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Abstract. A simple note onset detection system for music is presented
in this work. To detect onsets, a 1/12 octave filterbank is simulated in the
frequency domain and the band derivatives in time are considered. The
first harmonics of a tuned instrument are close to the center frequency
of these bands and, in most instruments, these harmonics are those with
the highest amplitudes. The goal of this work is to make a musically
motivated system which is sensitive on onsets in music but robust against
the spectrum variations that occur at times that do not represent onsets.
Therefore, the system tries to find semitone variations, which correspond
to note onsets. Promising results are presented for this real time onset
detection system.

1 Introduction

Onset detection refers to the detection of the beginnings of discrete events in
an audio signal. It is an essential component of many systems such as rhythm
tracking and transcription schemes. There have been many different approaches
for onset detection, but it still remains an open problem.

For detecting the beginnings of the notes in a musical signal the presented
system analyses the spectrum information across 1/12 octave (one semitone)
bands and compute their relative differences in time to obtain a detection func-
tion. Finally, the peaks in this function that are over a threshold are considered
as onsets.

There are several onset detection systems that apply a pre-processing stage
by separating the signal into multiple frequency bands. In an onset detector
introduced by Klapuri [1], a perceptually motivated filter-bank is used, divi-
ding the signal into eight bands. Goto [2] slices the spectrogram into spectrum
strips [3]. Scheirer [4] uses a six band filter-bank and Duxbury et al [5] utilizes
a filterbank to separate the signal into five bands.
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In the well-tempered scale, the one used in western music, the first harmo-
nics1 of the tuned instrument notes are close to the center frequencies of the
1/12 octave bands. In most instruments these first harmonics are those with the
highest amplitudes.

It is not our aim to use a perceptually motivated approach. Instead, a musi-
cally motivated filter-bank is utilized. In music, notes are separated by semitones,
so it makes sense to use a semitone filterbank to detect their onsets. By using
semitone bands the effect of subtle spectrum variations produced during the sus-
tain and release stage of a note is minimized. While a note is sounding, those
variations mainly occur close to the center frequencies of the 1/12 octave bands.
This means that the output band values for a note will remain similar after its
attack, avoiding false positive onsets. And when a new note of a tuned instru-
ment begins, the output band values will increase significantly because the the
main energy of its harmonics will be concentrated in the center frequencies of the
semitone bands. This means that the system is specially sensitive to frequency
variations that are larger than one semitone.

This way, the spectrum variations produced at the beginning of the notes
are emphasized and those produced while the notes are sounding are minimized.
This makes the system robust against smooth vibratos that are not higher than
a semitone. It also has a special feature; if a pitch bend (glissando) occurs, a new
onset is usually detected when it reaches more than one quarter tone higher or
lower than the starting pitch. This kind of detector can be useful for some music
transcription systems, those that have the pitch units measured in semitones.

2 Input Data

2.1 Spectral Analysis

From a digital audio file a short-time Fourier transform (STFT) is computed,
providing its spectrogram. In order to remove unused frequency components
and increasing spectral resolution downsampling from 44,100 Hz to 22,050 Hz
sampling rate was done. Thus, the highest possible frequency is fs/2 = 11,025 Hz,
which is high enough to cover the range of useful pitches.

The STFT is calculated using a Hanning window with N = 2048 samples.
An overlapping percentage of 50% (O = 0.5) is also applied in order to retain the
information at the frame boundaries. The time resolution ∆t can be calculated
as:

∆t =
(1 − O)N

fs
. (1)

Therefore, with the parameter values described, Eq. 1 yields ∆t = 46.4 mil-
liseconds and the STFT provides 1024 frequency values with a spectral resolu-
1 A “partial” is any of the frequencies in a spectrum, being “harmonic” those multiples

of a privileged frequency called fundamental that provides the pitch of the sounding
note.
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tion of 10.77 Hz. Concert piano frequencies range from G�−1 (27.5 Hz) to C7

(4186 Hz). We want to use 1/12 octave bands. The band centered in pitch G�0
has a center frequency of 51.91 Hz, and the fundamental frequency of the next
pitch, A0, is 55.00 Hz, so a spectral resolution of 10.77 Hz is not enough to build
the lower bands.

To minimize this problem, zero padding was applied for having more points
in the spectrum, appending three windows of 2048 zero samples at the end of
the input signal in the time domain before doing the STFT. Zero padding does
not add spectral resolution, but interpolates. With these values, a resolution of
10.77/4 = 2.69 Hz is obtained.

