
Learning Long-Term Dependencies with Gradient

Descent is Di�cult

Yoshua Bengioy, Patrice Simardy, and Paolo Frasconiz

yAT&T Bell Laboratories

zDip. di Sistemi e Informatica, Universit�a di Firenze

Abstract

Recurrent neural networks can be used to map input sequences to output se-

quences, such as for recognition, production or prediction problems. However, prac-

tical di�culties have been reported in training recurrent neural networks to perform

tasks in which the temporal contingencies present in the input/output sequences span

long intervals. We show why gradient based learning algorithms face an increasingly

di�cult problem as the duration of the dependencies to be captured increases. These

results expose a trade-o� between e�cient learning by gradient descent and latch-

ing on information for long periods. Based on an understanding of this problem,

alternatives to standard gradient descent are considered.

Paper to appear in the special issue on Recurrent Networks of the IEEE Transactions on

Neural Networks
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1 Introduction

We are interested in training recurrent neural networks to map input sequences to output

sequences, for applications in sequence recognition, production or time-series prediction.

All of the above applications require a system that will store and update context infor-

mation, i.e., information computed from the past inputs and useful to produce desired

outputs. Recurrent neural networks are well suited for those tasks because they have an

internal state that can represent context information. The cycles in the graph of a recur-

rent network allow it to keep information about past inputs for an amount of time that is

not �xed a-priori, but rather depends on its weights and on the input data. In contrast,

static networks (i.e., with no recurrent connection), even if they include delays (such as

Time Delay Neural Networks [15]), have a �nite impulse response and can't store a bit of

information for an inde�nite time. A recurrent network whose inputs are not �xed but

rather constitute an input sequence can be used to transform an input sequence into an

output sequence while taking into account contextual information in a 
exible way. We

restrict here our attention to discrete-time systems.

Learning algorithms used for recurrent networks are usually based on computing the gra-

dient of a cost function with respect to the weights of the network [22, 21]. For example,

the back-propagation through time algorithm [22] is a generalization of back-propagation

for static networks in which one stores the activations of the units while going forward in

time. The backward phase is also backward in time and recursively uses these activations to

compute the required gradients. Other algorithms, such as the forward propagation algo-

rithms [14, 23], are much more computationally expensive (for a fully connected recurrent

network) but are local in time, i.e., they can be applied in an on-line fashion, produc-

ing a partial gradient after each time step. Another algorithm was proposed [10, 18] for
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training constrained recurrent networks in which dynamic neurons { with a single feedback

to themselves { have only incoming connections from the input layer. It is local in time

like the forward propagation algorithms and it requires computation only proportional to

the number of weights, like the back-propagation through time algorithm. Unfortunately,

the networks it can deal with have limited storage capabilities for dealing with general

sequences [7], thus limiting their representational power.

A task displays long-term dependencies if computation of the desired output at time t

depends on input presented at an earlier time � � t. Although recurrent networks can in

many instances outperform static networks [4], they appear more di�cult to train optimally.

Earlier experiments indicated that their parameters settle in sub-optimal solutions which

take into account short-term dependencies but not long-term dependencies [5]. Similar

results were obtained by Mozer [19]. It was found that back-propagation was not su�ciently

powerful to discover contingencies spanning long temporal intervals. In this paper, we

present experimental and theoretical results in order to further the understanding of this

problem.

For comparison and evaluation purposes, we now list three basic requirements for a para-

metric dynamical system that can learn to store relevant state information. We require

that

1. the system be able to store information for an arbitrary duration,

2. the system be resistant to noise (i.e., 
uctuations of the inputs that are random or

irrelevant to predicting a correct output).

3. the system parameters be trainable (in reasonable time).

Throughout the paper, the long-term storage of de�nite bits of information into the state

3



variables of the dynamic system is referred to as information latching. A formalization of

this concept, based on hyperbolic attractors, is given in section 4.1.

