attributes to Columns 129

Figure 8.8: Transforming a inheritance hierarchy: one table per con-
crete class

of Product. In a UML note we point out the three valid values of
this column.

8.4 Mapping Attributes to Columns

There are many ways to map attributes to columns. But they are
affected by the class-to-table mapping. Therefore, both must be con-
sidered together. Moreover, some attributes will not become columns
and some columns will be defined for the correct operation of the
database.

When mapping the attributes to columns, some considerations
must be taken into account:

• Database performance.

• Secure access: in most databases, it is not possible to assign
security access to an individual columns but only to the entire
table. Therefore, in order to secure some columns, a new table
can be created only to store the secure columns.

• Derived attributes: derived attributes usually do not exist in
the database, but performance requirements may force to store
derived attributes.

8.5 Mapping Types to Datatypes

Conceptual models generally contain attributes that have generic
types. These types are well enough descriptive but not specific to
any implementation.

130
Chapter 8. Logical Modeling of Data Sources and Data

Warehouses

Figure 8.9: Transforming a inheritance hierarchy: one table per hi-
erarchy

Generic type Description
Boolean Used to represent the logical values of True or

False
Currency Used to declare variables capable of holding fixed-

point numbers with 15 digits to the left of the
decimal point and 4 digits to the right

Date Used to hold date and time values
Double Used to declare variables capable of holding real

numbers with 15-16 digits of precision
Integer Used to declare whole numbers with up to 4 digits

of precision
Long Used to hold numbers with up to 10 digits of pre-

cision
Single Used to declare variables capable of holding real

numbers with up to 7 digits of precision
String Used to hold an unlimited number of characters

Table 8.1: Generic types and their description

8.6. Conclusions 131

Generic type Datatype
Boolean Bit
Currency Decimal

Date Date
Double Double Precision
Integer Integer
Long Decimal
Single Decimal
String Char

Table 8.2: Generic types mapped to ANSI SQL datatypes

In Table 8.1, we show some of the generic types that are commonly
used. These generic types are available in most CASE tools.

In Table 8.2, we show a mapping of the generic types shown in
Table 8.1 to specific types defined in Structured Query Language
(SQL) [11]. These table is only an example, because designers should
define their own mappings for every project. For example, Integer
may be also mapped to Numeric, Decimal, or Smallint.

The previous figures, we have included some mapping from at-
tribute types to column datatypes. For example, in Figure 8.5, the
String type is transformed into Char(50) and Char(255), whereas the
Currency type is turned into Decimal(10,2). In Figure 8.6 and Fig-
ure 8.7, the Boolean type is turned into Char(1).

8.6 Conclusions
In this chapter, we have explained how we tackle the logical modeling
of data sources and DW. Our approach in based on the UML Profile
for Database Design [90], created by Rational Software Corporation
for use when designing a database. From the conceptual model of
the data sources and the DW, we have shown how to proceed to the
logical model applying some mappings.

Chapter 9

Modeling ETL Processes
in Data Warehouses

ETL processes are responsible for the extraction of data from het-
erogeneous operational data sources, their transformation (conversion,
cleaning, normalization, etc.) and their loading into DW. ETL pro-
cesses are a key component of DW because incorrect or misleading data
will produce wrong business decisions, and therefore, a correct design of
these processes at early stages of a DW project is absolutely necessary
to improve data quality. However, not much research has dealt with the
modeling of ETL processes. In this chapter, we present our approach
that allows us to accomplish the modeling of these ETL processes to-
gether with the logical schema of the target DW in an integrated manner.
We provide the necessary mechanisms for an easy and quick specification
of the common operations defined in these ETL processes such as, the
integration of different data sources, the transformation between source
and target attributes, the generation of surrogate keys and so on. More-
over, our approach allows the designer a comprehensive tracking and
documentation of entire ETL processes, which enormously facilitates
the maintenance of these processes. Another advantage of our proposal
is the use of the UML (standardization, ease-of-use and functionality)
and the seamless integration of the design of the ETL processes with
the DW logical schema. Finally, we show how to use our integrated

133

134 Chapter 9. Modeling ETL Processes in Data Warehouses

approach by using a well-known modeling tool such as Rational Rose.

Contents
9.1 Introduction 135
9.2 ETL . 136
9.3 Modeling ETL processes 137

9.3.1 Aggregation 138
9.3.2 Conversion 140
9.3.3 Log . 142
9.3.4 Filter 142
9.3.5 Join . 143
9.3.6 Loader 144
9.3.7 Incorrect 145
9.3.8 Merge 145
9.3.9 Wrapper 146
9.3.10 Surrogate 146

9.4 ETL Examples 147
9.4.1 Transform Columns into Rows 148
9.4.2 Merging Two Different Data Sources and

Multi-target Loading 148
9.4.3 Aggregate and Surrogate Key Process . 150

9.5 Conclusions 151

9.1. Introduction 135

9.1 Introduction

Recalling Bill Inmon’s DW definition [57], “A data warehouse is
a subject-oriented, integrated, time-variant, nonvolatile collection of
data in support of management’s decisions”. A DW is “integrated”

For more infor-
mation about
Bill Inmon’s data
warehouse def-
inition, consult
Section 2.1, pp.
13.

because data are gathered into the DW from a variety of sources and
merged into a coherent whole. ETL processes are responsible for the
extraction of data from heterogeneous operational data sources, their
transformation (conversion, cleaning, normalization, etc.) and their
loading into DW.

It is highly recognized that the design and maintenance of these
ETL processes is a key factor of success in DW projects for several
reasons [123, 124]. DW are usually populated by data from different
and heterogeneous operational data sources such as legacy systems,
relational databases, COBOL files, Internet (XML, web logs) and so
on. Therefore, different routines have to be defined and configured for
accessing these heterogeneous systems and loading the correct data
into the common DW repository.

Moreover, data from the operational systems are usually specified
in different schemas and have to be extracted and transformed to
collect them into a common DW repository [104]. Some of the more
common technical tasks that have to be accomplished with these data
are as follows. Data coming from different sources have to be joined
into a unique target in the DW. Data usually have to be aggregated
in order to facilitate the definition of the queries and improve the
performance of the DW. Data are usually in different types and for-
mats and they need to be converted into a common format. Data
in the operational systems are usually managed by different primary
keys representing for example, product or store codes and so on. In
DW we usually use surrogate keys, and therefore, we need an effi-
cient mechanism to assign surrogate keys to the operational data in
the DW repository. Furthermore, as data are coming from different
sources, we usually need to check the different primary and foreign
keys to assure a high quality of data. Moreover, we also need a high
number of filters to verify the right data to be uploaded in the DW
and many more problems.

Due to the high difficulty in designing and managing these ETL
processes, there has lately been a proliferation in the number of avail-
able ETL tools that try to simplify this task [45, 67]. During 2001,
the ETL market grew to about $667 million [5]. Currently, compa-
nies expend more than thirty percent out of the total budget for DW
projects in expensive ETL tools, but “It’s not unusual for the ETL
effort to occupy 60 percent to 80 percent of a data warehouse’s im-
plementation effort” [124]. Nevertheless, it is widely recognized that
the design and maintenance of these ETL processes has not yet been

136 Chapter 9. Modeling ETL Processes in Data Warehouses

solved [5].
Therefore, we argue that a model and method is needed to help

the design and maintenance of these ETL processes from the early
stages of a DW project; as Kimball states, “Our job as data ware-
house designers is to star with existing sources of used data” [63].
Unfortunately, little effort has been dedicated to propose a logical
model that allows us to formally define these ETL processes.

In this chapter, we present a logical model based on the UML [97]
for the design of ETL processes which deals with the more common
technical problems above-presented. As the UML has been widely
accepted as the standard for OO analysis and design, we believe that
our approach will minimize the efforts of developers in learning new
diagrams or methods for modeling ETL processes. Furthermore, the
logical modeling of these ETL processes is totally integrated in our
global approach. Therefore, our approach reduces the development
time of a DW, facilitates managing data repositories, DW adminis-
tration, and allows the designer to perform dependency analysis (i.e.
to estimate the impact of a change in the data sources in the global
DW schema).

The rest of this chapter is organized as follows. Section 9.2 pro-
vides an overview of ETL processes and their surrounding data qual-
ity problems. Section 9.3 describes in detail how to accomplish the
logical modeling of ETL processes using our proposal. Then, Sec-
tion 9.4 shows how some interesting ETL problems are solved apply-
ing our approach. Finally, Section 9.5 presents the main conclusions.

9.2 ETL
In an ETL process, the data extracted form a source system pass
through a sequence of transformations before they are loaded into a
DW. The repertoire of source systems that contribute data to a DW
is likely to vary from standalone spreadsheets to mainframe-based
systems many decades old. Complex transformations are usually im-
plemented in procedural programs, either outside the database (in C,
Java, Pascal, etc.) or inside the database (by using any 4GL). The
design of an ETL process is usually composed of six tasks:

1. Select the sources for extraction: the data sources to be used
in the ETL process are defined. It is very common in an ETL
process to access different heterogeneous data sources.

2. Transform the sources: once the data have been extracted from
the data sources, they can be transformed or new data can be
derived. Some of the common tasks of this step are: filtering
data, converting codes, performing table lookups, calculating

9.3. Modeling ETL processes 137

derived values, transforming between different data formats, au-
tomatic generation of sequence numbers (surrogate keys), etc.

3. Join the sources: different sources can be joined in order to load
together the data in a unique target.

4. Select the target to load: the target (or targets) to be loaded is
selected.

5. Map source attributes to target attributes: the attributes (fields)
to be extracted from the data sources are mapped to the cor-
responding target attributes.

6. Load the data: the target is populated with the transformed
data from the sources.

The transformation step of the ETL processes can also perform
data cleaning tasks, although ETL tools typically have little built-
in data cleaning capabilities. Data cleaning deals with detecting and
removing errors and inconsistencies from data in order to improve the
data quality [104]. Data quality problems are very significant: it has
been estimated that poor quality customer data cost U.S. businesses
$611 billion a year in postage, printing, and staff overhead [36].

The manual creation and maintenance of ETL processes increases
the cost of development, deployment, running, and maintenance of a
DW. That is why the logical modeling of ETL processes can be of
a crucial help.

9.3 Modeling ETL processes

In this section we present our ETL modeling proposal that is inte-
grated in our global DW modeling approach presented in Chapter 4.
Our approach allows the designer to decompose a complex ETL pro-
cess into a set of simple processes. This approach helps the designer to
easily design and maintain ETL processes. Moreover, our approach
allows the DW designer to tackle the design of ETL processes from
different detail levels: (i) the designer can define a general overview
of the process and let the database programmer to specify them or,
(ii) the designer can provide a detailed description of each one of the
attribute transformations.

Based on our personal experience, we have defined a reduced and
yet highly powerful set of ETL mechanisms. We have decided to
reduce the number of mechanisms in order to reduce the complex-
ity of our proposal. We have summarized these mechanisms in Ta-
ble 9.1. We consider that these mechanisms process data in the form

138 Chapter 9. Modeling ETL Processes in Data Warehouses

of records composed of attributes1. Therefore, we provide the «Wrap-
per» mechanism to transform any source into a record based source.

In our approach, an ETL process is composed of UML packages,
which allow the user to decompose the design of an ETL process
into different logical units. Every particular ETL mechanism is rep-
resented by means of a stereotyped class. Moreover, we have defined
a different icon for each ETL mechanism (see Table 9.1). This icon
can be used in a UML model instead of the standard representation
of a class.

The ETL mechanisms are related to each other by means of UML
dependencies. A dependency in the UML is represented as a dashed

Dependency :
see UML
(2.5.2.15,
2-33), (3.51,
3-90). line with an arrowhead. The model element at the tail of the arrow

(the client) depends on the model element at the arrowhead (the sup-
plier). A dependency states that the implementation or functioning
of one or more elements requires the presence of one or more other
elements. This implies that if the source is somehow modified, the
dependents must be probably modified.

A UML note can be attached to every ETL mechanism to (i)
explain the functioning of the mechanism and, (ii) define the map-
pings between source and target attributes of the ETL mechanisms.
These mappings conform to the following syntax: target_attribute =
source_attribute. To avoid overloading the diagram with long notes,
when source and target attributes’ names match, the corresponding
mappings can be omitted. Furthermore, when some kind of ambigu-
ity may exist (e.g., two attributes with the same name in different
sources), the name of the source can be indicated together with name
of the attribute (e.g., Customers.Name and Suppliers.Name).

We do not impose any restriction on the content of these notes, in
order to allow the designer the greatest flexibility, but we highly rec-
ommend a particular content for each mechanism. The designer can
use the notes to define ETL processes at the desired detail level. For
example, the description can be general, specified by means of a nat-
ural language, or very detailed, specified by means of a programming
language.

In the following, we provide a deeper description of each one of
the ETL mechanisms presented in Table 9.1 together with the more
appropriated contents for the corresponding attached notes.

9.3.1 Aggregation

The «Aggregation» mechanism aggregates data based on some crite-
ria. This mechanism is useful to increase the aggregation level of a

1In our approach, the concept of attribute is similar to the concepts of column,
property or field.

9.3. Modeling ETL processes 139
T
ab

le
9.

1:
E

T
L

m
ec

ha
ni

sm
s

an
d

ic
on

s

E
T

L
M

ec
h
an

is
m

D
es

cr
ip

ti
on

Ic
on

(S
te

re
ot

yp
e)

«
A

gg
re

ga
ti
on

»
A

gg
re

ga
te

s
da

ta
ba

se
d

on
so

m
e

cr
it

er
ia

«
C
on

ve
rs

io
n»

C
ha

ng
es

da
ta

ty
pe

an
d

fo
rm

at
or

de
ri

ve
s

ne
w

da
ta

fr
om

ex
is

ti
ng

da
ta

«
Fi

lt
er

»
F
ilt

er
s

an
d

ve
ri

fie
s

da
ta

«
In

co
rr

ec
t»

R
er

ou
te

s
in

co
rr

ec
t

da
ta

«
Jo

in
»

Jo
in

s
tw

o
da

ta
so

ur
ce

s
re

la
te

d
to

ea
ch

ot
he

r
w

it
h

so
m

e
at

tr
ib

ut
es

«
Lo

ad
er

»
L
oa

ds
da

ta
in

to
th

e
ta

rg
et

of
an

E
T

L
pr

oc
es

s

«
Lo

g»
L
og

s
ac

ti
vi

ty
of

an
E

T
L

m
ec

ha
ni

sm

«
M

er
ge

»
In

te
gr

at
es

tw
o

or
m

or
e

da
ta

so
ur

ce
s

w
it

h
co

m
pa

ti
bl

e
at

tr
ib

ut
es

«
Su

rr
og

at
e»

G
en

er
at

es
un

iq
ue

su
rr

og
at

e
ke

ys

«
W

ra
pp

er
»

T
ra

ns
fo

rm
s

a
na

ti
ve

da
ta

so
ur

ce
in

to
a

re
co

rd
ba

se
d

da
ta

so
ur

ce

140 Chapter 9. Modeling ETL Processes in Data Warehouses

(a) (b)

Figure 9.1: Aggregation example by using standard UML class nota-
tion and the defined stereotype icons

data source2. The designer can define the grouping criteria and the
aggregation functions employed (SUM, AVG, MAX/MIN, COUNT,
STDDEV, VARIANCE and so on) in the attached note to this mech-
anism.

For example, in Figure 9.1 (a), we have represented a portion of a
loading process in a DW3 by using standard UML notation in which
the stereotype icons are placed in the upper right-hand corner of the
corresponding class. It may also be observed that the icon used in the
Sales class corresponds to the «Table» stereotype icon defined in the
UML Profile for Database Design [90], which is used for the logical
modeling of databases. As the grain of Sales is ticket line, we need

For more informa-
tion about logical
modeling, consult
chapter 8, pp.
121. the daily total sales in the DW. Therefore, Sales are grouped and

summed up by product and date in SummedSales. We have decided
to specify these aggregation tasks in the corresponding attached note.
Figure 9.1 (b) represents the same ETL process using our ETL icons.
From now on, we will use this representation throughout the rest of
the chapter.

9.3.2 Conversion

The «Conversion» mechanism is used to change data types and for-
mats or to calculate and derive new data from existing data. The
conversions are defined in the attached note by means of conversion
functions applied to source attributes. The syntax of these conver-

2Partial summarization of data under different criteria is a very common tech-
nique used in DW to facilitate complex analysis. Summarization helps to reduce
the size of the resulting DW and increase the query performance [63].

3From now on, partial examples are used to describe each ETL mechanism.

9.3. Modeling ETL processes 141

sions is target_attribute = Function(source_attributes), where Func-
tion is any kind of function that can be applied to source attributes.

Based on our experience, we have defined conversion functions
for the most common situations. However, this is not a closed set
as the designer can define their own user-defined functions for more
particular and complex situations:

• Data type conversions: convert data from a data type into an-
other data type. For example: Price = StringToCurrency(Price).

• Arithmetic conversions: perform arithmetic operations (add,
multiply, etc.) with data. For example: Total = Quantity *
Price.

• Format conversions: convert a value (currency, date, length,
etc.) from one format into another one. For example: Price =
DollarToEuro(Price).

• String conversions: transform strings (upper and lower-case,
concatenate, replace, substring, etc.). For example: Name =
Concatenate(FirstName, “ ”, Surname).

• Split conversions: break a value into different elements. For
example, the following expression breaks a name (“John Doe”)
into first name (“John”) and surname (“Doe”): FName = First-
Name(Name); SName = Surname(Name).

• Standardization conversions: standardize attributes to contain
identical values for equivalent data elements. We can use a
set of rules or look-up tables to search for valid values. For
example, the following expression substitutes “Jan.” or “1” with
“January”: Month = StdMonth(Month).

• Value generator: generates a constant value or a variable value
from a function. The new value does not depend on any source
attribute. For example: Date = Timestamp().

• Default value: when a value is missing (null, empty string, etc.),
it is possible to define a default value. The syntax of this option
is target_attribute ?= value. For example: Type ?= “unknown” .

Figure 9.2 presents an example in which different conversions are
applied through the ConvertedCustomers stereotype. As it can be eas-
ily seen from the attached note, Name and Surname are concatenated;
Address is split into street type, name and number; and Born is con-
verted using a date format. Furthermore, all the activity is audited
by CustomerLog (see next section).

142 Chapter 9. Modeling ETL Processes in Data Warehouses

Figure 9.2: An example of Conversion and Log processes

9.3.3 Log

The «Log» mechanism can be connected to any ETL mechanism as
it controls the activity of another ETL mechanism. This mechanism
is useful to audit and produce operational reports for each transfor-
mation. The designer can add any kind of additional information in
the note attached to this mechanism.

For example, in Figure 9.2, the activity of a «Conversion» mech-
anism is controlled by the «Log» mechanism called CustomerLog.

9.3.4 Filter

The «Filter» mechanism filters unwanted data and verifies the cor-
rectness of data based on constraints. In this way, this mechanism
allows the designer to load only the required data or the data that
meet an established quality level in the DW. The verification pro-
cess is defined in the attached note by means of a set of Boolean
expressions that must be satisfied. The Boolean expressions can be
expressed by means of a set of rules or by means of look-up tables that
contain the correct data. Some common tasks for this mechanism are
checks for null values, missing values, values out of range, and so on.
The data that do not satisfy the verification can be rerouted to an
«Incorrect» mechanism (see Section 9.3.7).

For example, in Figure 9.3, Customers are filtered and only those
that were born before 1950 are accepted for a subsequent processing.

9.3. Modeling ETL processes 143

Figure 9.3: An example of Filter process

9.3.5 Join

The «Join» mechanism is used to join two data sources related to
each other with some attributes (defined by means of a restrictive
condition). The designer can define the following information in the
attached note:

• The type of join: Join(conditional_expression), where Join can
be InnerJoin (includes only the records that match the condi-
tional expression), LeftJoin (includes all of the records from the
first (left) of the two data sources, even if there are no matching
values for records in the second (right) data source), RightJoin
(includes all of the records from the second (right) of the two
data sources, even if there are no matching values for records
in the first (left) data source), and FullJoin (includes all of the
records from both data sources, even if there are no matching
values for records in the other data source).

• If LeftJoin, RightJoin or FullJoin are used, then the designer can
define the values that substitute the non-existing values. The
syntax of this option is target_attribute ?= value.

In Figure 9.4, we have represented an ETL process that joins
three data sources. Due to the fact that «Join» can only be applied
to two sources, and in this particular case we are dealing with three
sources, two «Join» mechanisms are needed. In the CitiesStates join,
a LeftJoin is performed to join cities’ names and states’ names. When
it is not possible to join a city with a state (because Cities.State is
missing or is incorrect), the corresponding state name is replaced by
“unknown” . Finally, in the CompleteCustomers join, the result of the
previous join is joined with Customers.

144 Chapter 9. Modeling ETL Processes in Data Warehouses

Figure 9.4: An example of Join process

9.3.6 Loader
The «Loader» mechanism loads data into the target of an ETL pro-
cess such as a dimension or a fact in a DW. Every ETL process
should have at least one «Loader» mechanism. Two operation modes
are supported in the «Loader»:

• Free loading: the «Loader» mechanism does not verify any con-
straint as the target applies its own constraints to the new data.

• Constrained loading: the designer can apply primary and for-
eign key constraints during the loading process. Moreover, the
designer can also define how to manage existing data in the tar-
get. The following information can be attached to the «Loader»
mechanism:

– PK(source_attributes): defines the attributes of the source
data that define a unique record in the target. This in-
formation is used for constraining the loading process and
it is also used for detecting the old data that should be
updated.

– FK(target_attributes; source_attributes): defines the at-
tributes of the source data that should previously exist
in a target.

– Append: the target need not be empty before loading the
new data; new data are loaded and old data are updated.

– Delete: the target need be empty before loading the data.

9.3. Modeling ETL processes 145

– Insert: only new data are loaded in the target; old data are
not loaded again or updated, although they have changed.

– Update: only existing data in the target are updated with
the corresponding data, but new data are not loaded.

Append, Delete, Insert, and Update are mutually exclusive: only
one of them can be used in a «Loader» mechanism.

For example, in Figure 9.5, CustomerLoader updates existing data
in CustomersDim with data coming from Customers. Furthermore,
due to the high probability of errors when making the loading pro-
cess, those records that do not satisfy the constraints are rerouted to
DiscardedCustomers. Customers and CustomersDim represent tables in
a relational database; the icon corresponds to the «Table» stereotype
defined in [90].

9.3.7 Incorrect
The «Incorrect» mechanism is used to reroute bad or discarded records
and exceptions to a separate target. In this way, the DW designer
can track different errors. This mechanism can only be used with
the «Filter», «Loader», and «Wrapper», because these mechanisms
constrain the data they process. The designer can add additional
information in the note attached to this mechanism, such as a de-
scription of the error or a timestamp of the event.

For example, in Figure 9.5, the records that do not satisfy the
constraints of CustomerLoader (primary key constraint on IdCustomer
and only update existing data in the target) are rerouted to Discard-
edCustomers, which collects the erroneous data and adds the Date
attribute that is a timestamp of the event.

9.3.8 Merge
The «Merge» mechanism integrates two or more data sources with
compatible attributes. Two data sources are compatible as long as
both of them contain a subset of the attributes defined in the target:
the attributes used in the integration must have the same names in
all the data sources. If the attributes do not have the same names,
the «Conversion» mechanism can be previously applied in order to
standardize them. The attached note to this mechanism is used to
define the mapping between the data sources and the target.

For example, in Figure 9.6, MergedCustomers is used to integrate
data coming from a file and from a database table. Firstly, Wrapped-
Customers is used to transform a file into a record based source (see
next section). Then, ConvertedCustomers changes the names of the at-
tributes (CName and CSurname) and adds a new attribute (BornDate)
with a default value.

146 Chapter 9. Modeling ETL Processes in Data Warehouses

Figure 9.5: An example of Loader and Incorrect processes

9.3.9 Wrapper

The «Wrapper» mechanism allows us to define the required transfor-
mation from a native data source into a record based data source.
Different native sources are possible in an ETL process: fixed and
variable format sources, COBOL files (line sequential, record sequen-
tial, relative files, and indexed files), multiline sources, XML docu-
ments, and so on. The needed code to implement the «Wrapper» is
not relevant as we are at the logical level, although the designer can
define in the attached note all the information that considers relevant
to help the programmer at the implementation phase.

In Figure 9.6, WrappedCustomers is used to transform data from
a fixed format file. Some information about the format of the file is
included in the attached note.

9.3.10 Surrogate

The «Surrogate» mechanism generates unique surrogate keys. In a
DW, it is very important that primary keys of tables remain sta-
ble. Because of this, surrogate key assignment is a common process
in DW, employed in order to replace the original keys of the data
sources with a uniform key. The attached note to this mechanism is
used to define the source attributes used to define the surrogate key.

9.4. ETL Examples 147

Figure 9.6: An example of Merge and Wrapper processes

Surrogate keys could have been defined in the «Conversion» mecha-
nism, however, due to the importance that surrogate keys represent
in DW, we have decided to define an own mechanism.

For example, in Figure 9.7, SurrogatedCities adds a surrogate key
(IdCity) based on the attributes Name, State, and Country before load-
ing the data into the DW.

9.4 ETL Examples

In previous sections, we have shown short and specific examples to
explain how we apply the particular ETL mechanism aim of study.
In this section, we present three interesting ETL examples that clar-
ify our approach. In the first example, we show how to transform
columns into rows. Then, in the second example, we show how to
merge two different data sources and deal with a multi-target load-
ing. Finally, the last example is an ETL scenario in which we show
how to easily model different ETL mechanisms keeping a high grade
of simplicity and yet very powerful ETL process model. These three
examples show the expressiveness power of our ETL modeling ap-
proach.

