
Finite State Automata that Recurrent
Cascade-Correlation Cannot Represent

Stefan C. Kremer
Department of Computing Science

University of Alberta
Edmonton, Alberta, CANADA T6H 5B5

Abstract

This paper relates the computational power of Fahlman's Recurrent
Cascade Correlation (RCC) architecture to that of finite state automata
(FSA). While some recurrent networks are FSA equivalent, RCC is not.
The paper presents a theoretical analysis of the RCC architecture in the
form of a proof describing a large class of FSA which cannot be realized
by RCC.

1 INTRODUCTION
Recurrent networks can be considered to be defined by two components: a network
architecture, and a learning rule. The former describes how a network with a given set of
weights and topology computes its output values, while the latter describes how the weights
(and possibly topology) of the network are updated to fit a specific problem. It is possible to
evaluate the computational power of a network architecture by analyzing the types of
computations a network could perform assuming appropriate connection weights (and
topology). This type of analysis provides an upper bound on what a network can be expected
to learn, since no system can learn what it cannot represent.

Many recurrent network architectures have been proven to be finite state automaton or even
Turing machine equivalent (see for example [Alon, 1991], [Goudreau, 1994], [Kremer, 1995],
and [Siegelmann, 1992]). The existence of such equivalence proofs naturally gives
confidence in the use of the given architectures.

This paper relates the computational power of Fahlman's Recurrent Cascade Correlation
architecture [Fahlman, 1991] to that of finite state automata. It is organized as follows:
Section 2 reviews the RCC architecture as proposed by Fahlman. Section 3 describes finite
state automata in general and presents some specific automata which will play an important
role in the discussions which follow. Section 4 describes previous work by other authors

aj(t
� 1) � � � j � 1

i � 1

Wijai(t � 1) � Wjj aj(t)

evaluating RCC's computational power. Section 5 expands upon the previous work, and
presents a new class of automata which cannot be represented by RCC. Section 6 further
expands the result of the previous section to identify an infinite number of other unrealizable
classes of automata. Section 7 contains some concluding remarks.

2 THE RCC ARCHITECTURE
The RCC architecture consists of three types of units: input units, hidden units and output
units. After training, a RCC network performs the following computation: First, the
activation values of the hidden units are initialized to zero. Second, the input unit activation
values are initialized based upon the input signal to the network. Third, each hidden unit
computes its new activation value. Fourth, the output units compute their new activations.
Then, steps two through four are repeated for each new input signal.

The third step of the computation, computing the activation value of a hidden unit, is
accomplished according to the formula:

.

Here, a (t) represents the activation value of unit i at time t, � (•) represents a sigmoidi

squashing function with finite range (usually from 0 to 1), and W represents the weight of theij

connection from unit i to unit j. That is, each unit computes its activation value by multiplying
the new activations of all lowered numbered units and its own previous activation by a set of
weights, summing these products, and passing the sum through a logistic activation function.
The recurrent weight W from a unit to itself functions as a sort of memory by transmitting ajj

modulated version of the unit's old activation value.

The output units of the RCC architecture can be viewed as special cases of hidden units which
have weights of value zero for all connections originating from other output units. This
interpretation implies that any restrictions on the computational powers of general hidden
units will also apply to the output units. For this reason, we shall concern ourselves
exclusively with hidden units in the discussions which follow.

Finally, it should be noted that since this paper is about the representational power of the RCC
architecture, its associated learning rule will not be discussed here. The reader wishing to
know more about the learning rule, or requiring a more detailed description of the operation
of the RCC architecture, is referred to [Fahlman, 1991].

3 FINITE STATE AUTOMATA
A Finite State Automaton (FSA) [Hopcroft, 1979] is a formal computing machine defined by
a 5-tuple M=(Q,	 ,
 ,q ,F), where Q represents a finite set of states, � a finite input alphabet,0�
 a state transition function mapping Q× to Q, q � Q the initial state, and F � Q a set of final0

or accepting states. FSA accept or reject strings of input symbols according to the following
computation: First, the FSA's current state is initialized to q . Second, the next input symbol0

of the string, selected from � , is presented to the automaton by the outside world. Third, the
transition function, � , is used to compute the FSA's new state based upon the input symbol,
and the FSA's previous state. Fourth, the acceptability of the string is computed by comparing
the current FSA state to the set of valid final states, F. If the current state is a member of F
then the automaton is said to accept the string of input symbols presented so far. Steps two
through four are repeated for each input symbol presented by the outside world. Note that the
steps of this computation mirror the steps of an RCC network's computation as described
above.