The paper is divided in �ve sections. In Section 2 we present a minimal task that can be

solved only if the system satis�es the above conditions. We then present a recurrent network

candidate solution and negative experimental results indicating that gradient descent is

not appropriate even for such a simple problem. The theoretical results of Section 4 show

that either such a system is stable and resistant to noise or, alternatively, it is e�ciently

trainable by gradient descent, but not both. The analysis shows that when trying to satisfy

conditions (1) and (2) above, the magnitude of the derivative of the state of a dynamical

system at time t with respect to the state at time 0 decreases exponentially as t increases.

We show how this makes the back-propagation algorithm (and gradient descent in general)

ine�cient for learning of long term dependencies in the input/output sequence, hence failing

condition (3) for su�ciently long sequences. Finally, in Section 5, based on the analysis

of the previous sections, new algorithms and approaches are proposed and compared to

variants of back-propagation and simulated annealing. These algorithms are evaluated on

simple tasks on which the span of the input/output dependencies can be controlled.

2 Minimal Task Illustrating the Problem

The following minimal task is designed as a test that must necessarily be passed in or-

der to satisfy the three conditions enumerated above. A parametric system is trained to

classify two di�erent sets of sequences of length T . For each sequence u1; : : : ; uT the class

C(u1; : : : ; uT ) 2 f0; 1g depends only on the �rst L values of the external input:

C(u1; : : : ; uT ) = C(u1; : : : ; uL):
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We suppose L �xed and allow sequences of arbitrary length T � L. The system should

provide an answer at the end of each sequence. Thus, the problem can be solved only

if the dynamic system is able to store information about the initial input values for an

arbitrary duration. This is the simplest form of long-term computation that one may ask

a recurrent network to carry out. The values uL+1; : : : ; uT are irrelevant for determining

the class of the sequences. However, they may a�ect the evolution of the dynamic system

and eventually erase the internally stored information about the initial values of the input.

Thus the system must latch information robustly, i.e., in such a way that it cannot be

easily deleted by events which are unrelated with the classi�cation criterion. We assume

here that for each sequence, ut is zero-mean Gaussian noise for t > L.

The third required condition is learnability. There are two di�erent computational aspects

involved in this task. First, it is necessary to process u1; � � � ; uL in order to extract some

information about the class, i.e., perform classi�cation. Second, it is necessary to store such

information into a subset of the state variables (let us call them latching state variables) of

the dynamic system, for an arbitrary duration. For this task, the computation of the class

does not require accessing latching state variables. Hence the latching state variables do

not need to a�ect the evolution of the other state variables. Therefore, a simple solution

to this task may use a latching subsystem, fed by a subsystem that computes information

about the class.

We are interested in assessing learning capabilities on this latching problem independently

on a particular set of training sequences, i.e. in a way that is independent on the speci�c

problem of classifying u1; : : : ; uL. Therefore we will focus here only on the latching subsys-

tem. In order to train any module feeding the latching subsystem, the learning algorithm

should be able to transmit error information (such as gradient) to such a module. An im-

portant question is thus whether the learning algorithm can propagate error information
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to a module that feeds the latching subsystem and detects the events leading to latching.

Hence, instead of feeding a recurrent network with the input sequences de�ned as above

we use only the latching subsystem as a test system and we reformulate our minimal task

as follows. The test system has one input ht and one output xt (at each discrete time step

t). The initial inputs ht, for t � L, are values which can be tuned by the learning algorithm

(e.g., gradient descent) whereas ht is Gaussian noise for L < t � T . The connection weights

of the test system are also trainable parameters. Optimization is based on the cost function

C =
1

2

X
p

(xpT � dp)2

where p is an index over the training sequences and dp is a target of +0:8 for sequence of

class 1 and �0:8 for sequences of class 0.