148 Chapter 9. Modeling ETL Processes in Data Warehouses

Figure 9.7: An example of Surrogate process

9.4.1 Transform Columns into Rows

In RDBMS, pivot (also called transpose) and unpivot are comple-
mentary data manipulation operators that modify the role of rows
and columns in a relational table [31]:

• Pivot transforms a group of rows into a group of fewer rows
with additional columns.

• Unpivot makes the inverse transformation, removing a num-
ber of columns and creating additional rows that contain the
column names.

In this example, it is necessary to divide a data source that con-
tains data about suppliers: name, surname, and different telephone
numbers. In order to separate the telephone numbers, five «Conver-
sion» mechanisms are defined. These mechanisms select the appro-
priate attributes in each case and add a new attribute (Type) that
indicates the type of telephone number: ‘Phone’, ‘Mobile’ or ‘Fax’.
Then, SupplierPhones («Merge» mechanism) integrate all the tele-
phone numbers of a supplier. Therefore, an unpivot operation is
executed in this scenario.

9.4.2 Merging Two Different Data Sources and
Multi-target Loading

The product list from two independent data source has to be
loaded in two targets depending on the discount of each product.

Firstly, it is necessary to merge the two incompatible data sources:
the sources have different attribute number and the common at-
tributes have different names. For the first data source, ProductWrap-
per is used to transform a multiline file into a record based data source

9.4. ETL Examples 149

Figure 9.8: Transform columns into rows (unpivot)

150 Chapter 9. Modeling ETL Processes in Data Warehouses

Figure 9.9: Merging two different data sources and multi-target load-
ing

and rename the attributes’ names. For the second data source, Prod-
uctsWithKeys («Surrogate» mechanism) generates a surrogate key
from the Name attribute. Then, AllProducts («Merge» mechanism)
is used to integrate the two sources. Finally, all the products have to
be loaded into two targets depending on the discount of each product:
the products with a discount lower than 50 percent have to be loaded
into Products dimension, whereas the products with a discount equal
or greater than 50 percent have to be loaded into Bargains dimension.
FilterProducts and FilterBargains are used to filter the products and
select the corresponding products.

9.4.3 Aggregate and Surrogate Key Process

In Figure 9.10, we have represented a loading process into a DW.
The grain level of Sales (the data source) is ticket line, but we need
the daily total sales in the DW (Sales fact table at the right hand
side of Figure 9.10). Therefore, Sales are grouped and summed up
by product and date in SummedSales. Then, SurrogatedSales adds a
surrogate key (Time) based on the Date attribute before loading the
data into the DW. This surrogate key is used in the DW to establish
a relation between Sales fact and Time dimension (Sales contains a
foreign key to Time). Finally, SalesLoader loads summarized sales into
Sales fact table, ProductsLoader loads the product list into Products
dimension, and TimeLoader loads time data into Time dimension.

9.5. Conclusions 151

Figure 9.10: Aggregate and surrogate key process

9.5 Conclusions
In this chapter, we have presented the modeling of ETL processes as
part of our integrated and global approach for DW design. Thanks
to the use of the UML, we can seamlessly model different aspects of
a DW architecture such as operational data sources, logical schema
and ETL processes in an integrated manner. In this way, it is very
easy to detect inconsistencies between the different schemas of a DW
architecture and it helps the designer to estimate the feasibility of the
development.

Our approach for modeling ETL processes defines a set of UML
stereotypes that represent the most common ETL tasks such as
the integration of different data sources, the transformation between
source and target attributes, the generation of surrogate keys, and
so on. Furthermore, thanks to the use of the UML package mech-
anism, large ETL processes can be easily modeled in different ETL
packages obtaining a very simple but yet powerful approach. Thanks
to its simplicity, our approach facilitates the design and subsequent
maintenance of ETL processes at any modeling phase. Finally, we
have implemented our approach in Rational Rose through the Rose
Extensibility Interface (REI) [107].

Part III

Physical Level

153

Chapter 10

Physical Modeling of
Data Warehouses

During the few last years, few efforts have been dedicated to the
modeling of the physical design (i.e. the physical structures that will host
data together with their corresponding implementations) of a DW from
the early stages of a DW project. In this chapter, we present a proposal
for the modeling of the physical design of DW by using the component
diagram and deployment diagram of UML. With these diagrams, we
can anticipate important physical design decisions that may reduce the
overall development time of a DW such as replicating dimension tables,
horizontal partitioning of a fact table, the use of particular servers for
certain ETL processes and so on.

Contents
10.1 Introduction 157
10.2 UML Component and Deployment Di-

agrams . 158
10.2.1 Component Diagram 158
10.2.2 Deployment Diagram 159

155

156 Chapter 10. Physical Modeling of Data Warehouses

10.3 Data Warehouse Physical Design 162
10.3.1 Source Physical Schema 165
10.3.2 Data Warehouse Physical Schema . . . 166
10.3.3 Integration Transportation Diagram . . 167
10.3.4 Client Physical Schema 169
10.3.5 Customization Transportation Diagram 169

10.4 Conclusions 170

10.1. Introduction 157

10.1 Introduction

Unfortunately, most of the research efforts in designing and modeling
DW has been focused on the development of MD data models [2],

For more infor-
mation about the
multidimensional
modeling, consult
section 6.2, pp.
56.

while the interest on the physical design of DW has been very poor
(see related work in Chapter 3). Nevertheless, an outstanding phys-
ical design is of a vital importance and highly influences the overall
performance of the DW [93] and the ulterior maintenance.

In DW, as in any other software project, once the conceptual
and logical design have been accomplished, we have to deal with
the physical design that implements the corresponding specification.
Nevertheless, in DW and mainly due to the large volume of data that
they manage, we normally face with a high number of implementa-
tion problems such as the storage of fact tables in different hard disks,
copying the same table, vertical and horizontal partitioning and so
on. Due to the idiosyncrasy of DW, we can adopt several decisions
regarding the physical design from the early stages of a DW project
(in which final users, designers and analysts, and administrators par-
ticipate). We believe that these decisions will normally reduce the
total development time of the DW. It should be taken into consider-
ation that we are not saying to accomplish the conceptual modeling
of a DW taking into account physical issues, instead we argue to
model physical aspects and ulterior implementations together with
the conceptual modeling of the DW from the early stages of a DW
project.

In this chapter, we present a proposal to accomplish the physical
design of DW from early stages of a DW project. To accomplish
this, we propose the use of the component diagram and deployment
diagram of UML. Both component and deployment diagrams must
be defined at the same time by DW designers and people who will
be in charge of the ulterior implementation and maintenance. This is
mainly due to the fact that, while the former know how to design and
build a DW, the latter have a better knowledge in the corresponding
implementation and the real hardware and software needs for the
correct functioning of the DW.

The modeling of the physical design of a DW from the early stages
of a DW project with our proposal provides us many advantages:

• We deal with important aspects of the implementation before
we start with the implementation process, and therefore, we can
reduce the total development time of the DW. This is mainly
due to the fact that, after the conceptual modeling has been
accomplished, we can have enough information to take some
decisions regarding the implementation of the DW structures
such as replicating dimension tables or making the horizontal

158 Chapter 10. Physical Modeling of Data Warehouses

partitioning of a fact table.

• We have a rapid feedback if we have a problem with the DW
implementation as we can easily track a problem to find out its
main reasons.

• It facilitates the communication between all people involved in
the design of a DW since all of them use the same notation
(based on the UML) for modeling different aspects of a DW.

• It helps us choose both hardware and software on which we in-
tend to implement the DW. This also allows us to compare and
evaluate different configurations based on user requirements.

• It allows us to verify that all different parts of the DW (fact and
dimension tables, ETL processes, OLAP tools, etc.) perfectly
fit together.

The rest of this chapter is organized as follows. In Section 10.2,
we present main issues that can be specified by using both compo-
nent and deployment diagrams of UML. In Section 10.3, we describe
our proposal for using both component and deployment diagrams for
the physical design of DW. Finally, in Section 10.4, we present our
conclusions.

10.2 UML Component and Deployment
Diagrams

According to UML [97], “Implementation diagrams show aspects
Implementation
diagrams : see
UML (Part 11,
3-169). of physical implementation, including the structure of components

and the run-time deployment system. They come in two forms: 1)
component diagrams show the structure of components, including the
classifiers that specify them and the artifacts that implement them;
and 2) deployment diagrams show the structure of the nodes on which
the components are deployed ”.
10.2.1 Component Diagram

The UML says that “A component represents a modular, deployable,

Component :
see UML
(2.5.2.12,
2-30), (3.98.1,
3-174). and replaceable part of a system that encapsulates implementation and

exposes a set of interfaces”. Components represent physical issues
such as Enterprise JavaBeans, ActiveX components or configuration
files. A component is typically specified by one or more classifiers
(classes, interfaces, etc.) that reside on the component. A subset of
these classifiers explicitly define the component’s external interfaces.
Moreover, a component can also contain other components. However,

10.2. UML Component and Deployment Diagrams 159

Figure 10.1: Different component representations in a component
diagram

a component does not have its own features (attributes, operations,
etc.).

On the other hand, a component diagram is a graph of compo-
Component
diagram : see
UML (3.95,
3-169).nents connected by dependency relationships, which shows how clas-

sifiers are assigned to components and how the components depend
on each other. In a component diagram (see Figure 10.1), a com-
ponent is represented using a rectangular box, with two rectangles
protruding from the left side.

In Figure 10.1, we show the two different representations of a
component and the classifiers it contains:

• On the left hand side of the figure, the class (Sales) that re-
sides on the component (Facts) is shown as nested inside the
component (this indicates residence and not ownership).

• On the right hand side of the figure, the class is connected to
the component by a «reside» dependency.

In this example, both the component and the class are stereo-
typed: the component is adorned with the «Tablespace» stereotype
and the class with the «Table» stereotype; these stereotypes are de-
fined in [90]. This example represents the relationship between a
tablespace and a table in a RDBMS.

For more infor-
mation about the
logical modeling
of databases,
consult chapter
8, pp. 121.

10.2.2 Deployment Diagram

According to the UML, “Deployment diagrams show the configura-
Deployment
diagram : see
UML (3.96,
3-171).tion of run-time processing elements and the software components,

processes, and objects that execute on them”. A deployment diagram
is a graph of nodes connected by communication associations. A de-
ployment model is a collection of one or more deployment diagrams
with their associated documentation.

In a deployment diagram, a node represents a piece of hardware (a
computer, a device, etc.) or a software artifact (web server, database,

160 Chapter 10. Physical Modeling of Data Warehouses

etc.) in the system, and it is represented by a three-dimensional
cube. A node may contain components, which indicates that the
components run or execute on the node.

An association of nodes, which is drawn as a solid line between
two nodes, indicates a line of communication between the nodes; the
association may have a stereotype to indicate the nature of the com-
munication path (e.g. the kind of channel, communication protocol
or network).

There are two forms of deployment diagram:

• The descriptor form: it contains types of nodes and compo-
nents. This form is used as a first-cut deployment diagram
during the design of a system, when there is not a complete
decision about the final hardware architecture.

• The instance form: it contains specific and identifiable nodes
and components. This form is used to show the actual deploy-
ment of a system at a particular site, therefore it is normally
used in the last steps of the implementation activity, when the
details of the deployment site are known.

A deployment diagram is normally used to [10]:

• Explore the issues involved with installing your system into
production.

• Explore the dependencies that your system has with other sys-
tems that are currently in, or planned for, your production
environment.

• Depict a major deployment configuration of a business applica-
tion.

• Design the hardware and software configuration of an embedded
system.

• Depict the hardware/network infrastructure of an organization.

UML deployment diagrams normally make an extensive use of
visual stereotypes, because it makes easy to read the diagrams at
a glance. Unfortunately, there are no standard palettes of visual
stereotypes for UML deployment diagrams.

As it is suggested in [10], each node in a deployment diagram may
have tens if not hundreds of software components deployed to it: the
goal is not to depict all of them, but it is merely to depict those
components that are vital to the understanding of the system.

In Figure 10.2, we show the two different representations of a node
and the components it contains:

10.2. UML Component and Deployment Diagrams 161

Figure 10.2: Different node representations in a deployment diagram

Figure 10.3: Different levels of detail in a deployment diagram

• On the left hand side of the figure, the component (DailySales)
that is deployed on the node (DWServer) is shown as nested
inside the node.

• On the right hand side of the figure, the component is connected
to the node by a «deploy» dependency.

In this example, both the node and the component are stereo-
typed: the node with the «Computer» stereotype and the compo-
nent with the «Database» stereotype. Moreover, the node DWServer
contains a set of tagged values ({OS}, {SW}, {CPU}, and {Mem})
that allow the designer to describe the particular characteristics of
the node.

A deployment diagram can be specified at different levels of de-
tail. For example, in Figure 10.3, we show two versions of the same

162 Chapter 10. Physical Modeling of Data Warehouses

deployment diagram. At the top of Figure 10.3, the software de-
ployed in the nodes is specified by means of tagged values. Moreover,
the association between the nodes is only adorned with the «HTTP»
stereotype, although different protocols can be used in the commu-
nication. At the bottom of Figure 10.3, the software deployed in the
nodes is depicted as components and different stereotyped dependen-
cies («TCP/IP» and «HTTP») indicate how one component uses the
services of another component. However, there are more display pos-
sibilities: for example, the designer can omit the tagged values in the
diagram and capture them only in the supported documentation.

10.3 Data Warehouse Physical Design
In Chapter 4, we have described our design method for DW. Within
this method, we use the component and deployment diagrams to
model the physical level of DW. To achieve this goal, we propose
the following five diagrams, which correspond with the five stages
presented in Section 4.3:

• Source Physical Schema (SPS): it defines the physical con-
figuration of the data sources that populate the DW.

• Integration Transportation Diagram (ITD): it defines
the physical structure of the ETL processes that extract, trans-
form and load data into the DW. This diagram relates the SPS
and the next diagram.

• Data Warehouse Physical Schema (DWPS): it defines the
physical structure of the DW itself.

• Customization Transportation Diagram (CTD): it de-
fines the physical structure of the exportation processes from
the DW to the specific structures employed by clients. This
diagram relates the DWPS and the next diagram.

• Client Physical Schema (CPS): it defines the physical con-
figuration of the structures employed by clients in accessing the
DW.

The SPS, DWPS, and CPS are based on the UML component
and deployment diagrams, whereas ITD and CTD are only based on
the deployment diagrams.

The five proposed diagrams use an extension of UML that we
have called Database Deployment Profile, which is formed by a series
of stereotypes and tagged values.

Throughout the rest of this chapter, we are going to use an exam-
ple to introduce the different diagrams we propose. In this example,

10.3. Data Warehouse Physical Design 163

Level 1 Level 2

Figure 10.4: Data Warehouse Conceptual Schema

final users need a DW that contains the daily sales of a company
that do business with automobiles (cars and trucks). There exist
two data sources: the sales server, which contains the data about
transactions and sales, and the Customer Relationship Manage-
ment (CRM) server, which contains the data about the customers
who buy products.

In Figure 10.4, we show the Data Warehouse Conceptual
Schema (DWCS), which represents the conceptual model of the
DW. Following our approach [79], we structure the conceptual model

For more infor-
mation about the
multidimensional
profile, consult
chapter 6, pp.
53.

into three levels: model definition (level 1), star schema definition
(level 2), and dimension/fact definition (level 3). In Figure 10.5, we
show the level 3 of the DWCS. In order to avoid a cluttered dia-
gram, we only show the attributes of the fact class (Auto-sales) and
two dimension classes (Salesperson and Customer).

In Figure 10.6, we show the Data Warehouse Logical Schema
(DWLS), which represents the logical model of the DW. In this ex-

For more infor-
mation about the
logical modeling
of databases,
consult chapter
8, pp. 121.

ample, a Relational OLAP (ROLAP) system has been selected
for the implementation of the DW, which means the use of the re-
lational model in the logical design of the DW. In Figure 10.6, six
classes adorned with the stereotype «Table» are showed: Auto, Cus-
tomer, Dealership, Salesperson, and Time are represented by means of
the icon of the stereotype, whereas the table Auto-sales appears with
the icon of the stereotype inside the typical representation of a class
in UML.

In order to avoid a cluttered diagram, we only display the at-
tributes of Auto-sales and Salesperson. In the Auto-sales table, the
attributes IdAuto, IdCustomer, IdDealership, IdSalesperson, and IdTime
are the foreign keys that connect the fact table with the dimension
tables, whereas the attributes Commission, SP_Commission, Quan-

164 Chapter 10. Physical Modeling of Data Warehouses

Figure 10.5: Data Warehouse Conceptual Schema (level 3)

10.3. Data Warehouse Physical Design 165

Figure 10.6: Logical model (ROLAP) of the data warehouse

tity, Price, and Total (derived attribute that is precalculated for per-
formance reasons) represent the measures of the fact table. In the
Salesperson table, we can notice that this table contains all the at-
tributes of the different dimension levels (see Figure 10.5) following
the star schema approach [63]; some attributes have changed their
names in order to avoid repeated names. Moreover, some design de-
cisions have been taken: the degenerate dimension represented by the
ContractN attribute in Auto-sales fact class (see Figure 10.5) has been
omitted, and the degenerate fact represented by the SP commission
class is represented by the SP_Commission attribute in the Auto-sales
table.

10.3.1 Source Physical Schema

The SPS describes the origins of data of the DW from a physical
point of view. In Figure 10.7, we show the SPS of our example, which
is formed by two servers called SalesServer and CRMServer; for each
one of them, the hardware and software configuration is displayed.
The first server hosts a database called Sales, whereas the second
server hosts a database called Customers.

In our Database Deployment Profile, when the storage system is a
RDBMS, we make use of the UML Profile for Database Design [90]

For more infor-
mation about the
UML Profile for
Database Design,
consult Section
8.2, pp. 124.

that defines a series of stereotypes like «Database» or «Tablespace».
Moreover, we have defined our own set of stereotypes: in Figure 10.7,
we can see the stereotypes «Server» that defines a computer that

166 Chapter 10. Physical Modeling of Data Warehouses

Figure 10.7: Source Physical Schema: deployment diagram

performs server functions, «Disk» to represent a physical disk drive
and «InternalBus» to define the type of communication between two
elements. Whenever we need to specify additional information in
a diagram, we make use of the UML notes to incorporate it. For
example, in Figure 10.7 we have used two notes to indicate how the
data is distributed into the two existing tablespaces.

10.3.2 Data Warehouse Physical Schema

The DWPS shows the physical aspects of the implementation of the
DW. This diagram is divided up into two parts: the component
and deployment diagrams. In the first diagram, the configuration of
the logical structures used to store the DW is shown. For example,
in Figure 10.8, we can observe that the DW AutoSales is formed
by two tablespaces called Facts and Dimensions: the first tablespace
hosts the table Auto-sales and the second tablespace hosts the tables
Auto, Customer, Dealership, Salesperson, and Time. Below the name
of each table, the text (from ROLAP) is included, which indicates that
the tables have been previously defined in a package called ROLAP
(Figure 10.6).

In the second diagram, the deployment diagram, different aspects
relative to the hardware and software configuration are specified.
Moreover, the physical distribution of the logical structures previ-
ously defined in the component diagrams is also represented. For ex-
ample, in Figure 10.9, we can observe the configuration of the server

10.3. Data Warehouse Physical Design 167

Figure 10.8: Data Warehouse Physical Schema: component diagram

that hosts the DW.
One of the advantages of our proposal is that it allows to evaluate

and to discuss different implementations during the first stages in the
design of a DW. In this way, the designer can anticipate some im-
plementation or performance problems. For example, an alternative
configuration of the physical structure of the DW can be established,
as we show in Figure 10.10. In this second alternative, a RAID 0
systems has been chosen to host the tablespace Facts in order to im-
prove the response time of the disk drive and the performance of the
system in general.

10.3.3 Integration Transportation Diagram

The ITD defines the physical structure of the ETL processes used
in the loading of data in the DW from the data sources. On the one
hand, the data sources are represented by means of the SPS and,
on the other hand, the DW is represented by means of the DWPS.
Since the SPS and the DWPS have been defined previously, in this
diagram we do not have to define them again, but they are imported.

For example, the ITD for our running example is shown in Fig-
ure 10.11. On the left hand side of this diagram, different data
source servers are represented: SalesServer and CRMServer, which
have been previously defined in Figure 10.7; on the right hand side,
the DWServer, previously defined in Figure 10.9, is shown. In this fig-
ure, the ETLServer is introduced, an additional server that is used to
execute the ETL processes. This server communicates with the rest
of the servers by means of a series of specific protocols: Object Link-
ing and Embedding DataBase (OLEDB) to communicate with

168 Chapter 10. Physical Modeling of Data Warehouses

Figure 10.9: Data Warehouse Physical Schema: deployment diagram
(version 1)

Figure 10.10: Data Warehouse Physical Schema: deployment dia-
gram (version 2)

10.3. Data Warehouse Physical Design 169

Figure 10.11: Integration Transportation Diagram: deployment dia-
gram

SalesServer because it uses Microsoft SQLServer1 and Oracle Call
Interface (OCI) to communicate with CRMServer and DWServer
because both of them use Oracle.

10.3.4 Client Physical Schema

The CPS defines the physical structure of the specific structures that
are used by the clients to access the DW. Diverse configurations ex-
ist that can be used: exportation of data to DM, use of an OLAP
server, etc. In our example, we have chosen a client/server architec-
ture and the same DW server provides access to data for the clients.
Therefore, we do not need to define a specific structure for the clients.

10.3.5 Customization Transportation Diagram

The CTD defines the exportation processes from the DW towards
the specific structures used by the clients. In this diagram, the DW
is represented by means of the DWPS and clients are represented
by means of the CPS. Since the DWPS and the CPS have been
previously defined, in this diagram we do not have to define them
again, but they are directly imported.

1The configuration of a server is defined by means of tagged values: {OS},
{SW}, {CPU}, etc.

170 Chapter 10. Physical Modeling of Data Warehouses

Figure 10.12: Customization Transportation Diagram: deployment
diagram

For example, in Figure 10.12, the CTD of our running example
is shown. On the left hand side of this diagram, part of the DWPS,
which has been previously defined in Figure 10.9, is shown; on the
right hand side, three types of clients who will use the DW are shown:
a Web client with operating system Apple Macintosh, a Web client
with operating system Microsoft Windows and, finally, a client with
a specific desktop application (MicroStrategy) with operating system
Microsoft Windows. Whereas both Web clients communicate with
the server by means of HyperText Transfer Protocol (HTTP),
the desktop client uses Open Data Base Connectivity (ODBC).

10.4 Conclusions

In this chapter, we have presented an adaptation of the component
and deployment diagrams of UML for the modeling of the physi-
cal design of a DW. One of the advantages of this proposal is that
these diagrams are not used in an isolated way, instead they are used
together with other diagrams that we use for the modeling of other
aspects of a DW (conceptual and logical design, modeling of ETL
processes, etc.) in the context of our overall method for designing
DW.

Thanks to the use of the component and deployment diagrams, a
DW designer can specify both hardware, software, and middelware
needs for a DW project. The main advantages provided by our
approach are as follows:

10.4. Conclusions 171

• Traceability of the design of a DW, from the conceptual model
up to the physical model.

• Reducing the overall development cost as we accomplish imple-
mentation issues from the early stages of a DW project. We
should take into account that modifying these aspects in ulte-
rior design phases may result in increasing the total cost of the
project.

• Different levels of abstraction by providing different levels of
details for the same diagram.

Part IV

Finale

173

Chapter 11

Contributions

In this section, we enumerate the main contributions obtained as a result
of our research process. Moreover, we also present the research pro-
duction that has been materialized as publications in conferences and
journals.

Contents
11.1 Introduction 177
11.2 Main Contributions 177
11.3 Research Production 177

11.3.1 ICEIS’01 178
11.3.2 ADTO’01 180
11.3.3 XMLDM’02 180
11.3.4 PHDOOS’02 181
11.3.5 BNCOD’02 182
11.3.6 UML’02 182
11.3.7 ER’02 183
11.3.8 IJCIS’02 183
11.3.9 DMDW’03 184
11.3.10ER’03 184
11.3.11ATDR’03 185
11.3.12JDM’04 186
11.3.13 ICEIS’04 186
11.3.14ADVIS’04 187
11.3.15ER’04 187
11.3.16DOLAP’04 188
11.3.17JDM’06 189

175

11.1. Introduction 177

11.1 Introduction
The aim of this chapter is to outline the main contributions of this
thesis. Section 11.2 highlights the main elements we have presented
in this work. Then, Section 11.3 contains the publications that gener-
ated this thesis work. We would like to remark that some publications
written during the elaboration of this thesis, that cannot be regarded
as proper thesis work, have been omitted.

11.2 Main Contributions
This thesis defines the following new elements:

• The UML Profile for Multidimensional Modeling, the definition
of an extension of UML in the form of a profile to model main
MD properties in the conceptual design of DW.

• The definition of an extension of UML to model attributes as
first-class modeling elements.

• The Data Mapping Diagram, which is a new kind of diagram,
particularly customized for the tracing of the data flow, at var-
ious degrees of detail, in a DW environment.

• The ETL Profile, an extension of UML for the design of ETL
processes.

• The Database Deployment Profile, for modeling different as-
pects of the physical level of a DW.

• The development of an add-in for Rational Rose that allows
using the UML Profile for Multidimensional Modeling.

11.3 Research Production
Different contributions of the research presented in this thesis have
been presented in national and international scientific forums: con-
ferences, journals, and book chapters. In this section, we present our
main publications that are directly related to the research of this the-
sis; nevertheless, we have excluded some publications that are partly
related to this thesis, but they are not proper thesis work.

All the publications we present underwent a standard peer review
process by two or more qualified reviewers to evaluate the contribu-
tion and ensure technical veracity. The reviewers provided substantial
criticism and feedback that allowed us to improve the quality of our
proposals.

178 Chapter 11. Contributions

In the following sections, the different contributions are presented
in chronological order, according to the moment they were presented
in a conference or published in a journal. For each one of the con-
tributions, we include the whole bibliography reference, the abstract,
and the acceptance rate if it is known.