It is often useful to describe specific automata by means of a transition diagram [Hopcroft,
1979]. Figure 1 depicts the transition diagrams of five FSA. In each case, the states, Q, are

depicted by circles, while the transitions defined by � are represented as arrows from the old
state to the new state labelled with the appropriate input symbol. The arrow labelled "Start"
indicates the initial state, q ; and final accepting states are indicated by double circles.0

We now define some terms describing particular FSA which we will require for the following
proof. The first concerns input signals which oscillate. Intuitively, the input signal to a FSA
oscillates if every p symbol is repeated for p>1. More formally, a sequence of input symbols,th

s(t), s(t+1), s(t+2), ..., oscillates with a period of p if and only if p is the minimum value such
that: � t s(t)=s(t+p).

Our second definition concerns oscillations of a FSA's internal state, when the machine is
presented a certain sequence of input signals. Intuitively, a FSA's internal state can oscillate
in response to a given input sequence if there is some starting state for which every
subsequent � state is repeated. Formally, a FSA's state can oscillate with a period of � inth

response to a sequence of input symbols, s(t), s(t+1), s(t+2), ..., if and only if � is the
minimum value for which:�

q s.t. � t � (q , s(t)) = � (... � (� (� (q , s(t)), s(t+1)), s(t+2)), ... , s(t+�))0 0 0

The recursive nature of this formulation is based on the fact a FSA's state depends on its
previous state, which in turn depends on the state before, etc..

We can now apply these two definitions to the FSA displayed in Figure 1. The automaton
labelled "a)" has a state which oscillates with a period of � =2 in response to any sequence
consisting of 0s and 1s (e.g. "00000...", "11111....", "010101...", etc.). Thus, we can say that
it has a state cycle of period =2 (i.e. q q q q ...), when its input cycles with a period of p=10 1 0 1

(i.e. "0000..."). Similarly, when automaton b)'s input cycles with period p=1 (i.e. "000000..."),
its state will cycle with period ! =3 (i.e. q q q q q q ...).0 1 2 0 1 2

For automaton c), things are somewhat more complicated. When the input is the sequence
"0000...", the state sequence will either be q q q q ... or q q q q ... depending on the initial0 0 0 0 1 1 1 1

state. On the other hand, when the input is the sequence "1111...", the state sequence wil l
alternate between q and q . Thus, we say that automaton c) has a state cycle of " =2 when its0 1

input cycles with period p=1. But, this automaton can also have larger state cycles. For
example, when the input oscillates with a period p=2 (i.e. "01010101..."), then the state of the
automaton will oscillate with a period # =4 (i.e. q q q q q q q q ...). Thus, we can also say that0 0 1 1 0 0 1 1

automaton c) has a state cycle of $ =4 when its input cycles with period p=2.

The remaining automata also have state cycles for various input cycles, but will not be
discussed in detail. The importance of the relationship between input period (p) and the state
period (%) will become clear shortly.

4 PREVIOUS RESULTS CONCERNING THE COMPUTATIONAL
POWER OF RCC
The first investigation into the computational powers of RCC was performed by Giles et. al.
[Giles, 1995]. These authors proved that the RCC architecture, regardless of connection
weights and number of hidden units, is incapable of representing any FSA which "for the
same input has an output period greater than 2" (p. 7). Using our oscillation definitions above,
we can re-express this result as: if a FSA's input oscillates with a period of p=1 (i.e. input is
constant), then its state can oscillate with a period of at most & =2. As already noted, Figure
1b) represents a FSA whose state oscillates with a period of ' =3 in response to an input which
oscillates with a period of p=1. Thus, Giles et. al.'s theorem proves that the automaton in
Figure 1b) cannot be implemented (and hence learned) by a RCC network.

Giles et. al. also examined the automata depicted in Figures 1a) and 1c). However, unlike the
formal result concerning FSA b), the authors' conclusions about these two automata were of
an empirical nature. In particular, the authors noted that while automata which oscillated with

0, 1

0, 1

q0 q1

Start

q0 q1

q2

0, 1

0, 10, 1

1

q0 q1

1

00

Start

Start

0

q0 q11

Start

q2

1

q3

1

1

q4 0

1

0

q0 q1

0

0, 1
1

q2 q3 q4

q5

1

0, 1

1 0

0

1

0

Start

a) b)

c) d)

0

0

e)

Figure 1: Finite State Automata.

a period of 2 under constant input (i.e. Figure 1a)) were realizable, the automaton of 1c)
appeared not be be realizable by RCC. Giles et. al. could not account for this last observation
by a formal proof.