In this formulation, ht (t = 1; : : : ; L) represent the result of the computation that extracts

the class information. Learning ht directly is an easier task than computing it as a paramet-

ric function ht(ut; �) of the original input sequence and learning the parameters �. In fact,

the error derivatives @C

@ht
(as used by backpropagation through time) are the same as if ht

were obtained as a parametric function of ut. Thus, if ht cannot be directly trained as pa-

rameters in the test system (because of vanishing gradient), they clearly cannot be trained

as a parametric function of the input sequence in a system that uses a trainable module

to feed a latching subsystem. The ability of learning the free input values h1; : : : ; hL is a

measure of the e�ectiveness of the gradient of error information which would be propagated

further back if the test system were connected to the output of another module.
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3 Simple Recurrent Network Candidate Solution

We performed experiments on this minimal task with a single recurrent neuron, as shown

in Fig. 1a. Two types of trajectories are considered for this test system, for the two classes

(k = 0; k = 1):

xkt = f(akt ) = tanh(akt )

akt = w f(akt�1) + hkt t = 1 : : : T

a00 = a10 = 0

(1)

If w > 1=f 0(0) = 1, then the autonomous dynamic of this neuron has two attractors

x > 0 and �x that depend on the value of the weight w [7, 8] (they can be easily obtained

as non zero intersections of the curve x = tanh(a) with the line x = a=w). Assuming that

the initial state at t = 0 is x0 = �x, it can be shown [8] that there exists a value h� > 0

of the input such that, (1) xt maintains its sign if jhtj < h� 8t , and, (2) there exists a

�nite number of steps L1 such that xL1 > x if ht > h� 8t � L1. A symmetric case occurs

for x0 = �x. h� increases with w. For �xed w, the transient length L1 decreases with jhtj.

Thus the recurrent neuron of Fig. 1a. can robustly latch one bit of information, represented

by the sign of its activation. Storing is accomplished by keeping a large input (i.e., larger

than h� in absolute value) for a long enough time. Small noisy inputs (i.e., smaller than h�

in absolute value) cannot change the sign of the activation of the neuron, even if applied

for arbitrary long time. This robustness essentially depends on the nonlinearity.

The recurrent weight w is also trainable. The solution for T � L requires w > 1 to

produce two stable attractors x and �x. Larger w correspond to larger critical value h�

and, consequently, more robustness against noise. The trainable input values must bring

the state of the neuron towards x or �x in order to robustly latch a bit of information

against the input noise. For example this can be accomplished by adapting, for t = 1; : : : ; L,
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h1t � H and h0t � �H, where H > h� controls the transient duration towards one of the

two attractors.

In Fig. 1b we show two sample sequences that feed the recurrent neuron. As stated in

section 2, hkt are trainable for t � L and samples from a Gaussian distribution with mean

0 and variance s for t > L. The values of ht for t � L were initialized to small uniform

random values before starting training. A set of simulations were carried out to evaluate the

e�ectiveness of back-propagation (through time) on this simple task. In a �rst experiment

we investigated the e�ect of the noise variance s and of di�erent initial values w0 for the

self loop weight (see also [3].) A density plot of convergence is shown in Fig. 2a, averaged

over 18 runs for each of the selected pairs (w0; s). It can be seen that convergence becomes

very unlikely for large noise variance or small initial values of w. L = 3 and T = 20 were

chosen in these experiments.

In Fig. 2b, we show instead the e�ect of varying T , keeping �xed s = 0:2 and w0 = 1:25.

In this case the task consists in learning only the input parameters ut. As explained in

section 2, If the learning algorithm is unable to properly tune the inputs ut, then it will not

be able to learn what should trigger latching in a more complicated situation. Solving this

task is a minimum requirement for being able to transmit error information backwards,

towards modules feeding the latch unit.

When T becomes large it is extremely di�cult to attain convergence. These experimental

results show that even in the very simple situation where we want to robustly latch on 1

bit of information about the input, gradient descent on the output error fails for long-term

input/output dependencies, for most initial parameter values.
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4 Learning to Latch with Dynamical Systems

In this section, we attempt to understand better why learning even simple long-term de-

pendencies with gradient descent appears to be so di�cult. We discuss the general case

of a real-time recognizer based on a parametric dynamical system. We �nd that the con-

ditions under which a recurrent network can robustly store information (in a way de�ned

below, i.e. with hyperbolic attractors) yield a problem of vanishing gradients that can

make learning very di�cult.