The summary of contributions is:

• National conference (1): ADTO’01.

• International conferences (12): ICEIS’01, XMLDM’02, PHD-
OOS’02, BNCOD’02, UML’02, ER’02, DMDW’03, ER’03,
ICEIS’04, ADVIS’04, ER’04, DOLAP’04.

• International journals (3): IJCIS’02, JDM’04, JDM’06.

• Book chapter (1): IDEA’03.

The most remarkable contributions are:

• UML’02, where a UML profile for the MD modeling is intro-
duced.

• ER’02, where the use of UML packages for the MD modeling
is presented.

• ER’03, where the conceptual modeling of ETL processes is
presented.

• JDM’04, where the use of UML class, state, and interaction
diagrams for MD modeling is presented.

• ER’04, where the data mapping diagram for DW and the use
of attributes as first-class modeling elements in UML is intro-
duced.

• JDM’06, where the use of UML component and deployment
diagrams for physical modeling of DW is presented.

In Figure 11.1, we graphically show the distribution of the publi-
cations through the four years of thesis work. Beside the acronym of
each publication, a little text describes the content or the achievement
of the publication.

11.3.1 ICEIS’01
S. Luján-Mora and E. Medina. Reducing Inconsistency in Data Ware-
houses. In Proceedings of the 3rd International Conference on En-
terprise Information Systems (ICEIS’01), pages 199–206, Setúbal,
Portugal, July 7 - 10 2001. ICEIS Press

11.3. Research Production 179

Figure 11.1: Chronology of the contributions

180 Chapter 11. Contributions

Abstract: A data warehouse is a repository of data formed of
a collection of data extracted from different and possible heteroge-
neous sources (e.g., databases or files). One of the main problems
in integrating databases into a common repository is the possible
inconsistency of the values stored in them, i.e., the very same term
may have different values, due to misspelling, a permuted word order,
spelling variants and so on. In this paper, we present an automatic
method for reducing inconsistency found in existing databases, and
thus, improving data quality. All the values that refer to a same term
are clustered by measuring their degree of similarity. The clustered
values can be assigned to a common value that, in principle, could
substitute the original values. Thus, the values are uniformed. The
method we propose provides good results with a considerably low
error rate.

Acceptance rate: More than 200 submissions, 68 papers ac-
cepted. AR ' 0.34

11.3.2 ADTO’01

J. Trujillo, S. Luján-Mora, and E. Medina. Utilización de UML para
el modelado multidimensional. In I Taller de Almacenes de Datos
y Tecnología OLAP (ADTO 2001), VI Jornadas de Ingeniería del
Software y Bases de Datos (JISBD 2001), pages 12–17, Almagro,
Spain, November 22 2001

Abstract: Los almacenes de datos (AD), las bases de datos mul-
tidimensionales (BDM) y las aplicaciones de Procesamiento Analítico
en Línea (On-Line Analytical Processing, OLAP) están basadas en
el modelado multidimensional (MD). En este artículo presentamos
cómo se puede utilizar el Lenguaje de Modelado Unificado (Unified
Modeling Language, UML) para llevar a cabo el diseño conceptual de
estos sistemas. La estructura del modelo se especifica mediante un
diagrama de clases UML que considera las principales propiedades
del modelado MD por medio de un número reducido de restricciones
sobre UML. Además, proponemos una notación de clase (clase cubo)
compatible con UML para representar los requisitos OLAP iniciales
de usuario. El comportamiento del sistema se modela a través de los
diagramas de estados e interacciones. Nuestra propuesta está sopor-
tada por una herramienta CASE que facilita la tarea del modelado
conceptual y genera de una forma semiautomática la implementación
de un modelo conceptual en una herramienta OLAP específica.

Acceptance rate: Unknown.

11.3.3 XMLDM’02

S. Luján-Mora, E. Medina, and J. Trujillo. A Web-Oriented Ap-

11.3. Research Production 181

proach to Manage Multidimensional Models through XML Schemas
and XSLT. In Proceedings of the XML-Based Data Management and
Multimedia Engineering (EDBT 2002 Workshops), volume 2490 of
Lecture Notes in Computer Science, pages 29–44, Prague, Czech Re-
public, March 24 2002. Springer-Verlag

Abstract: Multidimensional (MD) modeling is the foundation of
data warehouses, MD databases, and OLAP applications. In the last
years, there have been some proposals to represent MD properties
at the conceptual level. In this paper, we present how to manage
the representation, manipulation, and presentation of MD models on
the web by means of eXtensible Stylesheet Language Transformations
(XSLT). First, we use eXtensible Markup Language (XML) to con-
sider main MD modeling properties at the conceptual level. Next,
an XML Schema allows us to generate valid XML documents that
represent MD models. Finally, we provide XSLT stylesheets that al-
low us to automatically generate HTML pages from XML documents,
thereby supporting different presentations of the same MD model eas-
ily. A CASE tool that gives support to all theoretical issues presented
in the paper has been developed.

Acceptance rate: Approximately 130 submissions, 48 papers
accepted. AR ' 0.37

11.3.4 PHDOOS’02

S. Luján-Mora. Multidimensional Modeling using UML and XML.
In Proceedings of the 12th Workshop for PhD Students in Object-
Oriented Systems (PhDOOS 2002), volume 2548 of Lecture Notes in
Computer Science, pages 48–49, Málaga, Spain, June 10 - 14 2002.
Springer-Verlag

Abstract: Multidimensional (MD) modeling is the foundation of
data warehouses, MD databases, and On-Line Analytical Processing
(OLAP) applications. In the past years, there have been some propos-
als for representing the main MD properties at the conceptual level
providing their own notations. In this paper, we present an extension
of the Unified Modeling Language (UML), by means of stereotypes,
to elegantly represent main structural and dynamic MD properties
at the conceptual level. Moreover, we use the eXtensible Markup
Language (XML) to store MD models. Then, we apply the eXten-
sible Stylesheet Language Transformations (XSLT), that allow us to
automatically generate HTML pages from XML documents, thereby
supporting different presentations of the same MD model easily. Fi-
nally, we show how to accomplish all these tasks using Rational Rose
2000.

Acceptance rate: Unknown.

182 Chapter 11. Contributions

11.3.5 BNCOD’02

E. Medina, S. Luján-Mora, and J. Trujillo. Handling Conceptual
Multidimensional Models using XML through DTDs. In Proceedings
of 19th British National Conference on Databases (BNCOD 2002),
volume 2405 of Lecture Notes in Computer Science, pages 66–69,
Sheffield, UK, July 17 - 19 2002. Springer-Verlag

Abstract: In the last years, several approaches have been pro-
posed to easily capture main multidimensional (MD) properties at
the conceptual level. In this paper, we present how to handle MD
models by using the eXtensible Markup Language (XML) through
a Document Type Definition (DTD) and the eXtensible Stylesheet
Language Transformations (XSLT). To accomplish this objective, we
start by providing a DTD which allows to directly generate valid
XML documents that represents MD properties at the conceptual
level. Afterwards, we provide XSLT stylesheets to automatically gen-
erate HTML pages that correspond to different presentations of the
same MD model.

Acceptance rate: Unknown.

11.3.6 UML’02

S. Luján-Mora, J. Trujillo, and I. Song. Extending UML for Multi-
dimensional Modeling. In Proceedings of the 5th International Con-
ference on the Unified Modeling Language (UML’02), volume 2460
of Lecture Notes in Computer Science, pages 290–304, Dresden, Ger-
many, September 30 - October 4 2002. Springer-Verlag

Abstract: Multidimensional (MD) modeling is the foundation of
data warehouses, MD databases, and On-Line Analytical Processing
(OLAP) applications. In the past few years, there have been some
proposals for representing the main MD properties at the concep-
tual level providing their own notations. In this paper, we present
an extension of the Unified Modeling Language (UML), by means
of stereotypes, to elegantly represent main structural and dynamic
MD properties at the conceptual level. We make use of the Object
Constraint Language (OCL) to specify the constraints attached to
the defined stereotypes, thereby avoiding an arbitrary use of these
stereotypes. The main advantage of our proposal is that it is based
on a well-known standard modeling language, thereby designers can
avoid learning a new specific notation or language for MD systems.
Finally, we show how to use these stereotypes in Rational Rose 2000
for MD modeling.

Acceptance rate: 99 submissions, 30 papers accepted. AR '
0.30

11.3. Research Production 183

11.3.7 ER’02

S. Luján-Mora, J. Trujillo, and I. Song. Multidimensional Modeling
with UML Package Diagrams. In Proceedings of the 21st Interna-
tional Conference on Conceptual Modeling (ER’02), volume 2503 of
Lecture Notes in Computer Science, pages 199–213, Tampere, Fin-
land, October 7 - 11 2002. Springer-Verlag

Abstract: The Unified Modeling Language (UML) has become
the de facto standard for object-oriented analysis and design, pro-
viding different diagrams for modeling different aspects of a system.
In this paper, we present the development of multidimensional (MD)
models for data warehouses (DW) using UML package diagrams. In
this way, when modeling complex and large DW systems, we are not
restricted to use flat UML class diagrams. We present design guide-
lines and illustrate them with various examples. We show that the
correct use of the package diagrams using our design guidelines will
produce a very simple yet powerful design of MD models. Further-
more, we provide a UML extension by means of stereotypes of the
particular package items we use. Finally, we show how to use these
stereotypes in Rational Rose 2000 for MD modeling.

Acceptance rate: Approximately 130 submissions, 30 papers
accepted. AR ' 0.23

11.3.8 IJCIS’02

J. Trujillo and S. Luján-Mora. Automatically Generating Struc-
tural and Dynamic Information of OLAP Applications from Object-
Oriented Conceptual Models. International Journal of Computer &
Information Science, 3(4):227–236, December 2002

Abstract: Graphical conceptual models for On-Line Analytical
Processing (OLAP) applications should semi-automatically generate
the database schema and the corresponding multidimensional (MD)
model for a specific target commercial OLAP tool. However, this
generation process is not immediate as the semantics represented by
these conceptual models are different from those considered by the
underlying MD models of OLAP tools. Therefore, some transforma-
tions for these differences are needed in this process.

In the context of graphical conceptual models, we provide an
object-oriented conceptual model that provides a Unified Modeling
Language (UML) graphical notation to represent both structural and
dynamics properties of MD models and initial user requirements at
the conceptual level. In this paper, on one hand, we present how to
semi-automatically generate the database schema and the underly-
ing MD model for one of the most leading commercial OLAP tools
from our model. In this process, some semantics represented in the

184 Chapter 11. Contributions

model are transformed into those considered by the underlying MD
model of the target OLAP tool. On the other hand, initial user re-
quirements are translated into their corresponding definitions in the
target OLAP tool. In this way, the final user is able to start the anal-
ysis process from the initial requirements specified at the conceptual
level. Finally, we present the prototype of the Computer Aided Soft-
ware Engineering (CASE) tool that gives support to both the model
definition and this generation process.

Acceptance rate: Unknown.

11.3.9 DMDW’03

S. Luján-Mora and J. Trujillo. A Comprehensive Method for Data
Warehouse Design. In Proceedings of the 5th International Workshop
on Design and Management of Data Warehouses (DMDW’03), pages
1.1–1.14, Berlin, Germany, September 8 2003

Abstract: A data warehouse (DW) is a complex information sys-
tem primarily used in the decision making process by means of On-
Line Analytical Processing (OLAP) applications. Although various
methods and approaches have been presented for designing differ-
ent parts of DWs, such as the conceptual and logical schemas or the
Extraction-Transformation-Loading (ETL) processes, no general and
standard method exists to date for dealing with the whole design of a
DW. In this paper, we fill this gap by presenting a method based on
the Unified Modeling Language (UML) that allows the user to tackle
all DW design phases and steps, from the operational data sources
to the final implementation and including the definition of the ETL
processes. The main advantages of our proposal are: the use of a
standard modeling notation (UML) in the models accomplished in
the different design phases, the integration of different design phases
in a single and coherent framework and the use of a grouping mech-
anism (UML packages) that allows the designer to layer the models
according to different levels of detail. Finally, we also provide a set
of steps that guide the DW design.

Acceptance rate: 21 submissions, 10 papers accepted. AR '
0.47

11.3.10 ER’03

J. Trujillo and S. Luján-Mora. A UML Based Approach for Model-
ing ETL Processes in Data Warehouses. In Proceedings of the 22nd
International Conference on Conceptual Modeling (ER’03), volume
2813 of Lecture Notes in Computer Science, pages 307–320, Chicago,
USA, October 13 - 16 2003. Springer-Verlag

11.3. Research Production 185

Abstract: Data warehouses (DWs) are complex computer sys-
tems whose main goal is to facilitate the decision making process of
knowledge workers. ETL (Extraction-Transformation-Loading) pro-
cesses are responsible for the extraction of data from heterogeneous
operational data sources, their transformation (conversion, cleaning,
normalization, etc.) and their loading into DWs. ETL processes are
a key component of DWs because incorrect or misleading data will
produce wrong business decisions, and therefore, a correct design of
these processes at early stages of a DW project is absolutely neces-
sary to improve data quality. However, not much research has dealt
with the modeling of ETL processes. In this paper, we present our
approach, based on the Unified Modeling Language (UML), which
allows us to accomplish the conceptual modeling of these ETL pro-
cesses together with the conceptual schema of the target DW in an
integrated manner. We provide the necessary mechanisms for an
easy and quick specification of the common operations defined in
these ETL processes such as, the integration of different data sources,
the transformation between source and target attributes, the gener-
ation of surrogate keys and so on. Moreover, our approach allows
the designer a comprehensive tracking and documentation of entire
ETL processes, which enormously facilitates the maintenance of these
processes. Another advantage of our proposal is the use of the UML
(standardization, ease-of-use and functionality) and the seamless in-
tegration of the design of the ETL processes with the DW conceptual
schema. Finally, we show how to use our integrated approach by us-
ing a well-known modeling tool such as Rational Rose.

Acceptance rate: Unknown.

11.3.11 ATDR’03

J. Trujillo, S. Luján-Mora, and I. Song. Advanced Topics in Database
Research, volume 2, chapter Applying UML for designing multidimen-
sional databases and OLAP applications, pages 13–36. Idea Group
Publishing, 2003

Abstract: Multidimensional (MD) modeling is the basis for Data
warehouses (DW), multidimensional databases (MDB) and On-Line
Analytical Processing (OLAP) applications. In this chapter, we present
how the Unified Modeling Language (UML) can be successfully used
to represent both structural and dynamic properties of these systems
at the conceptual level. The structure of the system is specified by
means of a UML class diagram that considers the main properties of
MD modeling with minimal use of constraints and extensions of the
UML. If the system to be modeled is too complex, thereby leading us
to a considerable number of classes and relationships, we sketch out
how to use the package grouping mechanism provided by the UML to

186 Chapter 11. Contributions

simplify the final model. Furthermore, we provide a UML-compliant
class notation (called cube class) to represent OLAP initial user re-
quirements. We also describe how we can use the UML state and
interaction diagrams to model the behavior of a data warehouse sys-
tem. We believe that our innovative approach provides a theoretical
foundation for simplifying the conceptual design of multidimensional
systems and our examples illustrate the use of our approach.

Acceptance rate: Unknown.

11.3.12 JDM’04

J. Trujillo, S. Luján-Mora, and I. Song. Applying UML and XML
for designing and interchanging information for data warehouses and
OLAP applications. Journal of Database Management, 15(1):41–72,
January-March 2004

Abstract: Multidimensional (MD) modeling is the basis for Data
warehouses (DW), multidimensional databases (MDB) and On-Line
Analytical Processing (OLAP) applications. In this paper, we present
how the Unified Modeling Language (UML) can be successfully used
to represent both structural and dynamic properties of these systems
at the conceptual level. The structure of the system is specified by
means of a UML class diagram that considers the main properties of
MD modeling with minimal use of constraints and extensions of the
UML. If the system to be modeled is too complex, thereby leading
us to a considerable number of classes and relationships, we describe
how to use the package grouping mechanism provided by the UML to
simplify the final model. Furthermore, we provide a UML-compliant
class notation (called cube class) to represent OLAP users’ initial re-
quirements. We also describe how we can use the UML state and in-
teraction diagrams to model the behavior of a data warehouse system.
To facilitate the interchange of conceptual MD models, we provide a
Document Type Definition (DTD) which allows us to represent the
same MD modeling properties that can be considered by using our
approach. From this DTD, we can directly generate valid eXtensible
Markup Language (XML) documents that represent MD models at
the conceptual level. We believe that our innovative approach pro-
vides a theoretical foundation for simplifying the conceptual design of
MD systems and the examples included in this paper clearly illustrate
the use of our approach.

Acceptance rate: Indexed in the Journal Citation Report.

11.3.13 ICEIS’04

S. Luján-Mora, J. Trujillo, and P. Vassiliadis. Advantages of UML for
Multidimensional Modeling. In Proceedings of the 6th International

11.3. Research Production 187

Conference on Enterprise Information Systems (ICEIS 2004), pages
298–305, Porto, Portugal, April 14 - 17 2004. ICEIS Press

Abstract: In the last few years, various approaches for the mul-
tidimensional (MD) modeling have been presented. However, none
of them has been widely accepted as a standard. In this paper, we
summarize the advantages of using object orientation for MD mod-
eling. Furthermore, we use the UML, a standard visual modeling
language, for modeling every aspect of MD systems. We show how
our approach resolves elegantly some important problems of the MD
modeling, such as multistar models, shared hierarchy levels, and het-
erogeneous dimensions. We believe that our approach, based on the
popular UML, can be successfully used for MD modeling and can
represent most of frequent MD modeling problems at the conceptual
level.

Acceptance rate: 605 submissions, 277 papers accepted. AR '
0.45

11.3.14 ADVIS’04

S. Luján-Mora and J. Trujillo. A Data Warehouse Engineering Pro-
cess. In Proceedings of the 3rd Biennial International Conference on
Advances in Information Systems (ADVIS’04), volume 3261 of Lec-
ture Notes in Computer Science, pages 14–23, Izmir, Turkey, October
20 - 22 2004. Springer-Verlag

Abstract: Developing a data warehouse (DW) is a complex, time
consuming and prone to fail task. Different DW models and methods
have been presented during the last few years. However, none of them
addresses the whole development process in an integrated manner. In
this paper, we present a DW development method, based on the Uni-
fied Modeling Language (UML) and the Unified Process (UP), which
addresses the design and development of both the DW back-stage and
front-end. We extend the UML in order to accurately represent the
different parts of a DW. Our proposal provides a seamless method
for developing DWs.

Acceptance rate: 203 submissions, 61 papers accepted. AR '
0.30

11.3.15 ER’04

S. Luján-Mora, P. Vassiliadis, and J. Trujillo. Data Mapping Di-
agrams for Data Warehouse Design with UML. In Proceedings of
the 23rd International Conference on Conceptual Modeling (ER’04),
volume 3288 of Lecture Notes in Computer Science, pages 191–204,
Shanghai, China, November 8 - 12 2004. Springer-Verlag

188 Chapter 11. Contributions

Abstract: In Data Warehouse (DW) scenarios, ETL (Extraction,
Transformation, Loading) processes are responsible for the extraction
of data from heterogeneous operational data sources, their transfor-
mation (conversion, cleaning, normalization, etc.) and their loading
into the DW. In this paper, we present a framework for the design of
the DW back-stage (and the respective ETL processes) based on the
key observation that this task fundamentally involves dealing with the
specificities of information at very low levels of granularity including
transformation rules at the attribute level. Specifically, we present a
disciplined framework for the modeling of the relationships between
sources and targets in different levels of granularity (including coarse
mappings at the database and table levels to detailed inter-attribute
mappings at the attribute level). In order to accomplish this goal,
we extend UML (Unified Modeling Language) to model attributes as
first-class citizens. In our attempt to provide complementary views
of the design artifacts in different levels of detail, our framework is
based on a principled approach in the usage of UML packages, to
allow zooming in and out the design of a scenario.

Acceptance rate: 295 submissions, 57 papers accepted. AR '
0.19

11.3.16 DOLAP’04

S. Luján-Mora and J. Trujillo. Modeling the Physical Design of Data
Warehouses from a UML Specification. In Proceedings of the ACM
Seventh International Workshop on Data Warehousing and OLAP
(DOLAP 2004), pages 48–57, Washington D.C., USA, November 12
- 13 2004. ACM

Abstract: During the few last years, several approaches have
been proposed to model different aspects of a Data Warehouse (DW),
such as the conceptual model of the DW, the design of the ETL (Ex-
traction, Transformation, Loading) processes, the derivation of the
DW models from the enterprise data models, etc. At the end, a
DW has to be deployed to a database environment and that takes
many decisions of a physical nature. However, few efforts have been
dedicated to the modeling of the physical design (i.e. the physi-
cal structures that will host data together with their corresponding
implementations) of a DW from the early stages of a DW project.
From our previously presented DW engineering process, in this pa-
per we present our proposal for the modeling of the physical design
of DWs by using the component diagrams and deployment diagrams
of the Unified Modeling Language (UML). Our approach allows the
designer to anticipate important physical design decisions that may
reduce the overall development time of a DW such as replicating di-
mension tables, vertical and horizontal partitioning of a fact table,

11.3. Research Production 189

the use of particular servers for certain ETL processes and so on.
Moreover, our approach allows the designer to cover all main design
phases of DWs, from the conceptual modeling phase until the final
implementation, as we show with an example in this paper.

Acceptance rate: 29 submissions, 14 papers accepted. AR '
0.48

11.3.17 JDM’06
S. Luján-Mora and J. Trujillo. Physical Modeling of Data Ware-
houses by using UML Component and Deployment Diagrams: design
and implementation issues. Journal of Database Management, 17(1),
January-March 2006. Accepted to be published

Abstract: Several approaches have been proposed to model dif-
ferent aspects of a Data Warehouse (DW) during the last years, such
as the modeling of DW at the conceptual and logical level, the de-
sign of the ETL (Extraction, Transformation, Loading) processes,
the derivation of the DW models from the enterprise data models,
the customization of a DW schema etc. At the end, a DW has to be
deployed to a database environment and that takes many decisions
of a physical nature. However, few efforts have been dedicated to
the modeling of the physical design (i.e. the physical structures that
will host data together with their corresponding implementations) of
a DW from the early stages of a DW project. However, we argue
that some physical decision can be taken from gathering main user
requirements.

From our previously presented DW engineering process, in this
paper we present our proposal for the modeling of the physical design
of DWs by using the component diagrams and deployment diagrams
of the Unified Modeling Language (UML). Our approach allows the
designer to anticipate important physical design decisions that may
reduce the overall development time of a DW such as replicating
dimension tables, vertical and horizontal partitioning of a fact table,
the use of particular servers for certain ETL processes and so on.
Moreover, our approach allows the designer to cover all main design
phases of DWs, from the conceptual modeling phase until the final
implementation, as we show with a case study that is implemented
on top of a commercial DW management server.

Acceptance rate: Indexed in the Journal Citation Report.

Chapter 12

Conclusions and Future
Work

In this last chapter, we present the conclusions of our thesis work. Then,
we introduce our immediate future work and we outline some research
lines continuing this work.

Contents
12.1 Conclusions 193
12.2 Future Work 194

12.2.1 Short Term 194
12.2.2 Medium Term 194
12.2.3 Long Term 195

191

12.1. Conclusions 193

12.1 Conclusions
Developing a DW is a complex, expensive, time consuming, and
prone to fail task. Different DW models and methods have been
presented during the last few years. However, none of them addresses
the whole development process in an integrated manner. In this the-
sis, we have presented our DW development method, based on the
UML and the UP, which addresses the analysis and design of both
the DW back-stage and front-end. For this task, we have extended
the UML in order to accurately represent the different parts and
properties of a DW. Our proposal provides a seamless method for

For more infor-
mation about the
contributions of
this thesis, con-
sult chapter 11,
pp. 175.

developing DW and it is a great help when designing, implementing
and deploying a DW.

Following our approach, we design a DW as follows:

1. We use UML to model the data sources of the DW at the
conceptual level.

2. Then, we use our Multidimensional Profile for the design of the
DW at the conceptual level.

3. We apply our Data Mapping Profile for creating the mapping
between the data sources and the DW at the conceptual level.

4. We use different UML extensions to model the data sources and
the DW at the logical level: UML Profile for Database Design
[90], a UML profile for data modeling [10], a UML extension
for the modeling of XML documents by means of Document
Type Definition (DTD) and XML Schemas [105], etc.

5. Then, we design the ETL processes that will be responsible for
the gathering, transforming and uploading data from the data
sources into the DW. We use our ETL Profile for this task.

6. Finally, we use our Database Deployment Profile for taking
physical design decisions.

The main advantages of our proposal are:

• The definition of a set of UML profiles, which define an exten-
sion to the UML but keep the UML metamodel intact.

• The use of the same notation (UML) for designing the differ-
ent DW models and the corresponding transformations in an
integrated manner.

• The use of the UML importing mechanism, which guarantees
the designer that each element is defined once, because the same
element can be used in different models.

194 Chapter 12. Conclusions and Future Work

12.2 Future Work
Obviously, this thesis work can be continued following several differ-
ent research lines, because one has to draw the line somewhere and
decide when to stop. The DW design can be related to other areas;
actually, some research has been done from this thesis about quality
metrics for DW conceptual models [119, 120] and DW security [42].

In the following, we present the future work divided into short
term, medium term, and long term.

12.2.1 Short Term

• We would like to publish this thesis as a book: the content and
structure will be adapted and extended.

• We are working on the definition of a set of complexity metrics
for the data mapping diagrams. These metrics will allow the
designer to compare different design choices and select the best
based on objective measures.

• We are also working on a template specification mechanism for
frequently used transformations in data mapping diagrams.

• We are also studying different languages for the formal defini-
tion of the transformations in data mapping diagrams, specifi-
cally OCL [97], Datalog [91] and QVT [103].