2.2 Semitone Bands

In this work, the analysis is performed by a computer software in the frequency
domain. Therefore, the FFT algorithm is utilized to compute the narrowband
(linear) frequency spectrum. Then, this spectrum is apportioned among the oc-
tave bands to produce the corresponding octave spectrum, simulating the re-
sponse of a 1/12 octave filterbank in the frequency domain.

The spectral bins obtained after the STFT computation are analyzed into
B bands in a logarithmic scale ranging from 50 Hz (pitch G�0) to 10,600 Hz
(pitch F8), almost eight octaves. This way, B = 94 spectral bands are obtained
and their center frequencies correspond to the fundamental frequencies of the 94
notes in that range.

1

0 f

B3 C4 C#4

Fig. 1. Example of triangular windowing for pitches B3, C4 and C�4

To build the 1/12 octave bands, a set of different sized triangular windows are
used (see Fig. 1). There is one window centered at the fundamental frequency of
each pitch. For wider windows (those centered in the highest frequencies), many
bins are considered but for lower bands only a few bins are used. Therefore, if the
input signal is an uniformly distributed noise, wider bands will have higher values
than narrower ones. To minimize this problem, a RMS (Root Mean Square)
computation is performed, in order to emphasize the highest spectrum values.
A simple equation to get each band value bk(t) at time t can be used;

bk(t) =

√
√
√
√

Wk∑

j=1

(X(j, t)wkj)2 , (2)
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being {wkj}Wk

j=1 the triangular window values for each band, Wk the size of the
k-th window and X the set of spectrum bins corresponding to that window at
time t, with j indexing the frequency bin.

The RMS of the bands is used instead of the energy. This is because small
variations in the highest amplitude bands are emphasized, causing false onsets
during the sustain stage of some notes. Moreover, some soft onsets could be
masked by strong onsets.

3 Note Onset Recognition

3.1 Basic Note Onset Recognition

Like in other onset detection algorithms [2][4][6][7], a first order derivative func-
tion is used to pick potential onset candidates. In this work the derivative c(t)
is computed for each band k.

ck(t) =
d

dt
bk(t) (3)

We must combine onset components to yield the onsets in the overall sig-
nal. In order to detect only the beginnings of the notes, the positive first order
derivatives of all the bands are summed at each time. The negative derivatives
are not considered.

a(t) =
B∑

k=1

max {0, ck(t)}. (4)

To normalize the onset detection function, the overall sum of the band values
s(t) is also computed:

s(t) =
B∑

k=1

bk(t) (5)

and the sum of the positive derivatives a(t) is divided by the sum of the band
amplitudes s(t) to compute a relative difference. Therefore, the onset detection
function o(t) ∈ [0, 1] is:

o(t) =
a(t)
s(t)

. (6)

The Fig. 2 shows an example of the detection function o(t) for a Mozart real
piano melody2.

A silence threshold µ is applied, in such a way that if s(t) < µ, then o(t) = 0.
This is done to avoid false positive onsets when the overall amplitude is very
low.

The peaks in o(t) are considered as onset candidates and a low level threshold
θ is applied to decide which of these candidates are onsets. Due to the fact that
2 RWC-MDB-C-2001 No. 27 from RWC database [8].
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Fig. 2. Example of the onset detection function o(t) for a piano melody. All the detected
onsets (peaks over the threshold θ) correspond to actual onsets.

only the peaks are taken into account for onset candidates, two consecutive
onsets at t and t + 1 cannot be detected so the minimum difference in time
between two onsets is 2∆t = 92.8 milliseconds.

The human ear cannot distingish between two transients less than 10 ms
apart [9]. However, in an onset detector, correct matches usually imply that the
target and detected onsets are within a 50 ms window, to allow for the inaccuracy
of the hand labelling process [3]. The presented system uses a 46.4 ms window
to detect onsets, which is an admisible temporal resolution.

3.2 Note Onset Recognition for Complex Instruments

The previous methodology yields good results for instruments like piano or gui-
tar, having sharp attack envelopes. But for instruments that have a longer attack
time, like a church organ, or those with ”moving” harmonics as some kind of
strings or electric guitars, more time frames should be considered.

The methodology in this case is the same as in the previous subsection, but
Eq. 3 is replaced by this one:

c̃k(t) =
C∑

i=1

i · [bk(t + i) − bk(t − i)] , (7)

being C the number of considered time frames. This is a variation of an equation
(Eq. 5.16) proposed by Young et al. in [10] to enhance the performance of a
speech recognition system.