We consider a non-autonomous discrete-time system with additive inputs:

at =M(at�1) + ut (2)

and the corresponding autonomous dynamics

at =M(at�1) (3)

where M is a nonlinear map, and at and ut are n-vectors representing respectively the

system state and the external input at time t.

To simplify the analysis presented in this section, we consider only a system with additive

inputs. However, a dynamic system with non-additive inputs, e.g., at = N(at�1; ut�1), can

be transformed into one with additive inputs by introducing additional state variables and

corresponding inputs. Suppose at 2 Rn and ut 2 Rm. The new system is de�ned by the

additive inputs dynamics a0t = N 0(a0t�1) + u0t where a
0
t = (at; yt) is a n+m-vector state, and

the �rst n elements of u0t = (0; ut) 2 Rn+m are 0. The new map N 0 can be de�ned in

terms of the old map N as follows: N 0(a0t�1) = (N(at�1; yt�1); 0), with m zeroes for the

last elements of N 0(). Hence we have yt = ut. Note that a system with additive inputs

with a map of the form of N 0() can be transformed back into an equivalent system with

non-additive inputs. Hence without loss of generality we can use the model in eq. 2.
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In the next subsection, we show that only two conditions can arise when using hyperbolic

attractors to latch bits of information. Either the system is very sensitive to noise, or

the derivatives of the cost at time t with respect to the system activations a0 converge

exponentially to 0 as t increases.

This situation is the essential reason for the di�culty in using gradient descent to train a

dynamical system to capture long-term dependencies in the input/output sequences.

4.1 Analysis

In order to latch a bit of state information one wants to restrict the values of the system

activity at to a subset S of its domain. In this way, it will be possible to later interpret at in

at least two ways: inside S and outside S. To make sure that at remains in such a region,

the system dynamics can be chosen such that this region is the basin of attraction of an

attractor (or of an attractor in a sub-manifold or subspace of at's domain). To \erase"

that bit of information, the inputs may push the system activity at out of this basin of

attraction and possibly into another one. In this section, we show that if the attractor

is hyperbolic (or can be transformed into one, e.g. a stable periodic attractor), then the

derivatives @at
@a0

quickly vanish as t increases. Unfortunately, when these gradients vanish,

training becomes very di�cult because the in
uence of short-term dependencies dominates

in the weights gradient.

De�nition 1 A set of points E is said to be invariant under a map M if E =M(E).

De�nition 2 A hyperbolic attractor is a set of points X invariant under the di�erentiable

map M , such that 8a 2 X, all eigenvalues of M 0(a) are less than 1 in absolute value.
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An attractor X may contain a single point (�xed point attractor), a �nite number of points

(periodic attractor), or an in�nite number of points (chaotic attractor). Note that a stable

and attracting �xed point is hyperbolic for the map M , whereas a stable and attracting

periodic attractor of period l for the mapM is hyperbolic for the mapM l. For a recurrent

net, the kind of attractor depends on the weight matrix. In particular, for a network de�ned

by at =W tanh(at�1) + ut , ifW is symmetric and its minimum eigenvalue is greater than

-1, then the attractors are all �xed points [17]. On the other hand, if jW j < 1 or if the

system is linear and stable, the system has a single �xed point attractor at the origin.

De�nition 3 The basin of attraction of an attractor X is the set �(X) of points a con-

verging to X under the map M , i.e., �(X) = fa : 8�;9l;9x 2 X s:t: kM l(a)� xk < �g.

De�nition 4 We call �(X), the reduced attracting set of a hyperbolic attractor X, the set

of points y in the basin of attraction of X, such that 8l � 1, all the eigenvalues of (M l)0(y)

are less than 1.