12.2.2 Medium Term

• We are going to adapt our approach to UML 2.01 as soon as
it is accepted as a standard.

• UML 2.0 will change the extension mechanism. Therefore,
once UML 2.0 has been accepted, we will finish the formal
definition of the different profiles we present in this work.

• Once the profiles have been defined, we are going to implement
them as Rational Rose add-ins.

• We are currently working on some automatic transformations
from the different models to the implementation. We are con-
sidering the implementation of the MD conceptual models
on pure MD databases, object-relational databases, and OO
databases. We are also thinking about the transformation of
the ETL models into commercial target platforms.

1Current adopted version is 1.5 (March, 2003), version 2.0 is in finalization
underway.

12.2. Future Work 195

12.2.3 Long Term
• We would like to provide a detail description of our Data Ware-

house Engineering Process and develop some case studies based
on our approach.

• We plan to include new UML diagrams (sequence, collabo-
ration, statechart, and activity diagrams) to model dynamic
properties of DW.

• We would like to carry out an empirical evaluation of our pro-
posal, in order to validate the correctness and usefulness of our
approach.

• Finally, we would like to align our approach with the MDA
initiative [98].

Appendix A

Advantages of the UML
Profile for
Multidimensional
Modeling

In this appendix, we summarize the advantages of using object orienta-
tion for MD modeling. We show how our approach resolves elegantly
some important problems of the MD modeling, such as multistar models,
shared hierarchy levels, and heterogeneous dimensions.

Contents
A.1 Introduction 199
A.2 Advantages for Multidimensional Mod-

eling . 199
A.2.1 Multistar Models 200
A.2.2 Support for Different Building Perspectives200
A.2.3 Shared Dimensions 201
A.2.4 Shared Hierarchy Levels 202
A.2.5 Multiple and Alternative Classification

Hierarchies 203
A.2.6 Heterogeneous Dimensions 206
A.2.7 Shared Aggregation 206
A.2.8 Derivation Rules 209

A.3 Conclusions 209

197

A.1. Introduction 199

A.1 Introduction

In Chapter 6, we have presented our MD modeling approach based
on the UML. We take advantage of the flexibility of the UML to
elegantly represent main MD properties at a conceptual level. More-
over, our approach imposes a three-layered schema that guides the
designer in modeling the MD schema and the final user in navigating
in the schema [79].

In this appendix, we show how our approach resolves the following
important problems of the MD modeling:

• Multistar models.

• Shared dimensions.

• Shared hierarchy levels.

• Multiple and alternative classification hierarchy levels.

• Heterogeneous dimensions.

• Shared aggregation.

• Derivation rules.

The remainder of this appendix is organized as follows. Sec-
tion A.2 highlights the main situations where the use of UML shows
great advantages for MD modeling with respect to other approaches.
Finally, Section A.3 presents the main conclusions.

A.2 Advantages for Multidimensional
Modeling

In this section we highlight the main situations where the use of
UML means a considerable advantage for MD modeling regarding
other approaches. To exemplify our approach, we will use a simpli-
fied version of the DW example taken from [63]. In this example,
there are three separate inventory definitions within the same model,
representing different approaches of the inventory problem. The first
approach is the inventory snapshot, which measures the inventory
levels in a regular period of time (every day, every week, etc.). The
second is the delivery status inventory, which tracks the disposition
of all the items in a delivery until they leave the warehouse. Finally,
the third is the transaction inventory ; in this case every change of
status of delivered products is recorded throughout the deliver flow
of the product.

200
Appendix A. Advantages of the UML Profile for Multidimensional

Modeling

Figure A.1: Multistar multidimensional model

A.2.1 Multistar Models

The multistar concept, also called fact constellation, refers to the
situation where a single MD model has multiple facts, and therefore,
creating multiple star schemas. Basically, this structure is required
when the facts do not share all the dimensions [63].

Our approach is based on a three-layered model defined by means

For more infor-
mation about
the three-layered
model, consult
section 6.3.1, pp.
62.

of UML packages. At level 1, multiple packages that represent differ-
ent star schemas can be specified. For example, in Figure A.1, the
first level of the warehouse example is depicted. According to our
MD approach, we have defined three packages that represent a star
schema each one: Inventory Delivery Status Star, Inventory Snapshot
Star, and Inventory Transaction Star. A UML dependency (represented
as a dotted line with an arrow) connecting two packages indicates that
one package uses elements (e.g. dimensions, hierarchy levels) defined
in the other. The direction of the dependency indicates that the com-
mon elements shared by the two packages were first defined in the
package pointed to by the arrow. To simplify the design, and there-
fore, reducing the number of dependencies, we highly recommend to
choose a star schema to define the dimensions. Then, other schemas
can use them with no need to define them again. If the common
elements had been first defined in another package, the direction of
the arrow would have been different.

A.2.2 Support for Different Building Perspectives

There exist two “extreme” perspectives of building a DW [65]:

• To build the whole DW all at once from a central, planned
perspective (the monolithic approach).

• To build separate subject areas (data marts) whenever is needed
(the stovepipe approach).

Our MD modeling approach allows the user to apply any of these
perspectives or a mixing of them. Thanks to the use of the UML
packages, the DW designer can define the DW gradually or all at

A.2. Advantages for Multidimensional Modeling 201

once. Moreover, thanks to the UML importing mechanism, the user
can reutilize a concept defined in a package in other packages.

For example, regarding the MD model depicted in Figure A.1, on
the one hand the DW designer could have modeled and implemented
each one of the star schemas one by one or, on the other hand, the
DW designer could have modeled the three star schemas firstly and
then could have implemented all of them together.

A.2.3 Shared Dimensions

In multistar models, two or more star schemas can share some dimen-
sions. The use of the same dimension in different «StarPackage»1

provides several advantages:

• Creating a set of shared dimensions takes 80% of the up-front
data architecture effort [65], because a single dimension can be
used against multiple fact tables

• The final user is allowed to perform drill-across operations: re-
questing data from two or more facts in a single report.

• Sharing dimensions provides consistent definitions and data
contents: it avoids the redefinition of the same concept twice
and inconsistent user interfaces. Moreover, shared dimensions
provide consistent information for similar queries. For exam-
ple, requiring that all star schemas use the same shared time
dimension enforces consistency of results summarized by time.

For example, following the example presented in Figure A.1, In-
ventory Snapshot Star shares some dimensions with Inventory Delivery
Status Star and Inventory Transaction Star, but the last two ones do
not share any dimension between them. Then, if we explore each
package diagram at a second level, we can observe which dimen-
sions are shared. For example, Figure A.2 shows the content of the
«StarPackage» Inventory Snapshot Star. The «FactPackage» Inven-
tory Snapshot Fact is represented in the middle of the figure, while
the «DimensionPackage» (Product Dimension, Time Dimension, and
Warehouse Dimension) are placed around the fact package.

On the other hand, Figure A.3 shows the content of the «StarPack-
age» Inventory Delivery Status Star; three of the dimension packages
have been previously defined in the Inventory Snapshot Star, so they
are imported in this package. Because of this importation, the name

1“When multiple fact tables are tied to a dimension table, the fact tables should
all link to that dimension table. When we use precisely the same dimension table
with each of the fact tables, we say that the dimension is ‘conformed’ to each
fact table” [63].

202
Appendix A. Advantages of the UML Profile for Multidimensional

Modeling

Figure A.2: Level 2 of Inventory Snapshot Star

Figure A.3: Level 2 of Inventory Delivery Status Star

of the packages where they have been firstly defined appears below
the package name; the name of the package also acts as a name space,
therefore avoiding name conflicts when importing packages from dif-
ferent sources: it is possible to import «DimensionPackage» with the
same name but defined in different «StarPackage». Moreover, a de-
pendency has been drawn from Vendor Dimension to Warehouse Di-
mension because both dimensions share some hierarchy levels, as we
will show in the next section.

A.2.4 Shared Hierarchy Levels
In some cases, two or more dimensions share some hierarchy levels.
As in the case of shared dimensions, the use of the same levels in

A.2. Advantages for Multidimensional Modeling 203

different dimensions avoids redefinitions and inconsistencies in the
data.

For example, Figure A.4 shows the content of the package Ware-
house Dimension (from Figure A.2) and Figure A.5 shows the content
of Vendor Dimension (from Figure A.3) at level 3. In a «Dimension-
Package», a class is defined for the «Dimension» class (Warehouse
and Vendor respectively) and one class for every classification hier-
archy level (WarehouseFeatures, ZIP, City, SubRegion, SubZone, etc.).
For the sake of simplicity, only the attributes of the first «Base» class
have been depicted in both diagrams; we can distinguish two kinds
of attributes: «Descriptor», represented by means of a D icon, and
«DimensionAttribute», represented by means of a DA icon.

In this example, Warehouse and Vendor share some hierarchy lev-
els: ZIP, City, County, and State. These levels have been firstly de-
fined in the Warehouse Dimension; therefore, the name of the package
where they have been previously defined appears below the class name
(from Warehouse Dimension) in the Vendor Dimension (see Figure A.5).
Moreover, both dimensions contain some hierarchy levels that do not
contain the other: SubRegion and Region in the Warehouse Dimension,
and SubZone and Zone in the Vendor Dimension.

In this example we also notice a salient feature of our approach:
two dimensions, that share hierarchy levels, do not need to share
the whole hierarchy. The package mechanism allows us to import
only the required levels, thereby providing a higher level of flexibility.
Moreover, we have decided to share a hierarchy for both dimensions
to obtain a clearer design, although the designer may have decided
not to do it if such sharing is not totally feasible.

A.2.5 Multiple and Alternative Classification Hi-
erarchies

Defining dimension classification hierarchies is highly crucial because
these classification hierarchies provide the basis for the subsequent
data analysis. Thanks to the flexibility of UML association relation-
ships, we can represent multiple and alternative classification hierar-
chies. On the one hand, a classification hierarchy is multiple when a
dimension has two or more classification hierarchies, therefore data
can be rolled-up or drilled-down along two different hierarchies at
least; on the other hand, two or more classification hierarchies are
alternative when they converge into the same hierarchy level.

In Figure A.5, Vendor Dimension presents a multiple classification
hierarchy: (i) PersonalData, ZIP, City, County, and State, and (ii)
PersonalData, SubZone, and Zone. On the other hand, Warehouse
Dimension (see Figure A.4) presents an alternative classification hi-
erarchy, because we have defined two classification hierarchies that

204
Appendix A. Advantages of the UML Profile for Multidimensional

Modeling

Figure A.4: Level 3 of Warehouse Dimension

A.2. Advantages for Multidimensional Modeling 205

Figure A.5: Level 3 of Vendor Dimension

206
Appendix A. Advantages of the UML Profile for Multidimensional

Modeling

converge into State «Base» class.

A.2.6 Heterogeneous Dimensions

A heterogeneous dimension is a dimension that describes a large num-
ber of heterogeneous items with different attributes [63]. Our MD
modeling approach allows the DW designer to elegantly represent
heterogeneous dimensions by means of generalization-specialization
hierarchies. In our approach, the different items can be grouped to-
gether in different categorization levels depending on their properties.
In this way, our approach allows us to have elements at the same ag-
gregation level that have different attributes.

For example, Figure A.6 shows the Product Dimension at level 3.
The Product «Fact» has been modeled depending on the different
subtypes –Liquid or Solid, Alcohol or Refreshment, etc.–, and each
one of the subtypes contains particular properties –volume, weight,
expiration, etc.–. For the sake of simplicity, we have omitted sone of
the attributes of the «Base» classes.

A.2.7 Shared Aggregation

In our MD modeling approach, «Fact» classes are specified as com-
posite classes in shared aggregation relationships of n «Dimension»
classes. The flexibility of shared aggregation in the UML allows us
to represent many-to-many relationships between «Fact» classes and
particular «Dimension» classes by indicating the 1..n cardinality on
the «Dimension» class role.

For example, in Figure A.7 we can see how the «Fact» class Inven-
tory Delivery Status has a many-to-one relationship with the «Dimen-
sion» classes Time, Vendor, Product, and Warehouse (not completely
shown in the diagram). For the sake of simplicity, we have omitted
all the attributes of the «Dimension» and «Base» classes. There are
three shared aggregation relationships between Inventory Delivery Sta-
tus and Time: Ordered, Received, and Inspected. Thanks to the use of
UML named relationships, we can define more than one relationship
between two classes. In this way, we can use the same «Dimension»
and avoid redundancy and inconsistency problems. The «Fact» class
Inventory Delivery Status contains six «FactAttribute» (represented by
means of a FA icon) and two «DegenerateDimension» (represented by
means of a DD icon). PO_number is the key to the purchase order
header record and it is useful to the final user because it serves as
the grouping key for pulling together all the products ordered on one
purchase order [63].

A.2. Advantages for Multidimensional Modeling 207

Figure A.6: Level 3 of Product Dimension

208
Appendix A. Advantages of the UML Profile for Multidimensional

Modeling

Figure A.7: Level 3 of Inventory Delivery Status Fact

A.3. Conclusions 209

A.2.8 Derivation Rules
In the UML, derived attributes are identified by placing / before the
name of the attribute. In our MD modeling approach, the derivation
rules are explicitly defined by means of OCL [97] expressions. In this
way, we provide a precise and formal mechanism to define derivation
rules.

For example, in Figure A.7 we can see two derivation rules for
quality_percent and unit_benefit. The inclusion of the definition of
the derived attributes at the conceptual design phase avoids the in-
correct definition in the following phases. Moreover, the derivation
rules can be used in a later implementation phase.

A.3 Conclusions
In this appendix, we have presented the main advantages of our OO
conceptual MD modeling approach based on the UML. We have
highlighted the main situations where the use of the UML means
a considerable advantage. For example, we have exhibited how the
usage of package diagrams leads to an exceptionally clean MD design
of huge and complex systems, because package diagrams allow us to
structure MD models at different levels of abstraction. Moreover,
the importation mechanism in the UML simplifies the use of an
element from one package in another package. In this way, we avoid
the problems related to the redefinition of an element several times:
redundancy, inconsistency, and ambiguity.

Appendix B

UML Particularities

In this appendix, we explain some features of UML that are not normally
used but we widely use in this work.

Contents
B.1 Introduction 213
B.2 Association Classes 213
B.3 Navigability 214
B.4 Notes . 214
B.5 Packages 215
B.6 Roles . 216

211

B.1. Introduction 213

Figure B.1: Example of association class

B.1 Introduction

The Pareto principle (also known as the 80-20 rule, the law of the vital
few and the trivial many, or the principle of factor sparsity) states
that for many phenomena 20% of something always are responsible
for 80% of the results. Following this principle, designers normally
use 20% of UML for modeling 80% of the elements in a diagram.
Therefore, designers normally ignore many of the features of UML.
Because of this, in this appendix we give some details about some
UML modeling elements that we profusely use in our approach but
that are not widely known and used.

The different concepts are presented in alphabetic order: Asso-
ciation classes in Section B.2, Navigability in Section B.3, Notes in
Section B.4, Packages in Section B.5, and Roles in Section B.6.

B.2 Association Classes

An association class (AssociationClass) is an association that is also a

AssociationClass :
see UML
(2.5.2.4,
2-21),
(2.5.4.2,
2-67), (3.46,
3-77).

class. AssociationClass is a subclass of both Association (it connects a
set of classifiers) and Class (it defines a set of features that belong to
the relationship).

Even though it is drawn as an association and a class, it is really
just a single model element. An association class is shown as a class
symbol (rectangle) attached by a dashed line to an association path.
For example, in Figure B.1 we show an association class class called
Order that connects the classes Customer and Salesman; furthermore,
there is also an association between the association class and Product.

214 Appendix B. UML Particularities

Figure B.2: Example of navigability in an association

B.3 Navigability
Navigability shows that an association can be navigated by the source

Navigability :
see UML
(2.5.2.5,
2-22),
(2.5.4.1,
2-65),
(3.43.2.4,
3-72).

class and the target rolename can be used in navigation expressions.
Specification of each direction across the association is independent.

Graphically, navigability is represented by means of an arrow at-
tached to the end of an association to indicate that navigation is
supported toward the class attached to the arrow.

For example, in Figure B.2, we show a UML class diagram where
navigability is possible from SalesTeam to Salesman, but not in the
opposite direction.

B.4 Notes
A note is a graphical symbol containing textual information. It is
a notation for rendering various kinds of textual information from

Note : see UML
(3.11, 3-13),
(3.16, 3-26). the metamodel, such as constraints, comments, method bodies, and

tagged values.
Graphically, a note is shown as a rectangle with a “bent corner”

in the upper right corner. It contains arbitrary text. It appears on
a particular diagram and may be attached to zero or more modeling
elements by dashed lines. The connection between a note and the
element it applies to is shown by a dashed line without an arrowhead
as this is not a dependency.

A note may represent:

• A comment.

• A constraint.

• A tagged value.

• The body of a procedure of a method.

• Other string values within modeling elements.

In Figure B.3 we show a UML diagram that contains two notes,
one of them attached to a class.

B.5. Packages 215

Figure B.3: Example of note

Figure B.4: Example of package

B.5 Packages

A package is a grouping of model elements. Packages themselves may
Packages : see
UML (2.15.2.4,
2-184), (3.13,
3-16).be nested within other packages. A package may contain subordinate

packages as well as other kinds of model elements. All kinds of UML
model elements can be organized into packages.

Packages own model elements; therefore, each element can be
directly owned by a single package, so the package hierarchy is a
strict tree. Nevertheless, packages can reference other packages by
using a dependency, so the usage network is a graph. Elements from
a package can be used in another package thanks to the importing
mechanism.

Importing :
see UML
(2.5.2.32,
2-47), (3.38,
3-62).Graphically, a package is shown as a large rectangle with a small

rectangle (a “tab”) attached to the left side of the top of the large
rectangle, i.e., it is the common folder icon used in different operating
systems.

For example, in Figure B.4 we show a UML diagram with three
packages and a dependency from Sales to Customers and from Sales
to Products.

216 Appendix B. UML Particularities

Figure B.5: Example of role

B.6 Roles
A rolename is a name string near the end of an association. It indi-

Rolename : see
UML (3.43.2.6,
3-72). cates the role played by the class attached to the end of the association

near the role.
Rolenames should be placed near the end of the association so

that they are not confused with a different association. They may be
placed on either side of the line (top or bottom, left or right).

In Figure B.4 we show an association between two classes with a
rolename called orderLine attached to the end of the association near
the Product class.

Appendix C

UML Extension
Mechanisms

UML provides the Extensibility Mechanism package that allows the de-
signer to adapt the UML to a particular domain, context or model. In
this appendix, we summarize how to define a UML profile with the dif-
ferent elements (stereotypes, tagged values, and constraints) that are
included.

Contents
C.1 Introduction 219

C.1.1 UML Standard Elements 220
C.1.2 Stereotypes 220
C.1.3 Tag Definitions 221
C.1.4 Constraints 221

C.2 Profile . 223

217

C.1. Introduction 219

Figure C.1: Extension Mechanisms package

C.1 Introduction

UML [97] is a general modeling language (not oriented to any spe-
cific domain). UML provides a rich set of modeling concepts and
notations that meet the needs of typical software modeling projects.
However, it might happen that UML does not correctly adapt to
some projects, and users may require additional features. In order to
avoid users defining new modeling elements in an uncontrolled man-
ner, UML incorporates its built-in extension mechanisms that enable
new kinds of modeling elements to be added to the modeler’s reper-
toire as well as to attach free-form information to modeling elements.

The UML Extensibility Mechanism package is the subpackage
from the UML metamodel that specifies how particular UML model

Extension
Mechanisms :
see UML (2.6,
2-73).elements are customized and extended with new semantics by using

stereotypes, tagged values, and constraints. Briefly, a stereotype de-
fines a new building element, a tagged value specifies a new prop-
erty of an existing or new element, and a constraint describes the
semantics of the new elements. A coherent set of such extensions, de-
fined for specific purposes, constitutes a UML profile. For example,
UML includes a standard profile for modeling software development
processes and another one for business modeling.

UML example
profiles : see
UML (4, 4-1).

In Figure C.1, we show the Extension Mechanisms package, which
belongs to the Foundation packages of UML. The Extension Mech-
anisms package specifies how model elements are customized and ex-
tended with new semantics.

220 Appendix C. UML Extension Mechanisms

Standard Element Name Applies to Kind
Base Element

«documentation» Element Tag
«metaclass» Class Stereotype
«metamodel» Package Stereotype

«profile» Package Stereotype
xor Association Constraint

Table C.1: UML Standard Elements

C.1.1 UML Standard Elements
UML [97] contains a list of predefined standard elements for UML.

UML Standard
Elements : see
UML (Appendix
A, page A-1.) The standard elements are stereotypes, constraints and tagged values

used in the standard but they are not considered to be part of the
the specification. The names used for UML predefined standard
elements are considered reserved words. In Table C.1, we show some
of the standard elements defined in [97].

C.1.2 Stereotypes
A stereotype is the principal extension mechanism. It is a model

Stereotypes :
see UML
(2.6.2.3,
2-78), (3.18,
3-31). element that provides a way of defining virtual subclasses of UML

metaclasses, with new metaattributes (defines additional values based
on tagged values), and additional semantics (based on constraints),
and optionally a new graphical representation (an icon): a stereotype
allows us to attach a new semantic meaning to a model element.
Different formats can be used to represent a stereotyped element (see
some examples in Figure C.2):

• Icon: the base element symbol may be substituted by an icon
containing the element name or with the name above or below
the icon.

• Adorned element: the icon is used as part of the symbol for
the base model element that the stereotype is based on. For
example, in a class it is placed in the upper right corner of the
rectangle that represents the class.

• Label: the stereotype name is generally placed above or in front
of the name of the model element being described. The name
of the stereotype is represented within matched guillemets1.

• None.

1Guillemets are the quotation mark symbols used in French and certain other
languages. For example, «metaclass» or «metamodel».

C.1. Introduction 221

Figure C.2: Different representations for a stereotyped class

Because a stereotype is user-defined, a stereotype declaration is
an element that appears at the “model” layer of the UML four-layer
metamodeling hierarchy although it conceptually belongs in the layer

Metamodel :
see UML (2.2.1,
2-4), (2.4,
2-11).above, the metamodel layer. Following the MOF paradigm [95],

stereotypes are defined in the M2 level (metamodels), whereas the
normal models designed by means of UML are situated in the M1
level (models), as shown in Figure C.3.

C.1.3 Tag Definitions

A tag definition specifies a new kind of property that may be attached

Tag
definition :
see UML
(2.6.2.4,
2-78).to a model element. Among other things, tag definitions can be used

to define the virtual metaattributes of the stereotype to which they
are attached. The actual properties of individual model elements are
specified using tagged values.

A tagged value allows information to be attached to any model
Tagged value :
see UML
(2.6.2.5,
2-79).element in conformance with its tag definition. A tagged value is

rendered as a string enclosed by a pair of braces ({ }) and placed
below the name of another element. A tagged value has the form
name = value where name is the name of the tag definition and value

Element
properties :
see UML (3.17,
3-29).is an arbitrary string that denotes its value (the real tagged value).

There exists a confusion between tag definition and tagged value:
a tag definition specifies the tagged values that can be attached to a
kind of model element, whereas a tagged value is the actual value of
a tag definition in a particular model.

In Figure C.4, we show the definition of a class with three tag
definitions: author, deadline, and status.

C.1.4 Constraints

A constraint can be attached to any model element to refine its se-

Constraint :
see UML
(2.6.2.1,
2-76), (3.16,
3-26).mantics. As it is stated in [139], “A constraint is a restriction on one

or more values of (part of) an object-oriented model or system”. In
the UML, a constraint is rendered as a string between a pair of braces
({ }) and placed near the associated model element. A constraint on
a stereotype is interpreted as a constraint on all types on which the
stereotype is applied. A constraint can be defined by means of an

222 Appendix C. UML Extension Mechanisms

Figure C.3: MOF levels

Figure C.4: A class with tagged values

C.2. Profile 223

Figure C.5: UML class diagram with a constraint attached to an
association

informal explanation in Natural Language and/or by means of OCL
[97, 139] expressions. The OCL is a declarative language that allows

OCL : see UML
chapter 6, pp.
6-1.software developers to write constraints over object models.

Depending on the number of elements affected by a constraint,
the graphical representation differs:

• For a single element (a class, an association, a package,etc.), the
constraint string may be placed near the element, preferably
near the name of the element.

• For two elements, the constraint is shown as a dashed arrow
from one element to the other element labeled by the constraint
string (in braces). The direction of the arrow is relevant infor-
mation within the constraint. The client (tail of the arrow)
is mapped to the first position and the supplier (head of the
arrow) is mapped to the second position in the constraint.

• For three or more elements, the constraint string is placed in a
note symbol and attached to each of the elements by a dashed
line. This notation may also be used for the other cases.

For example, in Figure C.5 we show a class with a constraint
attached to an association to itself.

C.2 Profile
A profile is a stereotyped package that contains model elements (an

Profile : see
UML (2.15.2.4,
2-184),
(2.15.4.2,
2-193).abstraction drawn from the system being modeled) that have been

customized for a specific domain or purpose using the extension mech-
anisms (stereotypes, tagged definitions, and constraints).

A UML extension defined using a profile must be strictly addi-
tive to the standard UML semantics. This means that such extension

224 Appendix C. UML Extension Mechanisms

must not conflict with or contradict the standard semantics. There-
fore, there are restrictions on how a profile can extend the UML
metamodel.

Appendix D

Representation of
Multidimensional Models
with XML

In this appendix, we present how to handle the representation, manipu-
lation and presentation of MD models using XML and related technolo-
gies. First, we use XML to consider main MD modeling properties at the
conceptual level. Then, we provide a DTD which allows us to directly
generate valid XML documents that represents MD models. Next, an
XML Schema allows us to to describe and constraint the structure of
XML documents more accurately than DTD. Finally, we use Extensi-
ble Stylesheet Language Transformations (XSLT) to automatically
generate HyperText Markup Language (HTML) pages from XML
documents, thereby supporting different presentations of the same MD
model easily.

