Finite State Automata that Recurrent
Cascade-Correlation Cannot Represent

Stefan C. Kremer
Department of Computing Science
University of Alberta
Edmonton, Alberta, CANADA T6H 5B5

Abstract

This paper relatesthe computationalpower of Fahlman'sRecurret
CascadeCorrelation(RCC) architectureto that of finite stateautomaa
(FSA). While somerecurrentnetworksare FSA equivalentRCCis not.

The paperpresentsa theoreticalanalysisof the RCC architecturan the
form of a proof describing a large class of FSA which cannot be realized
by RCC.

1 INTRODUCTION

Recurrentnetworks can be consideredto be defined by two components: a netwok
architecture, and alearningrule. Theformerdescribediow a networkwith a givensetof
weightsand topology computes its output values, while the latter describes how the weights
(and possibly topology) of the network are updated to fit a specific problem. It is possible to
evaluate the computationalpower of a network architectureby analyzingthe types of
computationsa network could perform assumingappropriateconnectionweights (ard
topology). Thistypeof analysisprovidesan upper bound on what a network can be expected
to learn, since no system can learn what it cannot represent.

Many recurrent network architectures have been proven to be finite state automaton or even
Turing machine equivalent (seefor example[Alon, 1991], [Goudreau, 1994], [Kremer, 1995],

and [Siegelmann,1992]). The existenceof such equivalenceproofs naturally gives
confidence in the use of the given architectures.

This paperrelatesthe computationalpower of Fahlman'sRecurrentCascadeCorrelatin
architecture [Fahlman,1991] to that of finite stateautomata. It is organizedasfollows:
Section 2 reviews the RCC architecture as proposed by Fahlman. Section 3 describes finite
state automata in general and presents some specific automata which will play an important
role in the discussionsvhich follow. Section4 describegpreviouswork by otherauthos

evaluating RCC'scomputationapower. Section5 expandsuponthe previouswork, ard
presentsa new classof automatavhich cannotbe representeéhy RCC. Section6 further
expandsthe result of the previous section to identify an infinite number of other unrealizable
classes of automata. Section 7 contains some concluding remarks.

2 THERCC ARCHITECTURE

The RCCarchitectureconsistsof threetypesof units: input units, hiddenunitsandoutpu

units. After training, a RCC network performsthe following computation: First, the
activation values of the hidden units are initialized to zero. Second, the input unit activation
values are initialized baseduponthe input signalto the network. Third, eachhiddenunit
computesits newactivationvalue. Fourth,the outputunits computetheir new activations

Then, steps two through four are repeated for each new input signal.

The third stepof the computation,computingthe activation value of a hidden unit, is
accomplished according to the formula:

-1

aj(t+1) = 0 Iz:l: W, at+l) + V\/jjaj(t))
Here, a(t) representghe activationvalue of unit i at time t, o(*) represents sigmoi
squashing function with finite range (usudly from O to 1), and\; represents the weight of the
connection from unit i to unitj. That is, each unit computes its activation value by multiplying
the new activations of dl lowered numbered units and its own previous activation by a set of
weights, summing these products, and passing the sum through a logistic activation function.
Therecurrent weight W; from a unit to itself functions as a sort of memory by transmitting a
modulated version of the unit's old activation value.

The output units of the RCC architecture can be viewed as special cases of hidden units which
haveweightsof value zerofor all connectionsoriginating from other outputunits. This
interpretationimplies thatany restrictionson the computationapowersof generalhidden
units will also apply to the output units. For this reason,we shall concernourselve
exclusively with hidden units in the discussions which follow.

Finally, it should be noted that since this paper is about the representational power of the RCC
architecturejts associatedearningrule will not be discussedhere. The reademwishingto

know more about the learning rule, or requiring a more detailed description of the operation
of the RCC architecture, is referred to [Fahlman, 1991].