Note that by de�nition, for a hyperbolic attractor X, X � �(X) � �(X).

De�nition 5 A system is robustly latched at time t0 to X, one of several hyperbolic at-

tractors, if at0 is in the reduced attracting set of X under a map M de�ning the autonomous

system dynamics.

For the case of non-autonomous dynamics, it remains robustly latched to X as long as the

inputs ut are such that at 2 �(X) for t > t0. Let us now see why it is more robust to store

a bit of information by keeping at in �(X), the reduced attracting set of X.

Theorem 1 Assume x is a point of Rn such that there exist an open sphere U(x) centered

on x for which jM 0(z)j > 1 for all z 2 U(x). Then there exist y 2 U(x) such that

kM(x)�M(y)k > kx� yk.
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Proof: see the Appendix.

This theorem implies that for a hyperbolic attractor X, if a0 is in �(X) but not in �(X),

then the size of a ball of uncertainty around a0 will grow exponentially as t increases,

as illustrated in �gure 3(a). Therefore, small perturbations in the input could push the

trajectory towards another (possibly wrong) basin of attraction. This means that the

system will not be resistant to input noise. What we call input noise here may be simply

components of the inputs that are not relevant to predict the correct future outputs. In

contrast, the following results show that if a0 is in �(X), at is guaranteed to remain within

a certain distance of X when the input noise is bounded.

De�nition 6 A map M is contracting on a set D if 9� 2 [0; 1) such that

kM(x)�M(y)k � �kx� yk 8x; y 2 D.

Theorem 2 LetM be a di�erentiable mapping on a convex set D. If 8x 2 D; jM 0(x)j < 1,

then M is contracting on D.

Proof: See [20].

A crucial element in this analysis, is to identify the conditions in which one can robustly

latch information with an attractor:

Theorem 3 Suppose the system is robustly latched to X, starting in state a0, and the

inputs ut are such that for all t > 0, kutk < bt, where bt = (1 � �t)d. Let ~at be the

autonomous trajectory obtained by starting at a0 and no input u. Also suppose 8y 2

Dt; jM
0(y)j < �t < 1, where Dt is a ball of radius d around at. Then at remains inside a

ball of radius d around ~at, and this ball intersects X when t!1.

Proof: see the Appendix.
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The above results justi�es the term \robust" in our de�nition of robustly latched system:

as long as at remains in the reduced attracting set �(X) of a hyperbolic attractor X, a

bound on the inputs can be found that guarantees at to remain within a certain distance of

some point in X, as illustrated in �gure 3(b). The smaller is jM 0(y)j in the region around

at, the looser is the bound bt on the inputs, meaning that the system is more robust to

input noise. On the other hand, outside �(X) but in �(X), M is not contracting, it is

expanding, i.e., the size of a ball of uncertainty grows exponentially with time.

We now show the consequences of robust latching, i.e., vanishing gradient:

Theorem 4 If the input ut is such that a system remains robustly latched on attractor X

after time 0, then @at
@a0

! 0 as t!1.

Proof: see the Appendix.

The results in this section thus show that when storing one or more bit of information in

a way that is resistant to noise, the gradient with respect to past events rapidly becomes

very small in comparison to the gradient with respect to recent events. In the next section

we discuss how that makes gradient descent on parameter space (e.g., the weights of a

network) ine�cient.

4.2 E�ect on the Weight Gradient

Let us consider the e�ect of vanishing gradients on the derivatives of a cost Ct at time t

with respect to parameters of a dynamical system, say a recurrent neural network with

weights W :

@Ct

@W
=
X
��t

@Ct

@a�

@a�
@W

=
X
��t

@Ct

@at

@at
@a�

@a�
@W

(4)

Suppose we are in the condition in which the network has robustly latched. Hence for a

13



term with � � t,
���@Ct

@a�

@a�
@W

��� ! 0. This term tends to become very small in comparison to

terms for which � is close to t. This means that even though there might exist a change

in W that would allow a� to jump to another (better) basin of attraction, the gradient of

the cost with respect to W does not re
ect that possibility. This is because the e�ect of a

small change in W would be felt mostly on the near past (� close to t).