Contents
D.1 Introduction 227
D.2 DTD . 227
D.3 XML Schema 230
D.4 XSLT . 240

225

D.1. Introduction 227

D.1 Introduction
XML [143] is rapidly being adopted as a specific standard syntax for
the exchange of semi-structured data [4]. Furthermore, XML is an
open neutral platform and vendor independent meta-language stan-
dard, which allows to reduce the cost, complexity, and effort required
in integrating data within enterprises and between enterprises. One
common feature of this semi-structured data is the lack of schema, so
the data is describing itself. Therefore, XML documents can have
different structures and can represent heterogeneous kinds of data
(biological, statistical, medical, etc.).

Nevertheless, XML documents can be associated to a DTD or an
XML Schema [144], both of which allow the designer to describe and
constraint the structure of XML documents. In this way, an XML
document can be validated against these DTD or XML Schemas to
check its correctness. Moreover, thanks to the use of XSL [142] and
XSLT [141], XML documents can be automatically transformed into
other formats, e.g. HTML documents. An immediate consequence
is that we can define different XSLT stylesheets to provide different
presentations of the same XML document.

In this appendix, to facilitate the interchange of conceptual MD
models, we provide a DTD (Section D.2) and an XML Schema (Sec-

For more infor-
mation about the
multidimensional
modeling, consult
section 6.2, pp.
56.

tion D.3) which allow us to represent the MD models with XML.
Then, we provide different presentations of the MD models by means
of XSLT (Section D.4).

D.2 DTD
A DTD provides a logic structure for XML documents, and re-
strictions that how elements can be related to each other. More
specifically, a DTD is composed of:

• Element types and sub-element types.

• Attributes.

• Terminal strings such as ENTITY, PCDATA, and CDATA.

• Constraints on element and sub-element types, including “*”
(set with zero or more elements), “+” (set with one or more
elements), “?” (optional), and “|”: (or).

Unfortunately, there is no concept of a root element of a DTD.
Therefore, an XML document conforming to a DTD can be rooted
at any element defined in the DTD if a root element in DOCTYPE is
not specified.

228
Appendix D. Representation of Multidimensional Models with

XML

We have defined a DTD that determines the correct structure
and content of XML documents that represent MD models. More-
over, this DTD can be used to automatically validate the XML
documents.

Our DTD contains 38 elements (tags). We have defined ad-
ditional elements (in plural form) in order to group common ele-
ments together, so that they can be exploited to provide optimum
and correct comprehension of the model, e.g. elements in plural like
PKSCHEMAS or DEPENDENCIES.

The DTD follows the three-level structure of our MD approach:

• An MDMODEL (the root element) contains PKSCHEMAS (star schema
packages) at level 1.

• A PKSCHEMA contains at most one PKFACT (fact package) and
many PKDIMS (dimension packages) and IMPPKDIMS (imported
dimensions) at level 2.

• A PKFACT contains at most one FACTCLASS and a PKDIM contains
at most one DIMCLASS and many BASECLASSES at level 3.

<!ENTITY % Boolean ’(true|false)’>
<!ELEMENT MDMODEL (PKSCHEMAS, DEPENDENCIES)>
<!ATTLIST MDMODEL

id ID #REQUIRED
name CDATA #REQUIRED>

<!ELEMENT PKSCHEMAS (PKSCHEMA*)>
<!ELEMENT PKSCHEMA (PKFACT?, PKDIMS, DEPENDENCIES)>
<!ATTLIST PKSCHEMA

id ID #REQUIRED
name CDATA #REQUIRED>

<!ELEMENT PKFACT (FACTCLASS)>
<!ATTLIST PKFACT

id ID #REQUIRED
name CDATA #REQUIRED>

<!ELEMENT PKDIMS (PKDIM*)>
<!ELEMENT PKDIM (DIMCLASS, BASECLASSES)>
<!ATTLIST PKDIM

id ID #REQUIRED
name CDATA #REQUIRED>

<!ELEMENT DEPENDENCIES (DEPENDENCY*)>
<!ELEMENT DEPENDENCY EMPTY>
<!ATTLIST DEPENDENCY

id ID #REQUIRED
start IDREF #REQUIRED
end IDREF #REQUIRED>

<!ELEMENT FACTCLASS (FACTATTS, METHODS, SHAREDAGGS)>
<!ATTLIST FACTCLASS

id ID #REQUIRED
name CDATA #REQUIRED>

<!ELEMENT FACTATTS (FACTATT*)>
<!ELEMENT FACTATT EMPTY>
<!ATTLIST FACTATT

D.2. DTD 229

id ID #REQUIRED
name CDATA #REQUIRED
derived %Boolean; "false"
derivationRule CDATA #IMPLIED
type CDATA #REQUIRED
initial CDATA #IMPLIED
DD %Boolean; "false">

<!ELEMENT METHODS (METHOD*)>
<!ELEMENT METHOD EMPTY>
<!ATTLIST METHOD

id ID #REQUIRED
name CDATA #REQUIRED>

<!ELEMENT DEGFACT (FACTATTS, METHODS)>
<!ATTLIST DEGFACT

id ID #REQUIRED
name CDATA #IMPLIED>

<!ELEMENT SHAREDAGGS (SHAREDAGG*)>
<!ELEMENT SHAREDAGG (DEGFACT?)>
<!ATTLIST SHAREDAGG

id ID #REQUIRED
dimclass IDREF #REQUIRED
name CDATA #IMPLIED
description CDATA #IMPLIED
roleA CDATA #IMPLIED
roleB CDATA #IMPLIED>

<!ELEMENT DIMCLASS EMPTY>
<!ELEMENT BASECLASSES (BASECLASS*)>
<!ELEMENT BASECLASS (DIMATTS, (RELATIONASOCS | RELATIONCATS)?,
METHODS)>
<!ELEMENT DIMATTS (DIMATT*)>
<!ELEMENT DIMATT EMPTY>
<!ATTLIST DIMATT

id ID #REQUIRED
name CDATA #REQUIRED
derived %Boolean; "false"
derivationRule CDATA #IMPLIED
type CDATA #REQUIRED
initial CDATA #IMPLIED
OID %Boolean; "false"
D %Boolean; "false">

<!ELEMENT RELATIONASOCS (RELATIONASOC*)>
<!ELEMENT RELATIONASOC EMPTY>
<!ATTLIST RELATIONASOC

id ID #REQUIRED
child IDREF #REQUIRED
name CDATA #IMPLIED
roleA CDATA #IMPLIED
roleB CDATA #IMPLIED
completeness %Boolean; "false">

<!ELEMENT RELATIONCATS (RELATIONCAT*)>
<!ELEMENT RELATIONCAT EMPTY>
<!ATTLIST RELATIONCAT

id ID #REQUIRED
child IDREF #REQUIRED
name CDATA #IMPLIED>

<!ATTLIST BASECLASS

230
Appendix D. Representation of Multidimensional Models with

XML

id ID #REQUIRED
name CDATA #REQUIRED>

<!ATTLIST DIMCLASS
id ID #REQUIRED
name CDATA #REQUIRED
baseclass IDREF #IMPLIED
isTime %Boolean; "false">

D.3 XML Schema

The purpose of XML Schemas is to specify the structure of instance
elements together with the data type of each element/attribute. The
motivation for XML Schemas is the dissatisfaction with DTD mainly
due to their syntax and their limited data type capability, not allow-
ing us to define new specific data types. Therefore, XML Schemas
are a tremendous advancement over DTD: they include most basic
programming types such as integer, byte, string and floating point
numbers; they allow us to create enhanced data types and valid ref-
erences; they are written in the same syntax as instance documents
(an XML Schema is in form of a well-formed XML document); they
can define multiple elements with the same name but different con-
tent (namespace); they can define substitutable elements, and many
more features (sets, unique keys, nil content, etc.).

With respect to the structure of an XML Schema, there are two
main possibilities: flat and “Russian doll” designs. The former is
based on a flat catalog of all the elements available in the instance
document and, for each of them, lists of child elements and attributes.
We have used the later design as it allows us to define each element
and attribute within its context in an embedded manner. In this
sense, the representation of our XML Schema as a tree structure is
illustrated in Figure D.1 and Figure D.2 for the sake of clearness and
comprehension1. As it can be observed, we denote every node of
the tree with a label. Then, every label has its correspondence with
one element in the XML Schema. Following a left-right path in the
tree, we clearly identify all the MD properties supported by our MD
modeling approach.

Our XML Schema contains the definition of 25 elements (tags)
and follows the three-level structure of our MD approach:

• An MDMODEL contains PKSCHEMAS (star schema packages) at level
1.

1In these figures we use the following notation: the box with three linked dots
represents a sequence of elements, the range in which an element can occur is
showed with numbers (the default minimum and maximum number of occurrences
is 1) and graphically (a box with a dashed line indicates that the minimum number
of occurrences is 0).

D.3. XML Schema 231

• A PKSCHEMA contains at most one PKFACT (fact package) and
many PKDIM (dimension packages) grouped by a PKDIMS element
at level 2.

• A PKFACT contains at most one FACTCLASS and a PKDIM contains
at most one DIMCLASS and many BASECLASSES at level 3.

<?xml version="1.0" encoding="ISO-8859-1"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:attributeGroup name="id_name">
<xs:annotation>
<xs:documentation>Common attributes to different elements (id y name)
</xs:documentation>
</xs:annotation>
<xs:attribute name="id" type="xs:ID" use="required"/>
<xs:attribute name="name" type="xs:string" use="required"/>
</xs:attributeGroup>

<xs:attributeGroup name="dim_fact_atts">
<xs:annotation>
<xs:documentation>Common attributes to dimension and fact classes
</xs:documentation>
</xs:annotation>
<xs:attribute name="id" type="xs:ID" use="required"/>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="derived" type="xs:boolean" default="false"/>
<xs:attribute name="derivationRule" type="xs:string" use="optional"/>
<xs:attribute name="type" type="xs:string" use="required"/>
<xs:attribute name="initial" type="xs:string" use="optional"/>
</xs:attributeGroup>

<xs:element name="MDMODEL">
<xs:annotation>
<xs:documentation>Root element of the model</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element ref="PKSCHEMAS"/>
<xs:element name="DEPENDENCIES">
<xs:annotation>
<xs:documentation>Group of dependencies</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="DEPENDENCY">
<xs:annotation>
<xs:documentation>Dependency between two packages</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:attribute name="id" type="xs:ID" use="required"/>
<xs:attribute name="start" type="xs:IDREF" use="required"/>
<xs:attribute name="end" type="xs:IDREF" use="required"/>
</xs:complexType>

232
Appendix D. Representation of Multidimensional Models with

XML

F
ig

ur
e

D
.1

:
X

M
L

Sc
he

m
a

(p
ar

t
1)

D.3. XML Schema 233

Figure D.2: XML Schema (part 2)

</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attributeGroup ref="id_name"/>
</xs:complexType>
<xs:key name="PKSCHEMAKey">
<xs:selector xpath="PKSCHEMAS/PKSCHEMA"/>
<xs:field xpath="@id"/>
</xs:key>
<xs:keyref name="startPKSCHEMAKey" refer="PKSCHEMAKey">
<xs:selector xpath="DEPENDENCIES/DEPENDENCY"/>
<xs:field xpath="@start"/>
</xs:keyref>
<xs:keyref name="endPKSCHEMAKey" refer="PKSCHEMAKey">
<xs:selector xpath="DEPENDENCIES/DEPENDENCY"/>
<xs:field xpath="@end"/>
</xs:keyref>
</xs:element>

<xs:element name="PKSCHEMAS">
<xs:annotation>
<xs:documentation>Group of star schema packages</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>

234
Appendix D. Representation of Multidimensional Models with

XML

<xs:element ref="PKSCHEMA" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="PKSCHEMA">
<xs:annotation>
<xs:documentation>Star schema package (first level)</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element ref="PKFACT" minOccurs="0"/>
<xs:element ref="PKDIMS"/>
<xs:element name="DEPENDENCIES">
<xs:annotation>
<xs:documentation>Group of dependencies</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="DEPENDENCY">
<xs:annotation>
<xs:documentation>Dependency between two packages</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:attribute name="id" type="xs:ID" use="required"/>
<xs:attribute name="start" type="xs:IDREF" use="required"/>
<xs:attribute name="end" type="xs:IDREF" use="required"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attributeGroup ref="id_name"/>
</xs:complexType>
<xs:key name="DIMCLASSKey">
<xs:selector xpath="PKDIMS/PKDIM/DIMCLASS"/>
<xs:field xpath="@id"/>
</xs:key>
<xs:keyref name="sharedaggDIMCLASSKey" refer="DIMCLASSKey">
<xs:selector xpath="PKFACT/FACTCLASS/SHAREDAGGS/SHAREDAGG"/>
<xs:field xpath="@dimclass"/>
</xs:keyref>
<xs:key name="PKDIMKey">
<xs:selector xpath="PKDIMS/PKDIM"/>
<xs:field xpath="@id"/>
</xs:key>
<xs:key name="PKFACTKey">
<xs:selector xpath="PKFACT"/>
<xs:field xpath="@id"/>
</xs:key>
<xs:keyref name="startPKDIMKey" refer="PKDIMKey">
<xs:selector xpath="DEPENDENCIES/DEPENDENCY"/>
<xs:field xpath="@start"/>
</xs:keyref>

D.3. XML Schema 235

<xs:keyref name="startPKFACTKey" refer="PKFACTKey">
<xs:selector xpath="DEPENDENCIES/DEPENDENCY"/>
<xs:field xpath="@start"/>
</xs:keyref>
<xs:keyref name="endPKDIMKey" refer="PKDIMKey">
<xs:selector xpath="DEPENDENCIES/DEPENDENCY"/>
<xs:field xpath="@end"/>
</xs:keyref>
</xs:element>

<xs:element name="PKFACT">
<xs:annotation>
<xs:documentation>Fact package (second level)</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element ref="FACTCLASS"/>
</xs:sequence>
<xs:attributeGroup ref="id_name"/>
</xs:complexType>
</xs:element>

<xs:element name="FACTCLASS">
<xs:annotation>
<xs:documentation>Fact class (third level)</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element ref="FACTATTS"/>
<xs:element ref="METHODS"/>
<xs:element ref="SHAREDAGGS"/>
</xs:sequence>
<xs:attributeGroup ref="id_name"/>
</xs:complexType>
</xs:element>

<xs:element name="FACTATTS">
<xs:annotation>
<xs:documentation>Group of attributes of a fact class</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element ref="FACTATT" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="FACTATT">
<xs:annotation>
<xs:documentation>Fact attribute</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:attributeGroup ref="dim_fact_atts"/>
<xs:attribute name="DD" type="xs:boolean" default="false"/>
</xs:complexType>
</xs:element>

236
Appendix D. Representation of Multidimensional Models with

XML

<xs:element name="DEGFACT">
<xs:annotation>
<xs:documentation>Degenerate fact</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element ref="FACTATTS"/>
<xs:element ref="METHODS"/>
</xs:sequence>
<xs:attributeGroup ref="id_name"/>
</xs:complexType>
</xs:element>

<xs:element name="METHODS">
<xs:annotation>
<xs:documentation>Group of methods of a fact or a base class
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element ref="METHOD" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="METHOD">
<xs:annotation>
<xs:documentation>Method of a fact or a base class</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:attributeGroup ref="id_name"/>
</xs:complexType>
</xs:element>

<xs:element name="SHAREDAGGS">
<xs:annotation>
<xs:documentation>Group of aggregations of a fact</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element ref="SHAREDAGG" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="SHAREDAGG">
<xs:annotation>
<xs:documentation>Aggregation between a fact and a dimension
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element ref="DEGFACT" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="id" type="xs:ID" use="required"/>

D.3. XML Schema 237

<xs:attribute name="dimclass" type="xs:IDREF" use="required"/>
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="description" type="xs:string" use="optional"/>
<xs:attribute name="roleA" type="xs:string" use="optional"/>
<xs:attribute name="roleB" type="xs:string" use="optional"/>
</xs:complexType>
</xs:element>

<xs:element name="PKDIMS">
<xs:annotation>
<xs:documentation>Group of dimension packages of a star schema
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element ref="PKDIM" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="PKDIM">
<xs:annotation>
<xs:documentation>Dimension package (second level)</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element ref="DIMCLASS"/>
<xs:element ref="BASECLASSES"/>
</xs:sequence>
<xs:attributeGroup ref="id_name"/>
</xs:complexType>
<xs:key name="BASECLASSKey">
<xs:selector xpath="BASECLASSES/BASECLASS"/>
<xs:field xpath="@id"/>
</xs:key>
<xs:keyref name="dimclassBASECLASSKey" refer="BASECLASSKey">
<xs:selector xpath="DIMCLASS"/>
<xs:field xpath="@baseclass"/>
</xs:keyref>
<xs:keyref name="relationasocBASECLASSKey" refer="BASECLASSKey">
<xs:selector xpath="BASECLASSES/BASECLASS/RELATIONASOCS/RELATIONASOC"/>
<xs:field xpath="@child"/>
</xs:keyref>
<xs:keyref name="relationcatBASECLASSKey" refer="BASECLASSKey">
<xs:selector xpath="BASECLASSES/BASECLASS/RELATIONCATS/RELATIONCAT"/>
<xs:field xpath="@child"/>
</xs:keyref>
</xs:element>

<xs:element name="DIMCLASS">
<xs:annotation>
<xs:documentation>Dimension class (third level)</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:attributeGroup ref="id_name"/>

238
Appendix D. Representation of Multidimensional Models with

XML

<xs:attribute name="baseclass" type="xs:IDREF" use="optional"/>
<xs:attribute name="isTime" type="xs:boolean" default="false"/>
</xs:complexType>
</xs:element>

<xs:element name="BASECLASSES">
<xs:annotation>
<xs:documentation>Group of base classes of a dimension</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element ref="BASECLASS" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="BASECLASS">
<xs:annotation>
<xs:documentation>Base class (third level)</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element ref="DIMATTS"/>
<xs:choice minOccurs="0">
<xs:element ref="RELATIONASOCS"/>
<xs:element ref="RELATIONCATS"/>
</xs:choice>
<xs:element ref="METHODS"/>
</xs:sequence>
<xs:attributeGroup ref="id_name"/>
</xs:complexType>
</xs:element>

<xs:element name="DIMATTS">
<xs:annotation>
<xs:documentation>Group of attributes of a base class</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element ref="DIMATT" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="DIMATT">
<xs:annotation>
<xs:documentation>Attribute of a base class</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:attributeGroup ref="id_name"/>
<xs:attribute name="derived" type="xs:boolean" default="false"/>
<xs:attribute name="derivationRule" type="xs:string" use="optional"/>
<xs:attribute name="type" type="xs:string" use="required"/>
<xs:attribute name="initial" type="xs:string" use="optional"/>
<xs:attribute name="OID" type="xs:boolean" default="false"/>
<xs:attribute name="D" type="xs:boolean" default="false"/>

D.3. XML Schema 239

</xs:complexType>
</xs:element>

<xs:element name="RELATIONASOCS">
<xs:annotation>
<xs:documentation>Group of relationships between classes
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element ref="RELATIONASOC" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="RELATIONASOC">
<xs:annotation>
<xs:documentation>Relationship between two classes</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:attribute name="ID" type="xs:ID" use="required"/>
<xs:attribute name="child" type="xs:IDREF" use="required"/>
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="roleA" type="xs:string" use="optional"/>
<xs:attribute name="roleB" type="xs:string" use="optional"/>
<xs:attribute name="completeness" type="xs:boolean" default="false"/>
</xs:complexType>
</xs:element>

<xs:element name="RELATIONCATS">
<xs:annotation>
<xs:documentation>Group of categorization relationships between classes
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element ref="RELATIONCAT" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="RELATIONCAT">
<xs:annotation>
<xs:documentation>Categorization relationship between two classes
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:attribute name="id" type="xs:ID" use="required"/>
<xs:attribute name="child" type="xs:IDREF" use="required"/>
<xs:attribute name="name" type="xs:string" use="optional"/>
</xs:complexType>
</xs:element>
</xs:schema>

240
Appendix D. Representation of Multidimensional Models with

XML

Figure D.3: Generating different presentations from the same multi-
dimensional model

D.4 XSLT
Another relevant issue of our approach was to provide different pre-
sentations of the MD models in the Web. To solve this problem,
XSLT [141] is a technology that allows us to define the presentation
for XML documents. XSLT stylesheets describe a set of patterns
(templates) to match both elements and attributes defined in an XML
Schema, in order to apply specific transformations for each consid-
ered match. Thanks to XSLT, the source document can be filtered
and reordered in constructing the resulting output

Figure D.3 illustrates the overall transformation process for a MD
model. The MD model is stored in an XML document and an XSLT
stylesheet is provided to generate different presentations of the MD
model: e.g., HTML.

Below, we include the code of an XSLT stylesheet. We can no-
tice that XSLT instructions and HTML tags are intermingled. The
XSLT processor copies the HTML tags to the transformed docu-
ment and interprets any XSLT instruction encountered

<?xml version="1.0" encoding="iso-8859-1"?>
<xsl:stylesheet version="1.1"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fo="http://www.w3.org/1999/XSL/Format">

<xsl:output method="html" encoding="iso-8859-1" indent="yes"/>

<xsl:template match="/">

D.4. XSLT 241

<xsl:apply-templates select="//PKSCHEMA"/>
<xsl:apply-templates select="//FACTCLASS"/>
<xsl:apply-templates select="//DIMCLASS"/>
<xsl:document method="html" encoding="iso-8859-1" href="tree.html">
<xsl:apply-templates select="MDMODEL" mode="tree"/>
</xsl:document>
<xsl:document method="html" encoding="iso-8859-1" href="index.html">
<html>
<head>
<title>MDMODEL <xsl:value-of select="@name"/></title>
<meta http-equiv="Content-Type" content="text/html;
charset=iso-8859-1"/>
</head>
<frameset cols="30%,*">
<frame src="tree.html"/>
<frame src="" name="body"/>
</frameset>
</html>
</xsl:document>
</xsl:template>

<!-- =========================== Tree =========================== -->

<xsl:template match="MDMODEL" mode="tree">
<html>
<head>
<style type="text/css">
body { margin: 8; scrollbar-track-color: #FFFFFF; scrollbar-face-color:
#006699; scrollbar-arrow-color: #FFFFFF; scrollbar-hightlight-color: ;
scrollbar-shadow-color: #FFFFFF; scrollbar-3dlight-color: #006699;
scrollbar-darkshadow-color: #006699 }
pre { font: 8pt Verdana; display: inline }
td.linea { background: url(images/elmLinea.gif) repeat-y left }
td.texto { padding-left: 2px }
a { color: #0000AA; text-decoration: none }
a:visited { color: #0000AA }
a:hover { color: #0099FF }
a.rama { cursor: default }
img { border: 0 }
</style>
</head>
<body>
<table border="0" cellspacing="0" cellpadding="0">
<tr>
<td></td>
<td class="texto"><pre>Schemas</pre></td>
</tr>
</table>
<table border="0" cellspacing="0" cellpadding="0">
<tr>
<td>

</td>
<td>
<xsl:apply-templates select="PKSCHEMAS/PKSCHEMA" mode="tree"/>
</td>

242
Appendix D. Representation of Multidimensional Models with

XML

</tr>
</table>
</body>
</html>
</xsl:template>

<xsl:template match="PKSCHEMA" mode="tree">
<table border="0" cellspacing="0" cellpadding="0">
<tr>
<td>
<xsl:choose>
<xsl:when test="count(following-sibling::PKSCHEMA)>0">

</xsl:when>
<xsl:otherwise>

</xsl:otherwise>
</xsl:choose>

</td>
<td class="texto"><pre>
<xsl:value-of select="@name"/></pre></td>
</tr>
</table>
<table border="0" cellspacing="0" cellpadding="0">
<tr>
<xsl:choose>
<xsl:when test="count(following-sibling::PKSCHEMA)>0">
<td class="linea">

</td>
</xsl:when>
<xsl:otherwise>
<td>

</td>
</xsl:otherwise>
</xsl:choose>
<td>
<xsl:apply-templates select="PKFACT/FACTCLASS" mode="tree"/>
<xsl:if test="PKDIMS/PKDIM">
<xsl:apply-templates select="PKDIMS" mode="tree"/>
</xsl:if>
</td>
</tr>
</table>
</xsl:template>

<xsl:template match="FACTCLASS" mode="tree">
<table border="0" cellspacing="0" cellpadding="0">
<tr>
<td>
<xsl:choose>
<xsl:when test="count(../../PKDIMS/PKDIM)>0">

</xsl:when>

D.4. XSLT 243

<xsl:otherwise>

</xsl:otherwise>
</xsl:choose>

</td>
<td class="texto"><pre>
<xsl:value-of select="@name"/></pre></td>
</tr>
</table>
</xsl:template>

<xsl:template match="PKDIMS" mode="tree">
<table border="0" cellspacing="0" cellpadding="0">
<tr>
<td>

</td>
<td class="texto"><pre>Dimensions</pre></td>
</tr>
</table>
<table border="0" cellspacing="0" cellpadding="0">
<tr>
<td></td>
<td>
<xsl:apply-templates select="PKDIM" mode="tree"/>
</td>
</tr>
</table>
</xsl:template>

<xsl:template match="PKDIM" mode="tree">
<table border="0" cellspacing="0" cellpadding="0">
<tr>
<td>
<xsl:choose>
<xsl:when test="count(following-sibling::PKDIM)>0">

</xsl:when>
<xsl:otherwise>

</xsl:otherwise>
</xsl:choose>

</td>
<td class="texto">
<pre><xsl:value-of select="DIMCLASS/@name"/></pre></td>
</tr>
</table>
</xsl:template>