3 FINITE STATE AUTOMATA

A Finite State Automaton (FSA) [Hopcroft, 1979] is a formal computing machine defined by
a5-tuple M=(Q,Z,5,q,,F), whereQ represents a finite set of statEsa finite input alphabet,

d adatetransition function mappin@xZ to Q, g,£Q the initial state, anB<Q a set of final

or accepting states. FSA accept or reject strings of input symbols according to the following
computetion: Firgt, the FSA's current state is initialized tp. Second, the next input symbol

of thedtring, sdlected fromZ, is presented to the automaton by the outside world. Third, the
transitionfunction,d, is used to compute the FSA's new state based upon the input symbol,
and the FSA's previous state. Fourth, the acceptability of the string is computed by comparing

the currentFSA stateto the setof valid final statesf. If the current state is a memberrof
thenthe automaton is said to accept the string of input symbols presented so far. Steps two
through four are repeated for each input symbol presented by the outside world. Note that the
steps of this computationmirror the stepsof an RCC network'scomputationasdescribe

above.

It is often useful to describe specific automata by meansrahsition diagram [Hopcroft,
1979]. Figure 1 depicts the transition diagrams of five FSA. In each case, the@tates,

depicted by circles, while the transitions defined Byare represented as arrows from the old
gdateto the new state labelled with the appropriate input symbol. The arrow labelled "Start"
indicates the initial state|,; and final accepting states are indicated by double circles.

We now define some terms describing particular FSA which we will require for the following
proof. Thefirgt concerns input signals which oscillate. Intuitively, the input signal to a FSA
ostillatesif every p" symbol is repested for p>1. More formally, a sequence of input symbols,
), s(t+1), s(t+2), ..., oscillates with a period @fif and only ifp is the minimum value such
that: vt s(t)=s(t+p).

Our seconddefinition concernsscillationsof a FSA'sinternalstate whenthe machineis
presented a certain sequence of input signals. Intuitively, a FSA's internal state can oscillate
in responseto a given input sequencef thereis some starting statefor which evey
subsequenb™ stateis repeated.Formally,a FSA'sstatecanoscillate with a period ab in
responsdo a sequenceof input symbols,s(t), s(t+1), s(t+2), ..., if andonly if w is the
minimum value for which:

=00 S..Vt3(dp, (1)) = 3(.. 8(8((0, (1)), S(t+1)), S(t+2)), ... S(t+w))

The recursivenatureof this formulationis basedon the fact a FSA's statedependon its
previous state, which in turn depends on the state before, etc..

We cannow applythesetwo definitionsto the FSA displayedin Figurel. The automaton
labelled "a)" hasa statewhich oscillateswith a periodof w=2 in responséo any sequene
condgting of Osand 1s (e.g. "00000...", "11111....", "010101...", etc.). Thus, we can say that
it hasadtate cycle of perio=2 (i.e.q,0,d,9;.--), When its input cycles with a periodpfl
(i.e."0000..."). Similarly, when automaton b)'sinput cycles with periogp=1 (i.e. "000000..."),

its state will cycle with perio=3 (i.e.q,9,0,9,9:0---)-

For automatorc), thingsaresomewhamore complicated. Whentheinput is the sequence
"0000...", the statesequencavill eitherbe g,0,9,0,--- OF 9,0, 0;--- dependingon theinitial
state. On the otherhand,whentheinputis thesequencél111...",the statesequencaevill
dternate between g and g,. Thus, we say that automaton c) has a state cyele=@fwhen its
input cycleswith periodp=1. But, this automatorcanalsohavelargerstatecycles. For
example, when theinput oscillateswith a periodp=2 (i.e. "01010101..."), then the state of the
automaton will oscillate with aperiod w=4 (i.e. 940,9,9:9:9,%.9;---)- Thus, we can also say that
automaton c) has a state cyclessf4 when its input cycles with perigeE2.