The idea of the weighting is that the difference is centered on each particular
frame, thus two-side difference (with C = 1) is used instead of the frame itself.
When using C = 2, the difference is calculated from a longer period, playing i
the role of a weight.
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An example of the onset detection function for a cellomelody3 is shown in Fig. 3
without considering additional frames (a), with C = 1 (b) and with C = 2 (c).

Note that the higher C is, the lower is the precision in time for detecting
onsets but the system yields better results for complex instruments. For a robust
detection, the notes need to have a duration l ≥ ∆t(C + 1). If C = 2 and with
the utilized parameters, l = 139.2 ms, so this method variation is not suitable
for very rapid onsets4.

To normalize o(t) into the range [0, 1] Eq. 5 is replaced by

s̃(t) =
B∑

k=1

C∑

i=1

i · bk(t + i) (8)

when the Eq. 7 is used, because only local loudness is considered in Eq. 5.

4 Results

In this work, the experiments were done using an onset detection database pro-
posed by Leveau et al. [11] in 2004. Most of its melodies belong to the RWC
database [8].

Rigorous evaluation of onset detection is a complex task [12]. The evaluation
results of onset detection algorithms presented in various publications are in
most cases not comparable [13], and they depend very much on the database
used for the experiments. Unfortunately, at the moment there are not similar
works using the Leveau et al. database, so in this paper our algorithm is not
compared with others. However, our system is currently being evaluated at the
MIREX 2005 competition5, which results will be released soon.

A set of real melodies was used to carry out the experiments. To test the
system, some real melodies were selected and listened to detect the actual onsets.
New audio files were generated adding ”click” sounds where the onsets were
detected. The number of false positive and negative onsets was finally counted
by analysing the generated wavefiles.

The error metric can be defined in precision/recall terms. The precision is the
percentage of the detected onsets that are correct. The recall is the percentage
of the true onsets that were found with respect to the actual onsets. A false
positive is considered as a detected onset that was not present in the signal, and
a false negative as an undetected onset.

The silence threshold µ is not very relevant, because in most of the melodies
the values of s(t) are usually over this threshold. It is only useful when silences
occur or when the considered spectrogram has a very low loudness, so the system
is not very sensitive to the variation of this parameter. The threshold θ can
control the precision/recall deviation.

3 RWC-MDB-C-2001 No. 36 from RWC database [8].
4 139 ms is the length of a semiquaver when tempo is 107 bpm.
5 2nd Annual Music Information Retrieval Evaluation eXchange.
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Fig. 3. Onset detection function o(t) for a polyphonic cello melody. (a) Without ad-
ditional frames; (b) with C = 1; (c) with C = 2. When C = 2, all the onsets were
succesfully detected except by one (marked with a circle).
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Table 1. Results for the database proposed in [11]. The first columns are the melody
name, the duration (secs.), and the number of actual onsets. The next columns are the
number of correcly detected onsets (OK), false positives (FP), false negatives (FN), pre-
cision (P) and recall (R). The experiments were performed without additional frames
(basic detection) and with C = 2.

Tested melodies Basic detection With C=2

Content Dur (s) On OK FP FN P(%) R(%) OK FP FN P(%) R(%)

Solo trumpet 14 60 57 1 3 98.3 95
Solo clarinet 30 38 38 1 0 97.4 100

Solo saxophone 12 10 10 4 0 71.4 100
Solo synthetic bass 7 25 25 1 0 96.2 100

Solo cello 14 65 49 23 16 68.1 75.4 50 5 15 90.9 76.9
Solo violin 15 79 72 12 7 85.7 91.1

Solo distorted guitar 6 20 20 3 0 87 100
Solo steel guitar 14 58 58 2 0 96.7 100

Solo electric guitar 15 35 31 4 4 88.6 88.6
Solo piano 15 20 20 0 0 100 100

Techno 6 56 38 1 19 97.4 67.9
Rock 15 62 62 21 1 74.7 98.4

Jazz (octet) 14 52 40 1 12 97.6 76.9
Jazz (contrabass) 11 52 51 6 1 89.5 98.1

Classic 1 20 50 49 17 1 74.2 98 50 5 0 90.9 100
Classic 2 14 12 11 15 1 42.3 91.7 11 20 1 35.5 91.7
Pop 1 15 38 32 11 6 74.4 84.2

4.1 Results Without Additional Frames

The results of the experiments with basic detection are shown in the table 1.
They were obtained with a silence threshold µ = 70 and with θ = 0.18.