<!-- =========================== Schemas =========================== -->

<xsl:template match="PKSCHEMA">
<xsl:document method="html" encoding="iso-8859-1"

244
Appendix D. Representation of Multidimensional Models with

XML

href="{generate-id()}.html">
<html>
<head>
<title>GOLD Model</title>
<style type="text/css">
body { font-family: Tahoma,Arial,Verdana,sans-serif; font-size: 14px;
color: #3D5066; }
table { font-size: 12px; margin-top: 2px; margin-bottom: 5px;
background: #DBE0E5; border: 1px solid #A1ACB9; }
table.data { font-size: 12px; border: none; }
th { font-size: 14px; font-weight: bold; text-align: left;
color: #3D5066; }
th.title { font-size: 20px; font-weight: bold; text-align: center;
color: #3D5066; background: #A1ACB9; }
th.name { font-size: 12px; font-weight: bold; text-align: left;
background: #F4F6F7; }
td.data { background: #F4F6F7; }
td.name { background: #F4F6F7; }
td.value { color: #005CB1; background: #F4F6F7; }
a { color: #005CB1; }
</style>
</head>
<body>
<div align="center">Back</div>

<table cellpadding="4" cellspacing="0" border="0" align="center">
<tr>
<th class="title"><xsl:value-of select="@name"/></th>
</tr>
<tr>
<th>General information</th>
</tr>
<tr>
<td class="data">
<table class="data" cellpadding="2" cellspacing="0" border="0">
<tr>
<td class="name"><xsl:text disable-output-escaping="yes">
&nbsp;&nbsp;</xsl:text>Description:</td>
<td class="value"><xsl:value-of select="@name"/></td>
</tr>
</table>
</td>
</tr>
<tr>
<th>Fact classes</th>
</tr>
<xsl:if test="PKFACT">
<tr>
<td class="name"><xsl:text disable-output-escaping="yes">
&nbsp;&nbsp;</xsl:text>

<xsl:value-of select="PKFACT/FACTCLASS/@name"/></td>
</tr>
</xsl:if>
<tr>
<th>Dimension classes</th>

D.4. XSLT 245

</tr>
<xsl:for-each select="PKDIMS/PKDIM">
<tr>
<td class="name"><xsl:text disable-output-escaping="yes">
&nbsp;&nbsp;</xsl:text>

<xsl:value-of select="DIMCLASS/@name"/></td>
</tr>
</xsl:for-each>
</table>
</body>
</html>
</xsl:document>
</xsl:template>

<!-- =========================== Facts =========================== -->

<xsl:template match="FACTCLASS">
<xsl:document method="html" encoding="iso-8859-1"
href="{generate-id()}.html">
<html>
<head>
<title>Fact class: <xsl:value-of select="@name"/></title>
<style type="text/css">
body { font-family: Tahoma,Arial,Verdana,sans-serif; font-size: 14px;
color: #3D5066; }
table { font-size: 12px; margin-top: 2px; margin-bottom: 5px;
background: #DBE0E5; border: 1px solid #A1ACB9; }
table.data { font-size: 12px; border: none; }
th { font-size: 14px; font-weight: bold; text-align: left;
color: #3D5066; }
th.title { font-size: 20px; font-weight: bold; text-align: center;
color: #3D5066; background: #A1ACB9; }
th.name { font-size: 12px; font-weight: bold; text-align: left;
background: #F4F6F7; }
td.data { background: #F4F6F7; }
td.name { background: #F4F6F7; }
td.value { color: #005CB1; background: #F4F6F7; }
a { color: #005CB1; }
</style>
</head>
<body>
<div align="center">Back</div>

<table cellpadding="2" cellspacing="2" border="0" align="center">
<tr>
<th class="title"><xsl:value-of select="@name"/></th>
</tr>
<tr>
<th>General information</th>
</tr>
<tr>
<td class="data">
<table class="data" cellpadding="2" cellspacing="0" border="0">
<tr>
<td class="name"><xsl:text disable-output-escaping="yes">

246
Appendix D. Representation of Multidimensional Models with

XML

&nbsp;&nbsp;</xsl:text>Caption:</td>
<td class="value"><xsl:value-of select="@name"/></td>
</tr>
</table>
</td>
</tr>
<tr>
<th>Measures</th>
</tr>
<xsl:if test="FACTATTS/FACTATT">
<tr>
<td class="data">
<table class="data" cellpadding="2" cellspacing="2"
border="0" width="100%">
<tr>
<th class="name">Name</th>
<th class="name">Type</th>
<th class="name">Initial</th>
<th class="name">Derivation Rule</th>
<th class="name">DD</th>
</tr>
<xsl:for-each select="FACTATTS/FACTATT">
<tr>
<td class="value"><xsl:value-of select="@name"/></td>
<td class="value"><xsl:value-of select="@type"/></td>
<td class="value"><xsl:value-of select="@initial"/></td>
<td class="value"><xsl:value-of select="@derivationRule"/></td>
<td class="value">
<xsl:choose>
<xsl:when test="@DD"><xsl:value-of select="@DD"/></xsl:when>
<xsl:otherwise>false</xsl:otherwise>
</xsl:choose>
</td>
</tr>
</xsl:for-each>
</table>
</td>
</tr>
</xsl:if>
<tr>
<th>Methods</th>
</tr>
<xsl:if test="METHODS/METHOD">
<tr>
<td class="data">
<table class="data" cellpadding="2" cellspacing="2" border="0"
width="100%">
<tr>
<th class="name">Name</th>
</tr>
<xsl:for-each select="METHODS/METHOD">
<tr>
<td class="value"><xsl:value-of select="@name"/></td>
</tr>
</xsl:for-each>
</table>

D.4. XSLT 247

</td>
</tr>
</xsl:if>
<tr>
<th>Shared aggregations</th>
</tr>
<xsl:if test="SHAREDAGGS/SHAREDAGG">
<tr>
<td class="data">
<table class="data" cellpadding="2" cellspacing="2" border="0"
width="100%">
<tr>
<th class="name">Name</th>
<th class="name">Description</th>
<th class="name">Role A</th>
<th class="name">Role B</th>
</tr>
<xsl:for-each select="SHAREDAGGS/SHAREDAGG">
<tr>
<xsl:variable name="dimclass" select="@dimclass"/>
<td class="value"><a href="{generate-id(../../../../PKDIMS/PKDIM/
DIMCLASS[@id=$dimclass])}.html">
<xsl:value-of select="../../../../PKDIMS/PKDIM/
DIMCLASS[@id=$dimclass]/@name"/></td>
<td class="value"><xsl:value-of select="@description"/></td>
<td class="value"><xsl:value-of select="@roleA"/></td>
<td class="value"><xsl:value-of select="@roleB"/></td>
</tr>
</xsl:for-each>
</table>
</td>
</tr>
</xsl:if>
</table>
</body>
</html>
</xsl:document>
</xsl:template>

<!-- ========================= Dimensions ======================== -->

<xsl:template match="DIMCLASS">
<xsl:document method="html" encoding="iso-8859-1"
href="{generate-id()}.html">
<html>
<head>
<title>Fact class: <xsl:value-of select="@name"/></title>
<style type="text/css">
body { font-family: Tahoma,Arial,Verdana,sans-serif; font-size: 14px;
color: #3D5066; }
table { font-size: 12px; margin-top: 2px; margin-bottom: 5px;
background: #DBE0E5; border: 1px solid #A1ACB9; }
table.data { font-size: 12px; border: none; }
th { font-size: 14px; font-weight: bold; text-align: left;
color: #3D5066; }
th.title { font-size: 20px; font-weight: bold; text-align: center;

248
Appendix D. Representation of Multidimensional Models with

XML

color: #3D5066; background: #A1ACB9; }
th.name { font-size: 12px; font-weight: bold; text-align: left;
background: #F4F6F7; }
td.data { background: #F4F6F7; }
td.name { background: #F4F6F7; }
td.value { color: #005CB1; background: #F4F6F7; }
a { color: #005CB1; }
</style>
</head>
<body>
<div align="center">Back</div>

<table cellpadding="2" cellspacing="2" border="0" align="center">
<tr>
<th class="title"><xsl:value-of select="@name"/></th>
</tr>
<tr>
<th>General information</th>
</tr>
<tr>
<td class="data">
<table class="data" cellpadding="2" cellspacing="0" border="0">
<tr>
<td class="name"><xsl:text disable-output-escaping="yes">
&nbsp;&nbsp;</xsl:text>Caption:</td>
<td class="value"><xsl:value-of select="@name"/></td>
</tr>
<tr>
<td class="name"><xsl:text disable-output-escaping="yes">
&nbsp;&nbsp;</xsl:text>Is time?:</td>
<td class="value">
<xsl:choose>
<xsl:when test="@isTime"><xsl:value-of select="@isTime"/></xsl:when>
<xsl:otherwise>false</xsl:otherwise>
</xsl:choose>
</td>
</tr>
</table>
</td>
</tr>
<tr>
<th>Attributes</th>
</tr>
<xsl:variable name="baseclass" select="@baseclass"/>
<xsl:if test="../BASECLASSES/BASECLASS[@id=$baseclass]/DIMATTS/DIMATT">
<tr>
<td class="data">
<table class="data" cellpadding="2" cellspacing="2" border="0"
width="100%">
<tr>
<th class="name">Name</th>
<th class="name">Type</th>
<th class="name">Initial</th>
<th class="name">Derivation Rule</th>
<th class="name">OID</th>
<th class="name">Descriptor</th>

D.4. XSLT 249

</tr>
<xsl:for-each select="../BASECLASSES/BASECLASS[@id=$baseclass]/
DIMATTS/DIMATT">
<tr>
<td class="value"><xsl:value-of select="@name"/></td>
<td class="value"><xsl:value-of select="@type"/></td>
<td class="value"><xsl:value-of select="@initial"/></td>
<td class="value"><xsl:value-of select="@derivationRule"/></td>
<td class="value">
<xsl:choose>
<xsl:when test="@OID"><xsl:value-of select="@OID"/></xsl:when>
<xsl:otherwise>false</xsl:otherwise>
</xsl:choose>
</td>
<td class="value">
<xsl:choose>
<xsl:when test="@D"><xsl:value-of select="@D"/></xsl:when>
<xsl:otherwise>false</xsl:otherwise>
</xsl:choose>
</td>
</tr>
</xsl:for-each>
</table>
</td>
</tr>
</xsl:if>
<tr>
<th>Methods</th>
</tr>
<xsl:if test="METHODS/METHOD">
<tr>
<td class="data">
<table class="data" cellpadding="2" cellspacing="2" border="0"
width="100%">
<tr>
<th class="name">Name</th>
</tr>
<xsl:for-each select="METHODS/METHOD">
<tr>
<td class="value"><xsl:value-of select="@name"/></td>
</tr>
</xsl:for-each>
</table>
</td>
</tr>
</xsl:if>
<tr>
<th>Association levels</th>
</tr>
<xsl:if test="../BASECLASSES/BASECLASS[@id=$baseclass]/RELATIONASOCS/
RELATIONASOC">
<tr>
<td class="data">
<table class="data" cellpadding="2" cellspacing="2" border="0"
width="100%">
<tr>

250
Appendix D. Representation of Multidimensional Models with

XML

<th class="name">Name</th>
<th class="name">Completeness</th>
<th class="name">Role A</th>
<th class="name">Role B</th>
</tr>
<xsl:for-each select="../BASECLASSES/BASECLASS[@id=$baseclass]/
RELATIONASOCS/RELATIONASOC">
<tr>
<xsl:variable name="child" select="@child"/>
<!--<td class="value"><a href="{generate-id(../../../../PKDIMS/PKDIM/
DIMCLASS[@id=$dimclass])}.html"><xsl:value-of select="../../../../
PKDIMS/PKDIM/DIMCLASS[@id=$dimclass]/@name"/></td>-->
<td class="value"><xsl:value-of select="../../../
BASECLASS[@id=$child]/@name"/>
</td>
<td class="value">
<xsl:choose>
<xsl:when test="@completeness"><xsl:value-of select="@completeness"/>
</xsl:when>
<xsl:otherwise>false</xsl:otherwise>
</xsl:choose>
</td>
<td class="value"><xsl:value-of select="@roleA"/></td>
<td class="value"><xsl:value-of select="@roleB"/></td>
</tr>
</xsl:for-each>
</table>
</td>
</tr>
</xsl:if>
<tr>
<th>Categorization levels</th>
</tr>
<xsl:if test="../BASECLASSES/BASECLASS[@id=$baseclass]/RELATIONCATS/
RELATIONCAT">
<tr>
<td class="data">
<table class="data" cellpadding="2" cellspacing="2" border="0"
width="100%">
<tr>
<th class="name">Name</th>
</tr>
<xsl:for-each select="../BASECLASSES/BASECLASS[@id=$baseclass]/
RELATIONCATS/RELATIONCAT">
<tr>
<xsl:variable name="child" select="@child"/>
<!--<td class="value"><a href="{generate-id(../../../../PKDIMS/PKDIM/
DIMCLASS[@id=$dimclass])}.html"><xsl:value-of select="../../../../
PKDIMS/PKDIM/DIMCLASS[@id=$dimclass]/@name"/></td>-->
<td class="value"><xsl:value-of select="../../../
BASECLASS[@id=$child]/@name"/>
</td>
</tr>
</xsl:for-each>
</table>
</td>

D.4. XSLT 251

</tr>
</xsl:if>
</table>
</body>
</html>
</xsl:document>
</xsl:template>

</xsl:stylesheet>

Appendix E

Definition of an Add-in
for Rational Rose

In this appendix, we present the REI that allows the user to extend
Rational Rose’s capabilities. Moreover, we explain how to define an
add-in for this CASE tool and we show our add-in for MD modeling.

Contents
E.1 Introduction 255
E.2 Rational Rose Extensibility Interface . 255
E.3 Using Multidimensional Modeling in Ra-

tional Rose 256
E.4 Add-in Implementation 259

E.4.1 Register 259
E.4.2 Configuration File 260
E.4.3 Tag Definitions 264
E.4.4 Menu Items 266
E.4.5 Rose Script 266

253

E.1. Introduction 255

E.1 Introduction
Instead of creating our own CASE tool to support our MD mod-
eling approach, we have chosen to extend a well-known CASE tool
available in the market, such as Rational Rose [102]. In this way, we
believe that our contribution can reach a greater number of people.

Rational Rose is one of the most well-known visual modeling tools.
Rational Rose is extensible by means of add-ins, which allows the user
to package customizations and automation of several Rational Rose
features through the REI [107] into one component.

Rational Rose provides several ways to extend and customize its
capabilities to meet specific software development needs. In particu-
lar, Rational Rose allows the user to [107]:

• Customize Rational Rose menus.

• Automate manual Rational Rose functions with Rational Rose
Scripts.

• Execute Rational Rose functions from within another applica-
tion by using the Rational Rose Automation object.

• Access Rational Rose classes, properties and methods right
within a software development environment by including the
Rational Rose Extensibility Type Library in the project.

• Activate Rational Rose add-ins using the Add-In Manager.

An add-in is basically a collection of some combination of the
following: main menu items, shortcut menu items, custom specifi-
cations, properties (UML tagged values), data types, UML stereo-
types, online help, context-sensitive help, and event handling. In this
appendix, we show how to define an add-in for Rational Rose1 that
allows the designer to achieve a MD model of a DW based on our
UML profile.

For more infor-
mation about the
multidimensional
profile, consult
chapter 6, pp.
53.

The rest of this appendix is structured as follows. In Section E.2,
we briefly describe the REI. Then, in Section E.3, we show how to
apply our MD profile in Rational Rose. Finally, in Section E.4, we
present our add-in and we include some parts of the implementation
of the add-in.

E.2 Rational Rose Extensibility Interface
The REI Model is essentially a metamodel of a Rational Rose model,
exposing the packages, classes, properties and methods that define

1We have tested our add-in with Rational Rose versions 2002 and 2003.

256 Appendix E. Definition of an Add-in for Rational Rose

Figure E.1: Rose Application and Extensibility Components

and control the Rational Rose application and all of its functions.
Figure E.1 shows the components of Rose and the REI, and illus-
trates the relationships between them. These components are:

• Rose Application: The Rose Extensibility objects that interface
to Rose’s application functionality.

• REI: This is the common set of interfaces used by Rose Script
and Rose Automation to access Rose.

• Rose Script: The set of Rose Script objects that allow Rose
Scripts to automate Rose functionality.

• Rose Automation: The set of Rose Automation objects that
allow Rose to function as an Object Linking and Embedding
(OLE) automation controller or server.

• Diagrams: The Rose Extensibility objects that interface to
Rose’s diagrams and views.

• Model Elements: The Rose Extensibility objects that interface
to Rose’s model elements.

Unfortunately, Rational Rose does not include and OCL edi-
tor/parser, but there are some products from third parties, such as
EmPowerTecs OCL-AddIn2 that offers support for OCL.

E.3 Using Multidimensional Modeling in
Rational Rose

We have developed an add-in, which allows us to use our MD mod-
eling approach in Rational Rose. Therefore, we can use this tool to

2Available in http://www.empowertec.de/products/rational-rose-ocl.htm.

E.3. Using Multidimensional Modeling in Rational Rose 257

Figure E.2: A screenshot from Rational Rose: level 1 of a multidi-
mensional model

easily accomplish MD conceptual models. Our add-in customizes
the following elements:

• Stereotypes: We have defined the stereotypes by means of a
stereotype configuration file.

• Properties: We have defined the tagged values by means of a
property configuration file.

• Menu item: We have added the new menu item MD Validate
in the menu Tools by means of a menu configuration file. This
menu item runs a Rose script that validates a MD model: our
script checks all the constraints that our UML profile defines.

In Figure E.2, we can see a screenshot from Rational Rose that
shows the first level of the running example used in Section 6.3. Some
comments have been added to the screenshot in order to remark some
important elements: the new toolbar buttons, the new package icons,
the new icons shown in the model browser, and the new menu item
called MD Validate that checks the correctness of a MD model.

In Figure E.3, we can see a second screenshot from Rational Rose
that shows the content of a star package (level 2). From the model

258 Appendix E. Definition of an Add-in for Rational Rose

Figure E.3: A screenshot from Rational Rose: level 2 of a multidi-
mensional model

shown in Figure E.2, Services schema has been exploded and the six
dimension packages and the only fact package that compose the star
package are shown. The legend (from . . .) that appears below the
name of some dimension packages indicates in which star package the
dimension has been defined firstly. For example, Customer dimension
has been defined in Auto-sales schema.

In Figure E.4, we can see a third screenshot from Rational Rose
that shows the definition of a dimension (level 3). Some comments
have been added to the screenshot in order to remark some important
elements: the hierarchy structure of our proposal (Level 1, Level 2,
and Level 3), the new buttons added to Rational Rose, the stereo-
typed attributes, and the different ways of displaying a stereotype
(Icon, Decoration, and Label). In this screenshot, the content of Me-
chanic dimension from Services schema is shown (see Figure E.3); this
dimension shares some hierarchy levels (City, Region, and State) with
Customer dimension, the place where the shared hierarchy levels have
been defined firstly (see Figure 6.8), and because of this, they are
imported into this dimension.

E.4. Add-in Implementation 259

Figure E.4: A screenshot from Rational Rose: level 3 of a multidi-
mensional model

E.4 Add-in Implementation
Our add-in is composed of five definition files and 33 graphic files for
the different icons of the stereotypes. Briefly, the five definition files
are:

• mdm.reg: installs the add-in in a system.

• mdm.ini: describes the new stereotypes.

• mdm.pty: defines new properties.

• mdm.mnu: configures the new menu items that are added to the
Rational Rose menu.

• mdvalidate.ebs: contains the code that is executed.

E.4.1 Register
mdm.reg is the register file that install the add-in in a system. Once
an add-in has been installed, the Add-In Manager allows the user to
active or desactive it, as we can see in Figure E.5.

The register file updates the Microsoft Windows registry:

260 Appendix E. Definition of an Add-in for Rational Rose

Figure E.5: Add-In Manager in Rational Rose

• Create a registry subkey for the add-in.

• Populate this subkey with the appropriate names and values
(for example, InstallDir, MenuFile, etc.)

• Add the stereotype configuration file name (.ini) to the subkey
called StereotypeCfgFile.

REGEDIT4

[HKEY_LOCAL_MACHINE\SOFTWARE\Rational Software\Rose\AddIns\MD]
"Active"="Yes"
"Company"="SLM"
"Copyright"="Copyright c© 2002 Sergio Luján Mora"
"InstallDir"="C:\\Archivos de programa\\Rational\\Rose\\MD"
"LanguageAddIn"="No"
"MenuFile"="mdm.mnu"
"PropertyFile"="mdm.pty"
"StereotypeCfgFile"="mdm.ini"
"ToolDisplayName"="MD Modeling"
"ToolName"="MD Modeling"
"Version"="1.0"

In Figure E.6, we show part of the Microsoft Windows registry
after our add-in has been registered.

E.4.2 Configuration File
mdm.ini is the configuration file that customizes the new stereotypes
with the corresponding icons.

[General]
ConfigurationName=MDModeling
IsLanguageConfiguration=No

E.4. Add-in Implementation 261

Figure E.6: Subkeys of the add-in created in Microsoft Windows
registry

[Stereotyped Items]
Logical Package:Star
Logical Package:Fact
Logical Package:Dimension
Class:Fact
Class:DegenerateFact
Class:Dimension
Class:Base
Attribute:DegenerateDimension
Attribute:FactAttribute
Attribute:DimensionAttribute
Attribute:OID
Attribute:Descriptor
Association:Completeness
Association:Rolls-upTo

[Logical Package:Star]
Item=Logical Package
Stereotype=StarPackage
Metafile=&\stereotypes\slm\pk_star.wmf
SmallPaletteImages=&\stereotypes\slm\pk_star_s.bmp
SmallPaletteIndex=1
MediumPaletteImages=&\stereotypes\slm\pk_star_m.bmp
MediumPaletteIndex=1
ListImages=&\stereotypes\slm\pk_star_l.bmp
ListIndex=1
ToolTip=Creates a star package\nStar package

262 Appendix E. Definition of an Add-in for Rational Rose

[Logical Package:Fact]
Item=Logical Package
Stereotype=FactPackage
Metafile=&\stereotypes\slm\pk_fact.wmf
SmallPaletteImages=&\stereotypes\slm\pk_fact_s.bmp
SmallPaletteIndex=1
MediumPaletteImages=&\stereotypes\slm\pk_fact_m.bmp
MediumPaletteIndex=1
ListImages=&\stereotypes\slm\pk_fact_l.bmp
ListIndex=1
ToolTip=Creates a fact package\nFact package

[Logical Package:Dimension]
Item=Logical Package
Stereotype=DimensionPackage
Metafile=&\stereotypes\slm\pk_dimension.wmf
SmallPaletteImages=&\stereotypes\slm\pk_dimension_s.bmp
SmallPaletteIndex=1
MediumPaletteImages=&\stereotypes\slm\pk_dimension_m.bmp
MediumPaletteIndex=1
ListImages=&\stereotypes\slm\pk_dimension_l.bmp
ListIndex=1
ToolTip=Creates a dimension package\nDimension package

[Class:Fact]
Item=Class
Stereotype=Fact
Metafile=&\stereotypes\slm\fact.wmf
SmallPaletteImages=&\stereotypes\slm\fact_s.bmp
SmallPaletteIndex=1
MediumPaletteImages=&\stereotypes\slm\fact_m.bmp
MediumPaletteIndex=1
ListImages=&\stereotypes\slm\fact_l.bmp
ListIndex=1
ToolTip=Creates a fact class\nFact class

[Class:DegenerateFact]
Item=Class
Stereotype=DegenerateFact
Metafile=&\stereotypes\slm\dfact.wmf
SmallPaletteImages=&\stereotypes\slm\dfact_s.bmp
SmallPaletteIndex=1
MediumPaletteImages=&\stereotypes\slm\dfact_m.bmp

MediumPaletteIndex=1
ListImages=&\stereotypes\slm\dfact_l.bmp
ListIndex=1
ToolTip=Creates a degenerate fact class\nDegenerate fact class

[Class:Dimension]
Item=Class
Stereotype=Dimension
Metafile=&\stereotypes\slm\dimension.wmf
SmallPaletteImages=&\stereotypes\slm\dimension_s.bmp
SmallPaletteIndex=1

E.4. Add-in Implementation 263

MediumPaletteImages=&\stereotypes\slm\dimension_m.bmp
MediumPaletteIndex=1
ListImages=&\stereotypes\slm\dimension_l.bmp
ListIndex=1
ToolTip=Creates a dimension class\nDimension class

[Class:Base]
Item=Class
Stereotype=Base
Metafile=&\stereotypes\slm\base.wmf
SmallPaletteImages=&\stereotypes\slm\base_s.bmp
SmallPaletteIndex=1
MediumPaletteImages=&\stereotypes\slm\base_m.bmp
MediumPaletteIndex=1
ListImages=&\stereotypes\slm\base_l.bmp
ListIndex=1
ToolTip=Creates a base class\nBase class

[Attribute:DegenerateDimension]
Item=Attribute
Stereotype=DegenerateDimension
ListImages=&\stereotypes\slm\dd_l.bmp
ListIndex=1
ToolTip=Creates a degenerate dimension\nDegenerate dimension

[Attribute:FactAttribute]
Item=Attribute
Stereotype=FactAttribute
ListImages=&\stereotypes\slm\fa_l.bmp
ListIndex=1
ToolTip=Creates a fact attribute\nFact attribute

[Attribute:DimensionAttribute]
Item=Attribute
Stereotype=DimensionAttribute
ListImages=&\stereotypes\slm\da_l.bmp
ListIndex=1
ToolTip=Creates a dimension attribute\nDimension attribute

[Attribute:OID]
Item=Attribute
Stereotype=OID
ListImages=&\stereotypes\slm\oid_l.bmp
ListIndex=1
ToolTip=Creates an OID attribute\nOID attribute

[Attribute:Descriptor]
Item=Attribute
Stereotype=Descriptor
ListImages=&\stereotypes\slm\des_l.bmp
ListIndex=1
ToolTip=Creates a Descriptor attribute\nDescriptor attribute

[Association:Completeness]
Item=Association
Stereotype=Completeness

264 Appendix E. Definition of an Add-in for Rational Rose

Figure E.7: New properties for a class element

[Association:Rolls-upTo]
Item=Association
Stereotype=Rolls-upTo

E.4.3 Tag Definitions

mdm.pty is the property file that defines a name space for its prop-
erties and a tab in the specification editor to hold the custom tool,
sets, and properties.