The remaining automataalso have statecyclesfor variousinput cycles,but will not be
discussed in detail. Theimportance of the relationship between input perdafd the state
period () will become clear shortly.

4 PREVIOUSRESULTS CONCERNING THE COMPUTATIONAL
POWER OF RCC

Thefirg investigation into the computational powers of RCC was performed by Giles et. al.
[Giles, 1995]. Theseauthorsprovedthatthe RCC architectureregardlesof connectio
weightsandnumberof hiddenunits, is incapableof representingany FSA which "for the
sameinput has an output period greater than 2" (p. 7). Using our oscillation definitions above,

we can re-express this result as: if a FSA's input oscillates with a peripdlofi.e. input is
congant), then its state can oscillate with a period of at mes2. As already noted, Figure

1b) represents a FSA whose gtate oscillates with aperiod of w=3 in response to an input which
oscillateswith a periodof p=1. Thus,Gileset. al.'stheoremprovesthatthe automatorin
Figure 1b) cannot be implemented (and hence learned) by a RCC network.

Gileset. d. dso examined the automata depicted in Figures 1a) and 1c). However, unlike the
formal result concerning FSA b), the authors' conclusions about these two automata were of
an empirica nature. In particular, theauthors noted that while automata which oscillated with

Figure 1: Finite State Automata.

a period of 2 underconstantinput (i.e. Figure 1a)) wererealizable the automatorof 1¢)
appeared not be beredizableby RCC. Giles et. al. could not account for this last observation
by a formal proof.

5 AUTOMATA WITH CYCLESUNDER ALTERNATING INPUT

We now turn our attentionto the question: why is a RCC network unableto learnthe
automaton of 1¢)? We answer this question by considering what would happen if 1¢) were
realizable. In particular,supposehattheinput units of a RCC networkwhich implemensg
automaton 1¢) are replaced by the hidden units of a RCC network implementing 1a). In this
situation, the hidden units of 1a) will oscillate with a period of 2 under constant input. But if
the inputs to 1c) oscillate with a period of 2, then the state of 1c) will oscillate with a period
of 4. Thus, the combined network's state would oscillate with a period of four under constant
input. Furthermorethe cascaded connectivity scheme of the RCC architecture implies that
a network constructedy treatingonenetwork'shiddenunits asthe input units of another

would not violate any of the connectivity constraints of RCC. In other words, if RCC could
implementthe automatorof 1c), thenit would alsobe ableto implementa networkwhich
oscillateswith a periodof 4 underconstantnput. SinceGileset. al. provedthatthe latter

cannot bethe case, it must also be the case that RCC cannot implement the automaton of 1c¢).

Theline of reasoning used here to prove that the FSA of Figure 1c) is unrealizable can also
be applied to many other automata. In fact, any automaton whose state oscillates with a period

of morethan?2 underinput which oscillateswith a period 2, could be used to construct one

of the automata proven to be illegal by Giles. This implies that RCC cannot implement any
automatorwhose state oscillates with a period of greater &= when its input oscillates

with a period op=2.

6 AUTOMATA WITH CYCLESUNDER OSCILLATING INPUT

Giles et. al.'s theoremcan be viewed as defining a classof automatawhich cannotbe
implemented by the RCC architecture. The proof in Section 5 adds another class of automata
which aso cannot beredized. More precisely, the two proofs concern inputs which oscillate
with periods of one and two respectively. It is natural to ask whether further proofs for state
cycles can be developed when the input oscillates with a period of greater than two. We now
present the central theorem of this paper, a unified definition of unrealizable automata:

Theorem: If the input signal to a RCC network oscillates with a pefothen the network
canrepresenbnly those FSA whose outputs form cycles of lengtlvherepmod»=0 if p
is even and @modw=0 if p is odd.