(
(t) 1) * + j , 1

i - 1
Wijai(t . 1)

aj(t / 1) 0 1 (2 (t 3 1) 4 Wjj aj(t))

5 AUTOMATA WITH CYCLES UNDER ALTERNATING INPUT
We now turn our attention to the question: why is a RCC network unable to learn the
automaton of 1c)? We answer this question by considering what would happen if 1c) were
realizable. In particular, suppose that the input units of a RCC network which implements
automaton 1c) are replaced by the hidden units of a RCC network implementing 1a). In this
situation, the hidden units of 1a) will oscillate with a period of 2 under constant input. But if
the inputs to 1c) oscillate with a period of 2, then the state of 1c) will oscillate with a period
of 4. Thus, the combined network's state would oscillate with a period of four under constant
input. Furthermore, the cascaded connectivity scheme of the RCC architecture implies that
a network constructed by treating one network's hidden units as the input units of another,
would not violate any of the connectivity constraints of RCC. In other words, if RCC could
implement the automaton of 1c), then it would also be able to implement a network which
oscillates with a period of 4 under constant input. Since Giles et. al. proved that the latter
cannot be the case, it must also be the case that RCC cannot implement the automaton of 1c).

The line of reasoning used here to prove that the FSA of Figure 1c) is unrealizable can also
be applied to many other automata. In fact, any automaton whose state oscillates with a period
of more than 2 under input which oscillates with a period 2, could be used to construct one
of the automata proven to be illegal by Giles. This implies that RCC cannot implement any
automaton whose state oscillates with a period of greater than 5 =2 when its input oscillates
with a period of p=2.

6 AUTOMATA WITH CYCLES UNDER OSCILLATING INPUT
Giles et. al.'s theorem can be viewed as defining a class of automata which cannot be
implemented by the RCC architecture. The proof in Section 5 adds another class of automata
which also cannot be realized. More precisely, the two proofs concern inputs which oscillate
with periods of one and two respectively. It is natural to ask whether further proofs for state
cycles can be developed when the input oscillates with a period of greater than two. We now
present the central theorem of this paper, a unified definition of unrealizable automata:

Theorem: If the input signal to a RCC network oscillates with a period, p, then the network
can represent only those FSA whose outputs form cycles of length 6 , where pmod7 =0 if p
is even and 2pmod8 =0 if p is odd.

To prove this theorem we will first need to prove a simpler one relating the rate of oscillation
of the input signal to one node in an RCC network to the rate of oscillation of that node's
output signal. By "the input signal to one node" we mean the weighted sum of all activations
of all connected nodes (i.e. all input nodes, and all lower numbered hidden nodes), but not the
recurrent signal. I.e.:

 .

Using this definition, it is possible to rewrite the equation to compute the activation of node
j (given in Section 2) as:

 .

But if we assume that the input signal oscillates with a period of p, then every value of 9 (t+1)
can be replaced by one of a finite number of input signals (: , ; , < , ... =). In other words,0 1 2 p-1>
(t+1) = ? . Using this substitution, it is possible to repeatedly expand the addend of thetmodp

previous equation to derive the formula:

a (t+1) = @ (A + W ·j tmodp jj

 B (C + W ·(t-1)modp jj

 D (E + W · ... F (G + W ·a (t-p+1)) ...)))(t-2)modp jj (t-p+1)modp jj j

The unravelling of the recursive equation now allows us to examine the relationship between
a (t+1) and a (t-p+1). Specifically, we note that if W >0 or if p is even then a (t+1) = f(a (t-j j jj j j

p+1)) implies that f is a monotonically increasing function. Furthermore, since H is a function
with finite range, f must also have finite range.

It is well known that for any monotonically increasing function with finite range, f, the
sequence, f(x), f(f(x)), f(f(f(x))), ..., is guaranteed to monotonically approach a fixed point
(where f(x)=x). This implies that the sequence, a (t+1), a (t+p+1), a (t+2p+1), ..., must alsoj j j

monotonically approach a fixed point (where a (t+1) = a (t-p+1)). In other words, thej j

sequence does not oscillate. Since every p value of a (t) approaches a fixed point, theth
j

sequence a (t), a (t+1), a (t+2), ... can have a period of at most p, and must have a period whichj j j

divides p evenly. We state this as our first lemma:

Lemma 1: If I (t) oscillates with even period, p, or if W >0, then state unit j's activation valuejj

must oscillate with a period J , where pmodK =0.

We must now consider the case where W <0 and p is odd. In this case, a (t+1) = f(a (t-p+1))jj j j

implies that f is a monotonically decreasing function. But, in this situation the function f
(x)=f(f(x)) must be monotonically increasing with finite range. This implies that the2

sequence: a (t+1), a (t+2p+1), a (t+4p+1), ..., must monotonically approach a fixed pointj j j

(where a (t+1)=a (t-2p+1)). This in turn implies that the sequence a (t), a (t+1), a (t+2), ..., canj j j j j

have a period of at most 2p, and must have a period which divides 2p evenly. Once again, we
state this result in a lemma:

Lemma 2: If L (t) oscillates with odd period p, and if W <0, then state unit j must oscillatejj

with a period M , where 2pmodN =0.