Our add-in defines two sets of new properties: for the class element
and for the attribute element. In Figure E.7, we show the new “tab”
that is added to the specification windows of a class element, whereas
in Figure E.8, we show the same “tab” for the attribute element. In
both cases, we can notice the new properties.

(object Petal
version 43
_written "SLM")

(list Attribute_Set
(object Attribute

tool "MD Modeling"
name "default__Class"
value (list Attribute_Set

E.4. Add-in Implementation 265

Figure E.8: New properties for an attribute element

(object Attribute
tool "MD Modeling"
name "isTime"
value FALSE)))

(object Attribute
tool "MD Modeling"
name "default__Attribute"
value (list Attribute_Set

(object Attribute
tool "MD Modeling"
name "isAtomic"
value TRUE)
(object Attribute
tool "MD Modeling"
name "derivationRule"
value "")
(object Attribute
tool "MD Modeling"
name "additivity"
value "")
(object Attribute
tool "MD Modeling"
name "isOID"
value TRUE)
(object Attribute
tool "MD Modeling"
name "isDescriptor"

266 Appendix E. Definition of an Add-in for Rational Rose

value TRUE)
(object Attribute
tool "MD Modeling"
name "description"
value ""))))

E.4.4 Menu Items

mdm.mnu defines the new menu items that are added to the Rational
Rose’s Tools menu (see Figure E.2).

Menu Tools {
Separator
option "MD Validate"
{
RoseScript $SCRIPT_PATH\MD\mdvalidate.ebs

}

option "MD to XML"
{
RoseScript $SCRIPT_PATH\MD\xmlgenerate.ebs

}

option "MD to DDL"
{
RoseScript $SCRIPT_PATH\MD\ddlgenerate.ebs

}
}

E.4.5 Rose Script

mdvalidate.ebs contains the Rose Script code of our add-in. This
file contains more than 1100 lines of code.

Below, we only show the definition of the main procedure that is
executed when MD Validate is selected in the Tools menu (see Fig-
ure E.2).

Sub Main
Dim i As Integer
Dim vc As Boolean
Dim myModel As Model
Dim theClasses As ClassCollection

Set myModel = RoseApp.CurrentModel
Set theClasses = myModel.GetAllClasses()

numErrores=0

FillingErrors ’Fill array with error messages (constraints)

E.4. Add-in Implementation 267

’Validation of Classes
vc = True
For i = 1 To theClasses.Count

Select Case VClass(theClasses.GetAt(i))
Case 1

vc = False
End Select

Next i

’Validation of packages and cicles
If myModel.IsRootPackage() Then

’Can’t exist cicles in package collection
’Apply vCicles to all categories in the model
Select Case VCicles(myModel.GetAllCategories)

Case 1
vc = False

End Select

’This condition always is true
Select Case VPackages(myModel.Categories)

Case 1
vc = False

End Select
End If

RoseApp.WriteErrorLog numErrores & " errores encontrados"

If vc Then
MsgBox "The model has been succesfully validated",_

ebInformation, "Validation Result"
Else

MsgBox "The model has not been succesfully validated." &_
"See Log for details", ebCritical, "Validation Result"

End If
End Sub

Bibliography

[1] A. Abelló, J. Samos, and F. Saltor. Benefits of an Object-
Oriented Multidimensional Data Model. In Proceedings of the
Symposium on Objects and Databases in 14th European Con-
ference on Object-Oriented Programming (ECOOP’00), volume
1944 of Lecture Notes in Computer Science, pages 141–152,
Sophia Antipolis and Cannes, France, June 13 2000. Springer-
Verlag.

[2] A. Abelló, J. Samos, and F. Saltor. A Framework for the Clas-
sification and Description of Multidimensional Data Models.
In Proceedings of the 12th Internatinal Conference on Database
and Expert Systems Applications (DEXA’01), volume 2113 of
Lecture Notes in Computer Science, pages 668–677, Munich,
Germany, September 3 - 7 2001. Springer-Verlag.

[3] A. Abelló, J. Samos, and F. Saltor. YAM2 (Yet Another Mul-
tidimensional Model): An Extension of UML. In International
Database Engineering & Applications Symposium (IDEAS’02),
pages 172–181, Edmonton, Canada, July 17 - 19 2002. IEEE
Computer Society.

[4] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web:
From Relations to Semistructured Data and XML. Morgan
Kaufmann, 1999.

[5] L. Agosta. Market Overview Update: ETL. Technical Report
RPA-032002-00021, Giga Information Group, March 2002.

[6] J. Akoka, I. Comyn-Wattiau, and N. Prat. Dimension Hierar-
chies Design from UML Generalizations and Aggregations. In
Proceedings of the 20th Internatinal Conference on Conceptual
Modeling (ER’01), volume 2224 of Lecture Notes in Computer
Science, pages 442–455, Yokohama, Japan, November 27 - 30
2001. Springer-Verlag.

[7] S. Allen. Data Modeling for Everyone. Curlingstone Publishing,
2002.

269

270 Bibliography

[8] S.W. Ambler. Persistence Modeling in the UML. Software
Development Online. Internet: http://www.sdmagazine.com/-
documents/s=755/sdm9908q/, August 1999.

[9] S.W. Ambler. A UML Profile for Data Modeling. Internet:
http://www.agiledata.org/essays/umlDataModelingProfile.html,
2002.

[10] S.W. Ambler. The Elements of UML Style. Cambridge Univer-
sity Press, 2002.

[11] ANSI/ISO/IEC. Database Language SQL. International Stan-
dard (IS) 9075:1999, ANSI/ISO/IEC, September 1999.

[12] J. Arlow and I. Neustadt. UML and the Unified Process. Prac-
tical Object-Oriented Analysis & Design. Object Technology
Series. Addison-Wesley, 2002.

[13] D.E. Avison and G. Fitzgerald. Information Systems Develop-
ment: Methodologies, Techniques and Tools. Blackwell Scien-
tific Publications, 1988. (Last edition: 2nd edition, McGraw-
Hill/Irwin, 1998).

[14] P.A. Bernstein, A.Y. Levy, and R.A. Pottinger. A Vision for
Management of Complex Models. Technical Report MSR-TR-
2000-53, Microsoft Research, June 2000.

[15] P.A. Bernstein and E. Rahm. Data Warehouse Scenarios for
Model Management. In Proceedings of the 19th International
Conference on Conceptual Modeling (ER’00), volume 1920 of
Lecture Notes in Computer Science, pages 1–15, Salt Lake City,
USA, October 9 - 12 2000. Springer-Verlag.

[16] M. Blaschka, C. Sapia, G. Höfling, and B. Dinter. Finding your
way through multidimensional data models. In Proceedings of
the 9th International Conference on Database and Expert Sys-
tems Applications (DEXA’98), volume 1460 of Lecture Notes
in Computer Science, pages 198–203, Vienna, Austria, August
24 - 28 1998. Springer-Verlag.

[17] G. Booch. Object-Oriented Analysis and Design with Applica-
tions. Addison-Wesley, 2 edition, 1994.

[18] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling
Language: User Guide. Object Technology Series. Addison-
Wesley, 1999.

Bibliography 271

[19] R.M. Bruckner, B. List, and J. Schiefer. Developing Require-
ments for Data Warehouse Systems with Use Cases. In Proceed-
ings of the 7th Americas Conference on Information Systems
(AMCIS’01), pages 329–335, Boston, USA, August 3 - 5 2001.

[20] L. Cabibbo and R. Torlone. A Logical Approach to Multidi-
mensional Databases. In Proceedings of the 6th International
Conference on Extending Database Technology (EDBT’98), vol-
ume 1377 of Lecture Notes in Computer Science, pages 183–197,
Valencia, Spain, March 23 - 27 1998. Springer-Verlag.

[21] L. Carneiro and A. Brayner. X-META: A Methodology for Data
Warehouse Design with Metadata Management. In Proceed-
ings of 4th International Workshop on the Design and Manage-
ment of Data Warehouses (DMDW’02), pages 13–22, Toronto,
Canada, May 27 2002.

[22] R.G.G. Cattell. The Object Database Standard: ODMG 3.0.
Morgan Kaufmann, 2000.

[23] J.M. Cavero, M. Piattini, and E. Marcos. MIDEA: A Multidi-
mensional Data Warehouse Methodology. In Proceedings of the
3rd International Conference on Enterprise Information Sys-
tems (ICEIS’01), pages 138–144, Setubal, Portugal, July 7 - 10
2001. ICEIS Press.

[24] S. Chaudhuri and U. Dayal. An Overview of Data Warehous-
ing and OLAP Technology. ACM Sigmod Record, 26(1):65–74,
March 1997.

[25] P. Chen. The Entity-Relationship Model – toward a Uni-
fied View of Data. ACM Transactions on Database Systems
(TODS), 1(1):9–36, March 1976.

[26] E.F. Codd. A Relational Model of Data for Large Shared
Data Banks. Communications of the ACM, 13(6):377–387, June
1970.

[27] J. Conallen. Building Web Applications with UML. Object
Technology Series. Addison-Wesley, 2000. (Last edition: 2nd
edition, Addison-Wesley, 2003).

[28] M. Corey, M. Abbey, I. Abramson, and B. Taub. Oracle8i Data
Warehousing. Oracle Press. Osborne/McGraw-Hill, 2001.

[29] S. Cronholm and P. Agerfalk. On the Concept of Method in
Information Systems Development. In Proceedings of the 22nd
Information Systems Research In Scandinavia (IRIS 22), Keu-
ruu, Finland, August 7 - 10 1999.

272 Bibliography

[30] Y. Cui and J. Widom. Lineage Tracing for General Data Ware-
house Transformations. In Proceedings of the 27th International
Conference on Very Large Data Bases (VLDB’01), pages 471–
480, Rome, Italy, September 11 - 14 2001.

[31] C. Cunningham, C.A. Galindo-Legaria, and G. Graefe. PIVOT
and UNPIVOT: Optimization and Execution Strategies in an
RDBMS. In Proceedings of the 30th International Confer-
ence on Very Large Data Bases (VLDB 2004), pages 998–1009,
Toronto, Canada, August 31 - September 3 2004. Morgan Kauf-
mann.

[32] Cutter Consortium. 41% Have Experienced Data Ware-
house Project Failures. The Cutter Edge. Internet:
http://www.cutter.com/research/2003/edge030218.html,
February 2003.

[33] K. Czarnecki and S. Helsen. Classification of Model Transfor-
mation Approaches. In Proceedings of the 2nd OOPSLA Work-
shop on Generative Techniques in the Context of Model-Driven
Architecture, Anaheim, USA, October 27 2003.

[34] N.T. Debevoise. The Data Warehouse Method. Prentice-Hall,
New Jersey, USA, 1999.

[35] A. Dobre, F. Hakimpour, and K. R. Dittrich. Operators and
Classification for Data Mapping in Semantic Integration. In
Proceedings of the 22nd International Conference on Concep-
tual Modeling (ER’03), volume 2813 of Lecture Notes in Com-
puter Science, pages 534–547, Chicago, USA, October 13 - 16
2003. Springer-Verlag.

[36] W. Eckerson. Data Quality and the Bottom Line. Application
Development Trends, May, 2002.

[37] W. Eckerson. Four ways to build a data warehouse. Application
Development Trends, May, 2002.

[38] D.W. Embley, B.D. Kurtz, and S.N. Woodfield. Object-oriented
Systems Analysis: A Model-Driven Approach. Prentice-Hall,
1992.

[39] H. Eriksson and M. Penker. UML Toolkit. John Wiley & Sons,
1998.

[40] E.D. Falkenberg. Concepts for modelling information. In Pro-
ceedings of the IFIP Conference on Modelling in Data Base
Management Systems, pages 95–109, Amsterdam, Holland,
September 1976.

Bibliography 273

[41] P. Feldman and D. Miller. Entity Model Clustering: Struc-
turing a Data Model by Abstraction. The Computer Journal,
29(4):348–360, 1986.

[42] E. Fernández-Medina, J. Trujillo, R. Villarroel, and M. Piat-
tini. Extending UML for Designing Secure Data Warehouses.
In Proceedings of the 23rd International Conference on Concep-
tual Modeling (ER’04), volume 3288 of Lecture Notes in Com-
puter Science, pages 217–230, Shanghai, China, November 8 -
12 2004. Springer-Verlag.

[43] M. Fowler. UML Distilled. Applying the Standard Object Model-
ing Language. Object Technology Series. Addison-Wesley, 1998.

[44] R. France and J. Bieman. Multi-View Software Evolution:
A UML-based Framework for Evolving Object-Oriented Soft-
ware. In Proceedings of the 17th International Conference on
Software Maintenance (ICSM 2001), pages 386–397, Florence,
Italy, November 6 - 10 2001. IEEE Computer Society.

[45] T. Friedman. ETL Magic Quadrant Update: Market Pressure
Increases. Technical Report M-19-1108, Gartner, January 2003.

[46] M. Gandhi, E.L. Robertson, and D. Van Gucht. Leveled En-
tity Relationship Model. In Proceedings of the 13th Interna-
tional Conference on Entity-Relationship Approach (ER’94),
volume 881 of Lecture Notes in Computer Science, pages 420–
436, Manchester, United Kingdom, December 13 - 16 1994.
Springer-Verlag.

[47] S.R. Gardner. Building the Data Warehouse. Communications
of the ACM, 41(9):52–60, September 1998.

[48] W. Giovinazzo. Object-Oriented Data Warehouse Design.
Building a star schema. Prentice-Hall, New Jersey, USA, 2000.

[49] M. Golfarelli, D. Maio, and S. Rizzi. The Dimensional Fact
Model: A Conceptual Model for Data Warehouses. Interna-
tional Journal of Cooperative Information Systems (IJCIS),
7(2-3):215–247, June & September 1998.

[50] M. Golfarelli and S. Rizzi. A Methodological Framework
for Data Warehouse Design. In Proceedings of the ACM
1st International Workshop on Data Warehousing and OLAP
(DOLAP’98), pages 3–9, Bethesda, USA, November 7 1998.
ACM.

274 Bibliography

[51] D. Gornik. Data Modeling for Data Warehouses. Rational Soft-
ware Corporation. Internet: http://www.rational.com/media/-
whitepapers/tp161.pdf, 2002.

[52] D. Hackney. Data Warehouse Delivery: Who Are You? Part I.
DM Review Magazine, February, 1998.

[53] T. Halpin. UML Data Models from an ORM Perspective: Part
One. Journal of Conceptual Modeling, April(1), April 1998.

[54] T. Halpin and A. Bloesch. Data modeling in UML and ORM:
a comparison. Journal of Database Management, 10(4):4–13,
1999.

[55] B. Hüsemann, J. Lechtenbörger, and G. Vossen. Conceptual
Data Warehouse Modeling. In Proceedings of the 2nd Inter-
national Workshop on Design and Management of Data Ware-
houses (DMDW’00), pages 6.1–6.11, Stockholm, Sweden, June
5 - 6 2000.

[56] IBM. IBM Rational Unified Process (RUP). Internet:
http://www.rational.com/products/rup/index.jsp, 2003.

[57] W.H. Inmon. Building the Data Warehouse. QED Press/John
Wiley, 1992. (Last edition: 3rd edition, John Wiley & Sons,
2002).

[58] Institut National de Recherche en Informatique et en Au-
tomatique (INRIA). Model transformation at Inria. Internet:
http://modelware.inria.fr/, 2004.

[59] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Soft-
ware Development Process. Object Technology Series. Addison-
Wesley, 1999.

[60] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard.
Object-Oriented Software Engineering: A Use Case Driven Ap-
proach. Addison-Wesley, 1992.

[61] P. Jaeschke, A. Oberweis, and W. Stucky. Extending ER
Model Clustering by Relationship Clustering. In Proceedings of
the 12th International Conference on Entity-Relationship Ap-
proach (ER’93), volume 823 of Lecture Notes in Computer Sci-
ence, pages 451–462, Arlington, USA, December 15 - 17 1993.
Springer-Verlag.

[62] M. Jarke, M. Lenzerini, Y. Vassiliou, and P. Vassiliadis. Funda-
mentals of Data Warehouses. Springer-Verlag, 2 edition, 2003.

Bibliography 275

[63] R. Kimball. The Data Warehouse Toolkit. John Wiley & Sons,
1996. (Last edition: 2nd edition, John Wiley & Sons, 2002).

[64] R. Kimball. A Dimensional Modeling Manifesto. DBMS, 10(9),
August 1997.

[65] R. Kimball, L. Reeves, M. Ross, and W. Thornthwaite. The
Data Warehouse Lifecycle Toolkit. John Wiley & Sons, 1998.

[66] C. Kobryn. UML 2001: A Standardization Odyssey. Commu-
nications of the ACM, 42(10):29–37, October 1999.

[67] L. Greenfield. Data Extraction, Transforming, Loading (ETL)
Tools. The Data Warehousing Information Center. Internet:
http://www.dwinfocenter.org/clean.html, 2003.

[68] W. Lehner. Modelling Large Scale OLAP Scenarios. In Proceed-
ings of the 6th International Conference on Extending Database
Technology (EDBT’98), volume 1377 of Lecture Notes in Com-
puter Science, pages 153–167, Valencia, Spain, March 23 - 27
1998. Springer-Verlag.

[69] M. Lenzerini. Data Integration: A Theoretical Perspective.
In Proceedings of the Twenty-first ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, pages
233–246, Madison, USA, June 3 - 6 2002. ACM.

[70] S. Luján-Mora. Multidimensional Modeling using UML and
XML. In Proceedings of the 12th Workshop for PhD Students in
Object-Oriented Systems (PhDOOS 2002), volume 2548 of Lec-
ture Notes in Computer Science, pages 48–49, Málaga, Spain,
June 10 - 14 2002. Springer-Verlag.

[71] S. Luján-Mora and E. Medina. Reducing Inconsistency in Data
Warehouses. In Proceedings of the 3rd International Conference
on Enterprise Information Systems (ICEIS’01), pages 199–206,
Setúbal, Portugal, July 7 - 10 2001. ICEIS Press.

[72] S. Luján-Mora, E. Medina, and J. Trujillo. A Web-Oriented
Approach to Manage Multidimensional Models through XML
Schemas and XSLT. In Proceedings of the XML-Based Data
Management and Multimedia Engineering (EDBT 2002 Work-
shops), volume 2490 of Lecture Notes in Computer Science,
pages 29–44, Prague, Czech Republic, March 24 2002. Springer-
Verlag.

276 Bibliography

[73] S. Luján-Mora and J. Trujillo. A Comprehensive Method for
Data Warehouse Design. In Proceedings of the 5th Interna-
tional Workshop on Design and Management of Data Ware-
houses (DMDW’03), pages 1.1–1.14, Berlin, Germany, Septem-
ber 8 2003.

[74] S. Luján-Mora and J. Trujillo. A Data Warehouse Engineer-
ing Process. In Proceedings of the 3rd Biennial International
Conference on Advances in Information Systems (ADVIS’04),
volume 3261 of Lecture Notes in Computer Science, pages 14–
23, Izmir, Turkey, October 20 - 22 2004. Springer-Verlag.

[75] S. Luján-Mora and J. Trujillo. Modeling the Physical Design of
Data Warehouses from a UML Specification. In Proceedings of
the 8th IASTED International Conference on Software Engi-
neering and Applications (SEA 2004), pages 7–12, Cambridge,
USA, November 9 - 11 2004.

[76] S. Luján-Mora and J. Trujillo. Modeling the Physical Design of
Data Warehouses from a UML Specification. In Proceedings of
the ACM Seventh International Workshop on Data Warehous-
ing and OLAP (DOLAP 2004), pages 48–57, Washington D.C.,
USA, November 12 - 13 2004. ACM.

[77] S. Luján-Mora and J. Trujillo. Physical Modeling of Data
Warehouses by using UML Component and Deployment Dia-
grams: design and implementation issues. Journal of Database
Management, 17(1), January-March 2006. Accepted to be pub-
lished.

[78] S. Luján-Mora, J. Trujillo, and I. Song. Extending UML for
Multidimensional Modeling. In Proceedings of the 5th Interna-
tional Conference on the Unified Modeling Language (UML’02),
volume 2460 of Lecture Notes in Computer Science, pages
290–304, Dresden, Germany, September 30 - October 4 2002.
Springer-Verlag.

[79] S. Luján-Mora, J. Trujillo, and I. Song. Multidimensional Mod-
eling with UML Package Diagrams. In Proceedings of the 21st
International Conference on Conceptual Modeling (ER’02), vol-
ume 2503 of Lecture Notes in Computer Science, pages 199–213,
Tampere, Finland, October 7 - 11 2002. Springer-Verlag.

[80] S. Luján-Mora, J. Trujillo, and P. Vassiliadis. Advantages of
UML for Multidimensional Modeling. In Proceedings of the 6th
International Conference on Enterprise Information Systems
(ICEIS 2004), pages 298–305, Porto, Portugal, April 14 - 17
2004. ICEIS Press.

Bibliography 277

[81] S. Luján-Mora, P. Vassiliadis, and J. Trujillo. Data Mapping
Diagrams for Data Warehouse Design with UML. In Proceed-
ings of the 23rd International Conference on Conceptual Mod-
eling (ER’04), volume 3288 of Lecture Notes in Computer Sci-
ence, pages 191–204, Shanghai, China, November 8 - 12 2004.
Springer-Verlag.

[82] R.A. Maksimchuk and E.J. Naiburg. Entity Relationship Mod-
eling with UML. DM Direct Newsletter, January, 2003.

[83] E. Marcos, B. Vela, and J.M. Cavero. Extending UML for
Object-Relational Database Design. In Proceedings of the 4th
International Conference on the Unified Modeling Language
(UML’01), volume 2185 of Lecture Notes in Computer Science,
pages 225–239, Toronto, Canada, October 1 - 5 2001. Springer-
Verlag.

[84] E. Medina, S. Luján-Mora, and J. Trujillo. Handling Concep-
tual Multidimensional Models using XML through DTDs. In
Proceedings of 19th British National Conference on Databases
(BNCOD 2002), volume 2405 of Lecture Notes in Computer
Science, pages 66–69, Sheffield, UK, July 17 - 19 2002. Springer-
Verlag.

[85] D.L. Moody. A Multi-Level Architecture for Representing En-
terprise Data Models. In Proceedings of the 16th International
Conference on Conceptual Modeling (ER’97), volume 1331 of
Lecture Notes in Computer Science, pages 184–197, Los Ange-
les, USA, November 3 - 5 1997. Springer-Verlag.

[86] D.L. Moody. A Methodology for Clustering Entity Relation-
ship Models - A Human Information Processing Approach. In
Proceedings of the 18th International Conference on Conceptual
Modeling (ER’98), volume 1728 of Lecture Notes in Computer
Science, pages 114–130, Paris, France, November 15 - 18 1999.
Springer-Verlag.

[87] D.L. Moody and M.A.R. Kortink. From Enterprise Models
to Dimensional Models: A Methodology for Data Warehouse
and Data Mart Design. In Proceedings of the 2nd Interna-
tional Workshop on Design and Management of Data Ware-
houses (DMDW’01), pages 5.1–5.12, Stockholm, Sweden, June
5 - 6 2000.

[88] R.J. Muller. Database Design for Smarties: Using UML for
Data Modeling. Morgan Kaufmann, 1999.

278 Bibliography

[89] N. Pendse. The 2004 OLAP market shares. The OLAP Report.
Internet: http://www.olapreport.com/market.htm, 2005.

[90] E.J. Naiburg and R.A. Maksimchuk. UML for Database Design.
Object Technology Series. Addison-Wesley, 2001.

[91] S. Naqvi and S. Tsur. A Logical Language for Data and Knowl-
edge Bases. Computer Science Press, 1989.

[92] National Technical University of Athens (Greece). Knowl-
edge and Database Systems Laboratory. Internet:
http://www.dblab.ntua.gr/, 2003.

[93] M. Nicola and H. Rizvi. Storage Layout and I/O Performance
in Data Warehouses. In Proceedings of the 5th International
Workshop on Design and Management of Data Warehouses
(DMDW’03), pages 7.1–7.9, Berlin, Germany, September 8
2003.

[94] Object Management Group (OMG). Common Ware-
house Metamodel (CWM) Specification 1.0. Internet:
http://www.omg.org/cgi-bin/doc?ad/2001-02-01, February
2001.

[95] Object Management Group (OMG). Meta Object Facility
(MOF) Specification 1.4. Internet: http://www.omg.org/cgi-
bin/doc?formal/2002-04-03, April 2002.

[96] Object Management Group (OMG). UML Profile for CORBA
1.0. Internet: http://www.omg.org/cgi-bin/doc?formal/02-04-
01, April 2002.

[97] Object Management Group (OMG). Unified Mod-
eling Language (UML) Specification 1.5. Internet:
http://www.omg.org/cgi-bin/doc?formal/03-03-01, March
2003.

[98] Object Management Group (OMG). Model Driven Architec-
ture (MDA). Internet: http://www.omg.org/mda/, 2004.

[99] T.W. Olle, M. Daya, E.D. Falkenberg, B. Yormark, and R.W.
Taylor. Panel: The conceptual schema controversy. In Pro-
ceedings of the 1978 ACM SIGMOD International Conference
on Management of Data, pages 88–88, Austin, USA, May 31 -
June 2 1978. ACM.