To provethistheorem wewill first need to prove a simpler one relating the rate of oscillation
of the input signalto onenodein an RCC networkto the rate of oscillationof thatnode$
output signd. By "theinput Signal to one node" we mean the weighted sum of all activations
of al connected nodes (i.e. al input nodes, and all lower numbered hidden nodes), but not the
recurrent signal. I_.el.:

At+l) = EVVijai(tJrl) .
Using this definitiolﬁ,l it is possible to rewrite the equation to compute the activation of node
j (given in Section 2) as:

aj(t+1) = of)L(t+1)+V\/jjaj(t)).

But if we assumethat theinput signal oscillates with a period pf then every value df(t+1)

can be replaced by one of afinite number of input signalg.§, A, 4,, ...4,,). In other words,
A(t+1) = Ao Using this substitution, it is possible to repeatedly expand the addend of the
previous equation to derive the formula:

a](t+l) :0(A‘tmotp + ijj '

O(Aaymony + W -
O(Azmopy * Wi - - 0(Apenymogy + Wy-gy(t-p+1)) ...)))

Theunravelling of therecursive equation now allows us to examine the relationship between
a(t+1) anda(t-p+1). Specifically,we notethatif Wy >0 or if p is even them (t+1) =f(q (t-

p+1)) impliesthat fisamonotonicdly increasing function. Furthermore, sincés a function

with finite rangef must also have finite range.

It is well known that for any monotonicallyincreasingfunction with finite range,f, the
sequence, f(x), f(f(x)), f(f(f(x))), ..., is guaranteedo monotonicallyapproacha fixed point
(wheref(x)=x). Thisimpliesthatthe sequenceg(t+1), a(t+p+1), a(t+2p+1), ..., must also
monotonicallyapproacha fixed point (wherea(t+1) = a(t-p+1)). In otherwords, the
sequence does not oscillate. Sinceevery p" value of a(t) approaches fixed point, the
sequence a(t), a(t+1), a(t+2), ... can haveaperiod of at mosp, and must have a period which
dividesp evenly. We state this as our first lemma:

Lemma 1: If A(t) oscillateswith even period,p, or if W,>0, then state unjts activation value
must oscillate with a period, wherepmodw=0.

Wemust now consider the case whei,<0 andp is odd. In this casey(t+1) =f(a(t-p+1))
implies thatf is a monotonicallydecreasindunction. But, in this situationthe function f
(x)=f(f(x)) must be monotonicallyincreasingwith finite range. This implies that the
sequence: a(t+1), a(t+2p+1), g (t+4p+1), ..., mustmonotonicallyapproacha fixed point
(wherea(t+1)=a(t-2p+1)). Thisinturnimplies that the sequenegt), a(t+1), a(t+2), ..., can
have aperiod of a most 2p, and must have aperiod which divides g evenly. Once again, we
state this result in a lemma:

Lemma 2: If A(t) oscillateswith odd periodp, andif W,<0, thenstateunit j mustoscillae
with a periodw, where pmodw=0.

Lemmas 1 and 2 relate the rate of oscillation of the weighted sum of input signals and lower
numbered unit activations A(t) to thatof unit j. However,the theoremwhich we wish to

prove reaesthe rate of oscillation of only the RCC network's input signal to thentire hidden

unit activations. To prove the theorem, we use a proof by induction on the unit number,

Basis: Node i=1 is connectednly to the networkinputs. Therefore,if the input signd
oscillates with period p, then node can only oscillate with period, wherepmodo=0 if p is
even and @modv=0 if p is odd. (This follows from Lemmas 1 and 2).

Assumption: If the input signal to the network oscillates with perfpdhen node can only
oscillate with periods, wherepmod»=0 if p is even and @modo=0 if p is odd.

Proof: If the Assumption holds for all nodésthen Lemmas 1 and 2 imply that it must also
hold for nodd+1[]

This proves the theorem:

Theorem: If the input signal to a RCC network oscillates with a pefothen the network
canrepresenbnly those FSA whose outputs form cycles of lengtlvherepmods=0 if p
is even and @modw=0 if p is odd.