Let us see an example of how this result hampers training a system that requires robust

latching of information. Consider for example a system made of two sub-systems A and

B with the output of A being fed to the input of B. Suppose that any good solution to

the learning problem requires B storing information about events detected by A at time

0, with the output of B at a later distant time T used to compute an error, as in our

minimal problem de�ned in section 2. If B has not been trained enough to be able to store

information for a long time, then gradients of the error at T with respect to the output

of A at time 0 are very small since B doesn't latch and the outputs of A at time 0 have

very little in
uence on the error at time T . On the other hand, as soon as B is trained

enough to reliably store information for a long time, the right gradients can propagate, but

because they quickly vanish to very small values, training A is very di�cult (depending of

the size of T and the amount of noise between 0 and T ).

5 Alternative Approaches

The above section helped us understand better why training a recurrent network to learn

long range input/output dependencies is a hard problem. Gradient-based methods ap-

pear inadequate for this kind of problem. We need to consider alternative systems and

optimization methods that give acceptable results even when the criterion function is not

smooth and has long plateaus. In this section we consider several alternative optimization
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algorithms for this purpose, and compare them to two variants of back-propagation.

One way to help in the training of recurrent networks is to set their connectivity and initial

weights (and even constraints on the weights) using prior knowledge. For example, this

is accomplished in [8] and [11] using prior rules and sequentiality constraints. In fact, the

results in this paper strongly suggest that when such prior knowledge is given, it should

be used, since the learning problem itself is so di�cult. However, there are many instances

where many long-term input/output dependencies are unknown and have to be learned

from examples.

5.1 Simulated Annealing

Global search methods such as simulated annealing can be applied to such problems, but

they are generally very slow. We implemented the simulated annealing algorithm presented

in [6] for optimizing functions of continuous variables. This is a \batch learning" algorithm

(updating parameters after all examples of the training set have been seen). It performs

a cycle of random moves, each along one coordinate (parameter) direction. Each point is

accepted or rejected according to the Metropolis criterion [13]. New points are selected

according to a uniform distribution inside a hyperrectangle around the last point. The

dimensions of the hyperrectangle are updated in order to maintain the average percentage

of accepted moves at about one-half of the total number of moves. After a certain number

of cycles, the temperature is reduced by a constant multiplicative factor (0.85 in the exper-

iments). Training stops when some acceptable value of the cost function is attained, when

learning gets \stuck" 1, or if a maximum number of function evaluations is performed. A

1when the cost value on the last N� points does not change by more than � (a small constant) and

these values are all within � of the current optimal cost value found by the algorithm. In the experiments,

� = 0:001 and N� = 4.
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`function evaluation' corresponds to performing a single pass through the network, for one

input sequence.

5.2 Multi-Grid Random Search

This simple algorithm is similar to the simulated annealing algorithm. Like simulated

annealing, it tries random points. However, if the main problem with the learning tasks

was plateaus (rather than local minima), an algorithm that accepts only points that reduce

the error could be more e�cient. This algorithm has this property. It performs a (uniform)

random search in a hyperrectangle around the current (best) point. When a better point

is found, it reduces the size of the hyperrectangle (by a factor of 0.9 in the experiments)

and re-centers it around the new point. The stopping criterion is the same as for simulated

annealing.