[100] V. Poe, P. Klauer, and S. Brobst. Building a Data Warehouse
for Decision Support. Prentice-Hall, 2 edition, 1998.

Bibliography 279

[101] G.V. Post. Database Management Systems. Mcgraw-Hill, 2001.

[102] T. Quatrani. Visual Modeling with Rational Rose and UML.
Object Technology Series. Addison-Wesley, 1998.

[103] QVT-Partners. Revised submission for MOF 2.0 Query /
Views / Transformations RFP. Internet: http://qvtp.org/-
downloads/1.1/qvtpartners1.1.pdf, 2003.

[104] E. Rahm and H. Do. Data Cleaning: Problems and Current Ap-
proaches. IEEE Bulletin of the Technical Committee on Data
Engineering, 23(4):3–13, December 2000.

[105] Rational Software Corporation. Migrating from
XML DTD to XML-Schema using UML. Inter-
net: http://www.rational.com/media/whitepapers/-
TP189draft.pdf, 2000.

[106] Rational Software Corporation. The UML and Data Model-
ing. Internet: http://www.rational.com/media/whitepapers/-
Tp180.PDF, 2000.

[107] Rational Software Corporation. Using the Rose Extensibility
Interface. Rational Software Corporation, 2001.

[108] S. Rizzi. Open problems in data warehousing: eight years later.
In Proceedings of the 5th International Workshop on Design and
Management of Data Warehouses (DMDW’03), Berlin, Ger-
many, September 8 2003.

[109] Ronin International. Enterprise Unified Process (EUP). Inter-
net: http://www.enterpriseunifiedprocess.info/, 2003.

[110] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen. Object-Oriented Modeling and Design. Prentice
Hall, 1992.

[111] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Mod-
eling Language Reference Manual. Object Technology Series.
Addison-Wesley, 1999.

[112] C. Sapia. On Modeling and Predicting Query Behavior
in OLAP Systems. In Proceedings of the 1st International
Workshop on Design and Management of Data Warehouses
(DMDW’99), pages 1–10, Heidelberg, Germany, June 14 - 15
1999.

280 Bibliography

[113] C. Sapia, M. Blaschka, G. Höfling, and B. Dinter. Extending
the E/R Model for the Multidimensional Paradigm. In Pro-
ceedings of the 1st International Workshop on Data Warehouse
and Data Mining (DWDM’98), volume 1552 of Lecture Notes
in Computer Science, pages 105–116, Singapore, November 19
- 20 1998. Springer-Verlag.

[114] K.D. Schewe. Information Modelling and Knowledge Bases XII,
volume 67 of Frontiers in Artificial Intelligence and Applica-
tions, chapter UML – A Modern Dinosaur?: A Critical Anal-
ysis of the Unified Modelling Language, pages 185–202. IOS
Press, 2001.

[115] A. Schleicher and B. Westfechtel. Beyond Stereotyping: Meta-
modeling Approaches for the UML. In Proceedings of the 34th
Annual Hawaii International Conference on System Sciences
(HICSS-34), pages 1–10, Maui, USA, January 03 - 06 2001.
IEEE Computer Society.

[116] A. Schürr and A.J. Winter. Formal Definition and Refinement
of UML’s Module/Package Concept. In ECOOP’97 Workshop
Reader, volume 1357 of Lecture Notes in Computer Science,
pages 211–215, Jyväskylä, Finland, June 9 - 13 1997. Springer-
Verlag.

[117] A. Schürr and A.J. Winter. Formal Definition of UML’s Package
Concept. In UML Workshop 1997, pages 144–159, Mannheim,
Germany, November 10 - 11 1997.

[118] A. Sen and A.P. Sinha. A Comparison of Data Warehousing
Methodologies. Communications of the ACM, 48(3):79 – 84,
March 2005.

[119] M. Serrano, C. Calero, J. Trujillo, S. Luján-Mora, and M. Piat-
tini. Empirical Validation of Metrics for Conceptual Models of
Data Warehouses. In Proceedings of the 16th International Con-
ference on Advanced Information Systems Engineering (CAiSE
2004), volume 3084 of Lecture Notes in Computer Science,
pages 506–520, Riga, Latvia, June 7 - 11 2004. Springer-Verlag.

[120] M. Serrano, C. Calero, J. Trujillo, S. Luján-Mora, and M. Pi-
attini. Towards a Metric Suite for Conceptual Models of
Datawarehouse. In Proceedings of the 1st International Work-
shop on Software Audit and Metrics (SAM’04), pages 105–117,
Porto, Portugal, April 14 - 17 2004.

[121] D. Shah and S. Slaughter. UML and the Unified Process, chap-
ter Transforming UML class diagrams into relational data mod-
els, pages 217–236. Idea Group Publishing, 2003.

Bibliography 281

[122] A. Snell. The Need for an Implementation Method-
ology. Internet: http://www.ilogos.com/en/expertviews/-
articles/technology/20010703_AS.html, 2003.

[123] SQL Power Group. How do I ensure the success of my DW?
Internet: http://www.sqlpower.ca/page/dw_best_practices,
2002.

[124] K. Strange. ETL Was the Key to this Data Warehouse’s Suc-
cess. Technical Report CS-15-3143, Gartner, March 2002.

[125] T.J. Teorey, G. Wei, D.L. Bolton, and J.A. Koenig. ER Model
Clustering as an Aid for User Communication and Documenta-
tion in Database Design. Communications of ACM, 32(8):975–
987, August 1989.

[126] B. Thalheim. Entity-Relationship Modeling. Foundations of
Database Technology. Springer-Verlag, 2000.

[127] J. Trujillo and S. Luján-Mora. Automatically Generating Struc-
tural and Dynamic Information of OLAP Applications from
Object-Oriented Conceptual Models. International Journal
of Computer & Information Science, 3(4):227–236, December
2002.

[128] J. Trujillo and S. Luján-Mora. A UML Based Approach for
Modeling ETL Processes in Data Warehouses. In Proceedings
of the 22nd International Conference on Conceptual Modeling
(ER’03), volume 2813 of Lecture Notes in Computer Science,
pages 307–320, Chicago, USA, October 13 - 16 2003. Springer-
Verlag.

[129] J. Trujillo, S. Luján-Mora, and E. Medina. Utilización de UML
para el modelado multidimensional. In I Taller de Almacenes
de Datos y Tecnología OLAP (ADTO 2001), VI Jornadas de
Ingeniería del Software y Bases de Datos (JISBD 2001), pages
12–17, Almagro, Spain, November 22 2001.

[130] J. Trujillo, S. Luján-Mora, and I. Song. Advanced Topics in
Database Research, volume 2, chapter Applying UML for de-
signing multidimensional databases and OLAP applications,
pages 13–36. Idea Group Publishing, 2003.

[131] J. Trujillo, S. Luján-Mora, and I. Song. Applying UML and
XML for designing and interchanging information for data
warehouses and OLAP applications. Journal of Database Man-
agement, 15(1):41–72, January-March 2004.

282 Bibliography

[132] J. Trujillo, M. Palomar, J. Gómez, and I. Song. Designing
Data Warehouses with OO Conceptual Models. IEEE Com-
puter, special issue on Data Warehouses, 34(12):66–75, Decem-
ber 2001.

[133] N. Tryfona, F. Busborg, and J.G. Christiansen. starER: A
Conceptual Model for Data Warehouse Design. In Proceedings
of the ACM 2nd International Workshop on Data Warehous-
ing and OLAP (DOLAP’99), pages 3–8, Kansas City, USA,
November 6 1999. ACM.

[134] P. Vassiliadis, A. Simitsis, and S. Skiadopoulos. Conceptual
Modeling for ETL Processes. In Proceedings of the ACM
5th International Workshop on Data Warehousing and OLAP
(DOLAP 2002), pages 14–21, McLean, USA, November 8 2002.
ACM.

[135] P. Vassiliadis, A. Simitsis, and S. Skiadopoulos. Modeling
ETL Activities as Graphs. In Proceedings of 4th International
Workshop on the Design and Management of Data Warehouses
(DMDW’02), pages 52–61, Toronto, Canada, May 27 2002.

[136] P. Vassiliadis, Z. Vagena, S. Skiadopoulos, N. Karayannidis,
and T. Sellis. ARKTOS: towards the modeling, design, con-
trol and execution of ETL processes. Information Systems,
26(8):537–561, December 2001.

[137] D. Vesset. Worldwide Data Warehousing Tools 2004-2008 Fore-
cast and 2003 Vendor Shares. Technical Report Doc #31616,
IDC, July 2004.

[138] J. Vowler. Data warehouse design from top to bottom. Comput-
erWeekly.com. Internet: http://www.computerweekly.com/-
Article110431.htm, March 2002.

[139] J. Warmer and A. Kleppe. The Object Constraint Lan-
guage. Precise Modeling with UML. Object Technology Series.
Addison-Wesley, 1998.

[140] B. Wixom and H.J. Watson. An Empirical Investigation of the
Factors Affecting Data Warehousing Success. MIS Quarterly,
25(1):17–41, March 2001.

[141] World Wide Web Consortium (W3C). XSL Transformations
(XSLT) Version 1.0. Internet: http://www.w3.org/TR/xslt,
November 1999.

Bibliography 283

[142] World Wide Web Consortium (W3C). Extensible Stylesheet
Language (XSL) 1.0. Internet: http://www.w3.org/TR/xsl/,
October 2001.

[143] World Wide Web Consortium (W3C). Extensible
Markup Language (XML) 1.0 (Third Edition). Internet:
http://www.w3.org/TR/REC-xml/, February 2004.

[144] World Wide Web Consortium (W3C). XML
Schema Part 0: Primer Second Edition. Internet:
http://www.w3.org/TR/xmlschema-0/, October 2004.

Index

Additivity, 77
Aggregation, 138, 139
API, xix
Application Program Interface,

see API
Architecture centric, 36
Attribute, 101, 105, 107, 112

Base, 68, 70–72, 75, 79, 203,
206

CASE, xix, 5, 8, 131, 253, 255
CCS, 35, 36, 40, 45, 103, 108
Check, 124
Client Conceptual Schema, 35,

39, 45, 121
Client Logical Schema, 36, 41,

46, 121, 123
Client Physical Schema, 36, 41,

46, 162
CLS, 36, 46
Common Warehouse Metamodel,

see CWM
Completeness, 60, 73
Component diagram, 158
Computer, 161
Computer Aided Software En-

gineering, see CASE
Conceptual level, 14, 49
Contain, 101, 105, 107
Conversion, 139, 140, 142, 145,

147, 148
CPS, 36, 46, 162, 169
CPU, 161, 169
CRM, xix, 163
CTD, 162, 169, 170

Customer Relationship Manage-
ment, see CRM

Customization Transportation
Diagram, 162

CWM, xix, 27

Data cleaning, 137
Data Mapping, 35, 36, 40, 45,

102, 103
Data mapping, 97, 100
Data Mart, see DM
Data Warehouse, see DW
Data Warehouse Conceptual Schema,

35, 39, 40, 45, 102,
121, 163

Data Warehouse Logical Schema,
9, 36, 41, 46, 121, 123,
163

Data Warehouse Physical Schema,
36, 41, 46, 162

Database, 39, 41, 124, 161, 165
Database Management System,

see DBMS
DBMS, xix, 51, 123
Decision Support System, see

DSS
DegenerateDimension, 75, 76,

206
DegenerateFact, 75–77, 79
deploy, 161
Deployment diagram, 159
derivationRule, 9, 76
Descriptor, 75, 76, 203
Dimension, 56, 68, 71, 74–76,

79, 203, 206
Dimension attribute, 57

285

286 Index

DimensionAttribute, 75, 76, 203
DimensionPackage, 66–68, 70,

77–79, 201–203
Disk, 41, 166
DM, xix, 20, 34–36, 40, 43–45,

57, 102, 169
Document Type Definition, see

DTD
documentation, 220
Domain, 101, 111
DSS, xx, 14
DTD, xx, 193, 225, 227, 228,

230
DW, xx, 3–8, 10, 11, 13, 14,

17, 19–23, 25–28, 31,
33–36, 38, 39, 41, 43–
45, 49, 51–53, 55–57,
61, 62, 64, 65, 68, 70–
73, 76, 77, 94, 96, 97,
99–103, 107–112, 114,
116, 117, 123, 131, 133,
135–137, 140, 142, 144–
147, 150, 151, 155, 157,
158, 162, 163, 165–167,
169–171, 177, 178, 193–
195, 199, 255

DWCS, 9, 35, 36, 39, 40, 45,
101–103, 108, 109, 114,
163

DWLS, 36, 46, 163
DWPS, 36, 46, 162, 166, 167,

169, 170

EER, xx, 22, 51
Entity-Relationship, see ER
ER, xx, 3, 19–23, 26, 29, 51,

52, 100, 103, 117
ETL, xx, 7, 17, 19–21, 25–28,

33, 34, 97, 99–102, 117,
133, 135–138, 140, 142–
144, 146, 147, 151, 155,
158, 162, 167, 170, 177,
178, 193, 194

ETL Process, 36, 41, 46
Exportation Process, 41

Exporting Process, 36, 46
Extended Entity-Relationship,

see EER
Extensible HyperText Markup

Language, see XHTML
Extensible Markup Language,

see XML
Extensible Stylesheet Language,

see XSL
Extensible Stylesheet Language

Transformations, see
XSLT

Extraction, Transformation, Load-
ing, see ETL

Fact, 9, 56, 61, 68, 71, 75, 76,
79, 95, 206

Fact attribute, 57
FactAttribute, 75, 76, 206
FactPackage, 64–68, 77, 79, 201
Filter, 139, 142, 145

HOLAP, xxi
HTML, xxi, 225, 227, 240
HTTP, xxi, 162, 170
Hybrid OLAP, see HOLAP
HyperText Markup Language,

see HTML
HyperText Transfer Protocol,

see HTTP

import, 105
Incorrect, 139, 142, 145
Index, 124
Input, 101, 110, 111
Integration Transportation Di-

agram, 162
Intermediate, 101, 111, 114
InternalBus, 166
International Organization for

Standards, see ISO
ISO, xxi
isTime, 9, 74
ITD, 162, 167
Iterative and incremental, 36

Index 287

Join, 139, 143

Loader, 139, 144, 145
Log, 139, 142
Logical level, 14, 121

Map, 101, 111, 112
MapObj, 101, 111
Mapping, 101, 110–112
MD, xxi, 7, 8, 17, 19–23, 25,

27–30, 40, 53, 55–58,
60–63, 68, 70, 71, 77–
80, 82, 85–91, 93, 94,
96, 157, 177, 178, 194,
197, 199–201, 206, 209,
225, 227, 228, 230, 240,
253, 255–257

MDA, xxi, 53, 94, 195
Measure, 57
Mem, 161
Merge, 139, 145, 148, 150
Meta Object Facility, see MOF
metaclass, 220
metamodel, 220
Model Driven Architecture, see

MDA
MOF, xxii, 27, 94, 221
MOLAP, xxii
Multidimensional, see MD
Multidimensional modeling, 53
Multidimensional OLAP, see MO-

LAP

Object Constraint Language, see
OCL

Object Linking and Embedding,
see OLE

Object Linking and Embedding
DataBase, see OLEDB

Object Management Group, see
OMG

Object Oriented, see OO
OCI, xxii, 169
OCL, xxii, 40, 53, 56, 80, 81,

85, 90, 91, 94–96, 194,
209, 223, 256

ODBC, xxii, 170
OID, 75, 76
OLAP, xxii, 3, 20, 25, 34, 53,

55, 58, 60, 68, 74–76,
88, 158, 169

OLE, xxiii, 256
OLEDB, xxiii, 167
OLTP, xxiii, 34
OMG, xxiii, 5, 27, 94
OnLine Analytical Processing,

see OLAP
OnLine Transaction Processing,

see OLTP
OO, xxiii, 4, 5, 7, 15, 23, 25,

33, 55, 61, 78, 136,
194, 209

Open Data Base Connectivity,
see ODBC

Oracle Call Interface, see OCI
OS, 9, 161, 169
Output, 101, 110, 111

Physical level, 15, 155
PIM, xxiii, 94
Pivot, 148
Platform Independent Model,

see PIM
Platform Specific Model, see PSM
profile, 220
PSM, xxiv, 94

Query View Transformation, see
QVT

QVT, xxiv, 53, 56, 94, 95, 194

RAID, xxiv, 27, 167
Range, 101, 111
RDBMS, xxiv, 56, 148, 159,

165
Redundant Array of Inexpen-

sive Disk, see RAID
REI, xxiv, 151, 253, 255, 256
Relational Database Manage-

ment System, see RDBMS
Relational OLAP, see ROLAP
Request For Comments, see RFC

288 Index

reside, 159
RFC, xxiv
ROLAP, xxiv, 163
Rolls-upTo, 71
Rose Extensibility Interface, see

REI

Schema, 39, 124
SCS, 34–36, 39, 40, 45, 52, 101–

103, 108, 109
SEP, xxv, 36
Server, 41, 165
SGML, xxv
SLC, 39
SLS, 36, 39, 46
Software Engineering Process,

see SEP
Source Conceptual Schema, 9,

34, 36, 39, 45, 49, 52,
101, 121

Source Logical Schema, 36, 39,
46, 121, 123

Source Physical Schema, 36, 39,
46, 162

SPS, 9, 36, 39, 46, 162, 165,
167

SQL, xxv, 131
Standard Generalized Markup

Language, see SGML
StarPackage, 9, 64, 65, 67, 70,

77–79, 201, 202
Strictness, 60
Structured Query Language, see

SQL
Surrogate, 139, 146, 150
SW, 161, 169

Table, 39, 140, 145, 159, 163
Tablespace, 39, 41, 124, 159,

165
TCP/IP, 162
Transportation Diagram, 36, 41,

46

UML, xxv, 4–10, 15, 19, 21,
22, 25–31, 33–36, 38,

40, 45, 51–53, 55, 56,
61, 62, 64, 65, 67, 71,
72, 76–78, 80, 82, 94,
96, 97, 100–103, 105,
107, 109–112, 114, 115,
117, 123, 124, 129, 133,
136, 138, 140, 151, 155,
157–160, 162, 163, 166,
170, 177, 178, 193–195,
199, 209, 211, 213–215,
217, 219–221, 223, 224,
255, 257

Unified Modeling Language, see
UML

Unified Process, see UP
Universal Resource Locator, see

URL
Unpivot, 148
UP, xxv, 4, 7, 10, 19, 31, 33,

36, 37, 43, 45, 193
URL, xxv
Use case driven, 36

W3C, xxv
Web, see WWW
World Wide Web, see WWW
World Wide Web Consortium,

see W3C
Wrapper, 138, 139, 145, 146
WWW, xxv

XHTML, xxvi
XMI, xxvi, 27
XML, xxvi, 4, 8, 99, 117, 135,

146, 193, 225, 227, 228,
230, 240

XML Metadata Interchange, see
XMI

XSL, xxvi
XSLT, xxvi, 225, 227, 240

Authors Index

Abbey, M. 21
Abelló, A. 5, 15, 22, 30, 55, 157
Abiteboul, S. 227
Abramson, I. 21
Agerfalk, P. 6
Agosta, L. 135, 136
Akoka, J. 21
Allen, S. 14
Ambler, S.W. 28, 29, 160, 193
ANSI/ISO/IEC 4, 131
Arlow, J. 38
Avison, D.E. 6

Bernstein, P.A. 26, 108
Bieman, J. 94
Blaha, M. 4
Blaschka, M. 22, 58
Bloesch, A. 30
Bolton, D.L. 29
Booch, G. 4, 6, 10, 33, 36, 37, 55
Brayner, A. 21
Brobst, S. 14, 27
Bruckner, R.M. 38
Buneman, P. 227
Busborg, F. 19, 22, 58, 60

Cabibbo, L. 19, 20
Calero, C. 194
Carneiro, L. 21
Cattell, R.G.G. 4
Cavero, J.M. 20, 21, 28
Chaudhuri, S. 60
Chen, P. 3, 51

Christerson, M. 4
Christiansen, J.G. 19, 22, 58, 60
Codd, E.F. 123
Comyn-Wattiau, I. 21
Conallen, J. 29, 55, 62, 80
Corey, M. 21
Cronholm, S. 6
Cui, Y. 101
Cunningham, C. 148
Cutter Consortium 3
Czarnecki, K. 94

Daya, M. 51
Dayal, U. 60
Debevoise, N.T. 21
Dinter, B. 22, 58
Dittrich, K. R. 26
Do, H. 135, 137
Dobre, A. 26

Eckerson, W. 43, 137
Eddy, F. 4
Embley, D.W. 30
Eriksson, H. 6

Falkenberg, E.D. 30, 51
Feldman, P. 29
Fernández-Medina, E. 194
Fitzgerald, G. 6
Fowler, M. 30, 64
France, R. 94
Friedman, T. 135

Galindo-Legaria, C.A. 148
Gandhi, M. 29

289

290 Authors Index

Gardner, S.R. 20
Giovinazzo, W. 20, 23, 27,

57–59, 61, 76, 102
Golfarelli, M. 19, 20, 22, 58
Gómez, J. 19, 25, 58, 90
Gornik, D. 22
Graefe, G. 148
Gucht, D. Van 29

Hackney, D. 43, 44
Hakimpour, F. 26
Halpin, T. 30
Helsen, S. 94
Höfling, G. 22, 58
Hüsemann, B. 19, 22, 71, 76, 77

IBM 36
Inmon, W.H. 13, 73, 135
Institut National de Recherche

en Informatique et en
Automatique (INRIA) 94

Jacobson, I. 4, 6, 10, 33, 36, 37,
55

Jaeschke, P. 29
Jarke, M. 14, 34
Jonsson, P. 4

Karayannidis, N. 26
Kimball, R. 3, 4, 13, 20, 22, 26,

27, 57, 58, 60, 68, 74, 76, 99,
136, 140, 165, 199–201, 206

Klauer, P. 14, 27
Kleppe, A. 56, 221, 223
Kobryn, C. 5
Koenig, J.A. 29
Kortink, M.A.R. 20, 21
Kurtz, B.D. 30

L. Greenfield 135
Lechtenbörger, J. 19, 22, 71, 76,

77
Lehner, W. 60
Lenzerini, M. 14, 34, 112
Levy, A.Y. 26, 108
List, B. 38

Lorensen, W. 4
Luján-Mora, S. 35, 36, 40, 41,

45, 100, 109, 163, 194, 199

Maio, D. 19, 22, 58
Maksimchuk, R.A. 15, 28, 38,

39, 52, 55, 123, 124, 131, 140,
145, 159, 165, 193

Marcos, E. 20, 21, 28
Medina, E.
Miller, D. 29
Moody, D.L. 20, 21, 30
Muller, R.J. 52

N. Pendse 3
Naiburg, E.J. 15, 28, 38, 39, 52,

55, 123, 124, 131, 140, 145,
159, 165, 193

Naqvi, S. 194
National Technical University of

Athens (Greece) 25
Neustadt, I. 38
Nicola, M. 157

Oberweis, A. 29
Object Management Group

(OMG) 4, 9, 10, 27, 29, 30, 33,
35, 55, 56, 80, 85–87, 93, 94,
105, 136, 158, 194, 195, 209,
219–221, 223

Olle, T.W. 51
Overgaard, G. 4

Palomar, M. 19, 25, 58, 90
Penker, M. 6
Piattini, M. 20, 21, 194
Poe, V. 14, 27
Post, G.V. 51, 52
Pottinger, R.A. 26, 108
Prat, N. 21
Premerlani, W. 4

Quatrani, T. 255
QVT-Partners 94, 194

Rahm, E. 26, 135, 137

Authors Index 291

Rational Software Corporation
28, 56, 151, 193, 255

Reeves, L. 20, 26, 27, 99, 200,
201

Rizvi, H. 157
Rizzi, S. 19, 20, 22, 27, 58, 100
Robertson, E.L. 29
Ronin International 36
Ross, M. 20, 26, 27, 99, 200, 201
Rumbaugh, J. 4, 6, 10, 33, 36,

37, 55

Saltor, F. 5, 15, 22, 30, 55, 157
Samos, J. 5, 15, 22, 30, 55, 157
Sapia, C. 22, 58
Schewe, K.D. 5
Schiefer, J. 38
Schleicher, A. 29
Schürr, A. 30
Sellis, T. 26
Sen, A. 21
Serrano, M. 194
Shah, D. 52
Simitsis, A. 25, 26, 100, 116
Sinha, A.P. 21
Skiadopoulos, S. 25, 26, 100, 116
Slaughter, S. 52
Snell, A. 6
Song, I. 19, 25, 35, 40, 45, 58,

90, 163, 199
SQL Power Group 99, 135
Strange, K. 99, 135
Stucky, W. 29
Suciu, D. 227

Taub, B. 21
Taylor, R.W. 51
Teorey, T.J. 29
Thalheim, B. 3, 51
Thornthwaite, W. 20, 26, 27, 99,

200, 201
Torlone, R. 19, 20
Trujillo, J. 19, 25, 35, 36, 40, 41,

45, 58, 90, 100, 109, 163, 194,
199

Tryfona, N. 19, 22, 58, 60
Tsur, S. 194

Vagena, Z. 26
Vassiliadis, P. 14, 25, 26, 34, 36,

40, 45, 100, 116
Vassiliou, Y. 14, 34
Vela, B. 28
Vesset, D. 3
Villarroel, R. 194
Vossen, G. 19, 22, 71, 76, 77
Vowler, J. 43

Warmer, J. 56, 221, 223
Watson, H.J. 3
Wei, G. 29
Westfechtel, B. 29
Widom, J. 101
Winter, A.J. 30
Wixom, B. 3
Woodfield, S.N. 30
World Wide Web Consortium

(W3C) 4, 227, 240

Yormark, B. 51