7 CONCLUSIONS

It is interestingto notethatboth Gileset. al.'soriginal proof andthe constructiveproof by
contradiction described in Section 5 are special cases of the theorem. Specifically, Giles et.
al.'soriginal proof concerns input cycles of lengthl. Applying the theorem of Section 6
provesthat an RCC network can only represent those FSA whose state transitions form cycles

of length w, where 2(1)modw=0, implying that state cannot oscillate with a period of greater
than 2. This is exactly what Giles et. al concluded,and provesthat (amongothers)the
automaton of Figure 1b) cannot be implemented by RCC.

Similarly, the proof of Section 5 concerns input cycles of length2. Applying our theorem
provesthat an RCC network can only represent those machines whose state transitions form

cyclesof lengthw, where(2)mod»=0. Thisagainimpliesthatstate cannot oscillate with a
period greaterthan2, which is exactlywhatwasprovenin Section5. This provesthatthe
automaton of Figure 1c) (among others) cannot be implemented by RCC.

In addition to unifying both the results of Giles et. al. and Section 5, the theorem of Section
6 dso accounts for many other FSA which are not representable by RCC. In fact, the theorem
identifiesaninfinite numberof otherclasses of non-representable FSA (feB, p=4, p=5,

...). Each dlassitsdlf of course contains an infinite number of machines. Careful examination

of the automatonillustratedin Figure 1d) revealsthatit containsa statecycle of length9
(099:0,9:0,9:0,9:9.9,9,0,9,0,09:0,9:0,---) in response to an input cycle of length 3 (*001001...").
Since this is not one of the allowable input/state cycle relationships defined by the theorem,
it canbe concludedhatthe automatorof Figure 1d) (among others) cannot be represented
by RCC.

Finally, it shouldbe notedthatit remainsunknownif the classesdentified by this papers
theorem representhe completeextentof RCC'scomputationalimitations. Considerfor
examplethe automaton of Figure 1e). This device has no input/state cycles which violate the
theorem, thuswe cannot conclude that it is unrepresentable by RCC. Of course, the issue of
whether or not this particularautomatoris representablés of little interest. However,the

class of automatato which the theoremdoesnot apply, which includesautomatonle),
requiresfurtherinvestigation. Perhapsll automatan this classarerepresentableyerhas
there are other subclasses (not identified by the theorem) which RCC cannot represent. This
issue will be addressed in future work.

References

N. Alon, A. Dewdney,andT. Ott, Efficient simulationof finite automataby neuralnets
Journal of the Association for Computing Machinery, 38 (2) (1991) 495-514.

S. Fahiman, The recurrent cascade-correlation architecture, in: R. Lippmann, J. Moody and
D. Touretzky, Eds., Advances in Neural Information Processing Systems 3 (Morgan
Kaufmann, San Mateo, CA, 1991) 190-196.

C.L. Giles, D. Chen,G.Z. Sun,H.H. Chen,Y.C. Lee,andM.W. GoudreauConstructie
Learning of Recurrent Neural Networks: Limitations of Recurrent Cascade Correlation and
a Simple Solution,EEE Transactions on Neural Networks, 6 (4) (1995) 829-836.

M. Goudreau, C. Giles, S. Chakradhar, and D. Chen, First-order v.s. second-order single layer
recurrent neural networkkEE Transactions on Neural Networks, 5 (3) (1994) 511-513.

J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and
Computation (Addison-Wesley, Reading, MA, 1979).

S.C. Kremer, On the ComputationalPower of Elman-styleRecurrentNetworks, |EEE
Transactions on Neural Networks, 6 (4) (1995) 1000-1004.

H.T. Siegelmannand E.D. Sontag,On the ComputationalPower of Neural Nets, in:
Proceedings of the Fifth ACM Workshop on Computational Learning Theory, (ACM, New
York, NY, 1992) 440-449.