The system works specially well for the piano melody. In other tested piano
melodies results showed that the system is robust for this instrument. It also works
well for the tested melodies played by a trumpet, a clarinet, a bass or guitars.

In the melody played by a saxophone a few extra onsets appeared close to the
actual onsets. This is due to the nature of this instrument; its attack begins with
a small amount of noise, specially evident when it is played legato, like in the
tested melody. Its pitch also starts in a frequency slighly lower than the played
pitch and it takes a little time to reach the desired pitch. So in some notes both
the attack and the moment when the pitch was reached were detected, yielding
some false positive onsets.

The cello is a very difficult instrument for onset detection, and the results
were not very good when no aditional frames were utilized. Though the violin
is another problematic instrument, the results were not bad. Usually, distorted
guitars are also a difficult problem for onset detection, but the tested melody
yielded good results. More experiments were done with other melodies played
by distorted guitars and the system yielded good results too.
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In the techno melody, some onsets were not detected probably because they
were masked by the strength of the drums. In the rock melody, several false pos-
itives appeared when the distorted guitar was played muted. However, in other
similar rock melodies the obtained results were very good due to the presence of
drums, that are usually helpful for detecting onsets.

The octet jazz melody yielded some false negatives, but most of them belong
to very soft onsets produced by the hi-hat of the drumset. The results for the
other jazz melody were satisfactory.

In the first classic melody the system obtained good results for the initial
notes but, when the singer started, several false positive were achieved. This
also happened in another tested singing melodies. The human voice behaviour
is different to most of the instruments because of its complex spectral features,
so this system do not seem to be the most adequate to deal with this problem.

The second classic melody was very difficult due to the presence of strings,
and when no additional frames were considered several false positives appeared.
Finally, the pop melody yielded false positives with human voice, and some false
negatives corresponding to very soft onsets.

4.2 Results with Additional Frames

As discussed before, for some kind of instruments, like a cello or a church organ,
more time frames are needed. In the tested database only three melodies suggest
to use additional frames. They are the cello melody and the two classic melodies,
and the results with C = 2 are in the Tab. 1. The detected onsets considering
C = 1 were similar to those obtained with basic detection, so they are not shown
in the table.

The results with C = 2 are not shown for melodies which instrument features
do not suggest the use of additional frames. These results are obviously worse
considering more time frames than without additional time frames.

The system yielded much better results for the cello and the first classic
melodies. However, worse results were obtained for the second classic melody.
Obviously, only three examples are not enough to test the performance of the
system when C = 2 but, unfortunately, in this database only these melodies
recommend the use of more frames. In other tested melodies from the RWC
database the results improved importantly, for example for the cello melody (in
Fig. 3), for an organ and for some classic melodies.

Anyway, in most cases the system yields better results without considering
time frames, and more frames should only be utilized for specific instruments.

5 Conclusions and Future Work

In this work, a musically motivated onset detection system is presented. In its
basic version, the spectrogram of a melody is performed and 1/12 octave band
filters are applied. The derivatives in time are computed for each band and
summed. Then, this sum is normalized dividing it by the sum of the band values
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in the considered time frame. Finally, all the peaks over a threshold are detected
onsets. A simple improvement was made by using more time frames in order to
make the system more robust for complex instruments.

The system is intended for tuned musical instruments, and the results for
these kind of melodies were very satisfactory. It does not seem to be the most
adequate for voice or drums, because it is based in the harmonic properties of the
musical instruments. However, when drums were present in the tested melodies,
the system was robust. With voice, results are worse due to its harmonic prop-
erties.

The simplicity of the system makes it easy to implement, and several future
work lines can be developed over this basic scheme. An adaptative filterbank
could be added for non-tuned instruments, detecting the highest spectrum peak
and moving the fundamental frequency of the closest band to that peak.

A dynamic value of C (the number of aditional time frames) depending on
the instruments could also be considered. Usually, in the melodies where C must
be increased, the detected onsets in o(t) have lower values than they should have.
As an example, in Fig. 2 the peaks detected as onsets have higher values than
those detected in Fig. 3 (a). This is because cello attacks are softer than piano
attacks. Therefore, the analysis of the o(t) function in the first time frames could
be performed to tune the value of C.
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