Lemmas 1 and 2 relate the rate of oscillation of the weighted sum of input signals and lower
numbered unit activations, O (t) to that of unit j. However, the theorem which we wish to
prove relates the rate of oscillation of only the RCC network's input signal to the entire hidden
unit activations. To prove the theorem, we use a proof by induction on the unit number, i:

Basis: Node i=1 is connected only to the network inputs. Therefore, if the input signal
oscillates with period p, then node i can only oscillate with period P , where pmodQ =0 if p is
even and 2pmodR =0 if p is odd. (This follows from Lemmas 1 and 2).

Assumption: If the input signal to the network oscillates with period p, then node i can only
oscillate with period S , where pmodT =0 if p is even and 2pmodU =0 if p is odd.

Proof: If the Assumption holds for all nodes i, then Lemmas 1 and 2 imply that it must also
hold for node i+1.V
This proves the theorem:

Theorem: If the input signal to a RCC network oscillates with a period, p, then the network
can represent only those FSA whose outputs form cycles of length W , where pmodX =0 if p
is even and 2pmodY =0 if p is odd.

7 CONCLUSIONS
I t is interesting to note that both Giles et. al.'s original proof and the constructive proof by
contradiction described in Section 5 are special cases of the theorem. Specifically, Giles et.
al.'s original proof concerns input cycles of length p=1. Applying the theorem of Section 6
proves that an RCC network can only represent those FSA whose state transitions form cycles
of length Z , where 2(1)mod[=0, implying that state cannot oscillate with a period of greater
than 2. This is exactly what Giles et. al concluded, and proves that (among others) the
automaton of Figure 1b) cannot be implemented by RCC.

Similarly, the proof of Section 5 concerns input cycles of length p=2. Applying our theorem
proves that an RCC network can only represent those machines whose state transitions form

cycles of length \ , where (2)mod] =0. This again implies that state cannot oscillate with a
period greater than 2, which is exactly what was proven in Section 5. This proves that the
automaton of Figure 1c) (among others) cannot be implemented by RCC.

In addition to unifying both the results of Giles et. al. and Section 5, the theorem of Section
6 also accounts for many other FSA which are not representable by RCC. In fact, the theorem
identifies an infinite number of other classes of non-representable FSA (for p=3, p=4, p=5,
...). Each class itself of course contains an infinite number of machines. Careful examination
of the automaton illustrated in Figure 1d) reveals that it contains a state cycle of length 9
(q q q q q q q q q q q q q q q q q q ...) in response to an input cycle of length 3 ("001001...").0 1 2 1 2 3 2 3 4 0 1 2 1 2 3 2 3 4

Since this is not one of the allowable input/state cycle relationships defined by the theorem,
it can be concluded that the automaton of Figure 1d) (among others) cannot be represented
by RCC.

Finally, it should be noted that it remains unknown if the classes identified by this paper's
theorem represent the complete extent of RCC's computational limitations. Consider for
example the automaton of Figure 1e). This device has no input/state cycles which violate the
theorem, thus we cannot conclude that it is unrepresentable by RCC. Of course, the issue of
whether or not this particular automaton is representable is of little interest. However, the
class of automata to which the theorem does not apply, which includes automaton 1e),
requires further investigation. Perhaps all automata in this class are representable; perhaps
there are other subclasses (not identified by the theorem) which RCC cannot represent. This
issue will be addressed in future work.

References

N. Alon, A. Dewdney, and T. Ott, Efficient simulation of finite automata by neural nets,
Journal of the Association for Computing Machinery, 38 (2) (1991) 495-514.

S. Fahlman, The recurrent cascade-correlation architecture, in: R. Lippmann, J. Moody and
D. Touretzky, Eds., Advances in Neural Information Processing Systems 3 (Morgan
Kaufmann, San Mateo, CA, 1991) 190-196.

C.L. Giles, D. Chen, G.Z. Sun, H.H. Chen, Y.C. Lee, and M.W. Goudreau, Constructive
Learning of Recurrent Neural Networks: Limitations of Recurrent Cascade Correlation and
a Simple Solution, IEEE Transactions on Neural Networks, 6 (4) (1995) 829-836.

M. Goudreau, C. Giles, S. Chakradhar, and D. Chen, First-order v.s. second-order single layer
recurrent neural networks, IEEE Transactions on Neural Networks, 5 (3) (1994) 511-513.

J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and
Computation (Addison-Wesley, Reading, MA, 1979).

S.C. Kremer, On the Computational Power of Elman-style Recurrent Networks, IEEE
Transactions on Neural Networks, 6 (4) (1995) 1000-1004.

H.T. Siegelmann and E.D. Sontag, On the Computational Power of Neural Nets, in:
Proceedings of the Fifth ACM Workshop on Computational Learning Theory, (ACM, New
York, NY, 1992) 440-449.