5.3 Time-Weighted Pseudo-Newton Optimization

The pseudo-Newton algorithm [2] for neural networks has the advantage of re-scaling the

learning rate of each weight dynamically to match the curvature of the energy function

with respect to that weight. This is of interest because adjusting the learning rate could

potentially circumvent the problem of vanishing gradient. The pseudo-Newton algorithm

computes a diagonal approximation to the Hessian matrix (second derivatives of the cost

with respect to the parameters) and updates parameters according to the following on-line

rule:

�wi(p) = �
�

@2C(p)
j@w2

i
j
+ �

�
@C(p)

@wi

(5)

where �wi(p) is the update for weight wi after pattern p has been presented, C(p) is the
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cost for pattern p, and � and � are small positive constants. This amounts to computing

a local learning rate for each parameter by using the inverse of the second derivative with

respect to each parameter as a normalizing factor. When @2C(p)
j@w2

i
j
is small, the curvature is

small (around the current value of w) in the direction corresponding to the wi axis. Hence

a larger step can be taken in that direction. This algorithm was tested in the experiments

described in section 5.5. It consistently performs better than standard back-propagation

but still fails more and more as we increase the span of input/output dependencies.

This algorithm and our theoretical results of section 4 inspired the following time-weighted

pseudo-Newton algorithm. The basic idea is to consider the unfolding of the recurrent

network in time, and each instantiation of a weight (at di�erent times) as a separate

variable, albeit with the constraint that these now separate variables should be equal. To

simplify the problem, we consider here a cost C(p) which depends on the output of the

network at the �nal time step of sequence p. Hence the weight update for wi can be

computed as follows:

�wi(p) = �
X
t

�
@2C(p)
j@w2

it
j
+ �

�
@C(p)

@wit

(6)

where wit is the instantiation for time t of parameter wi. In this way, each (temporal)

contribution to �wi(p) is weighted by the inverse curvature with respect to wit, the in-

stantiation of parameter wi at time t 2. The reader may compare the above equation with

equation 4, where all the temporal contributions are uniformly summed. Consequently,

updating w according to equation 6 does not actually follow the gradient (but neither

would following equation 5). Instead, several gradient contributions are weighted using

second derivatives, in order to make faster moves in the 
atter directions. Like for the

pseudo-Newton algorithm of [2], we prefer using a diagonal approximation of the Hessian

2The idea of using second derivatives in this way was inspired from discussions with L. Bottou.
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which is cheap to compute and guaranteed to be positive. � is a global learning rate (0.01

in our experiments). The constant � is introduced to prevent �w from becoming very

large (when @2C(p)
j@w2

it
j
is very small). However, we found that much better performance can

be attained with the recurrent networks when � is adapted on-line. This prevents the

maximum �w from being greater than a certain upper bound (0.3 in the experiments) or

smaller than a certain lower bound (0.001 in the experiments). The constant � is updated

with a \momentum" term (0.8 in the experiments), in order to prevent it from decreasing

too rapidly when the �rst and second derivatives vary widely from sequence to sequence

and have very small magnitude (for example when the norm of the weight matrix jW j is

less than 1).

5.4 Discrete Error Propagation

The analysis of section 4 could suggest that the root of the problem lies in the essentially

discrete nature of the process of storing information for an inde�nite amount of time.

Indeed, the gradient backpropagated through time vanishes when the system stays in the

same stable state for several time steps. Intuitively, we would like to recover some error

information at the time when the input made the system reach that stable state. Instead

of propagating a gradient through di�erentiable units, the algorithm presented here was

explicitly designed to propagate discrete error information through units that compute a

non-di�erentiable function, such as a hard threshold. In this way we hope to �nd algorithm

that directly address the problem of propagating error backwards in time, even though the

process of robustly storing information appears to have a discrete nature.

Other methods have been explored in order to train layered networks of hard threshold

units. For example, in [1] it is shown how to train two layered networks using a probabilistic
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approach. In [9] a method is proposed that iterates two training steps: adjusting the

network internal representation (units activations) and training the parameters to produce

such representation. This algorithm can be applied to recurrent networks as well. Both

methods take advantage of probabilities in order to make di�erentiable the error function,

thus permitting the use of gradient descent. Another approach, proposed in [12], applies to

two layer networks. The space of activities of hidden units is searched in a greedy way in

order reduce output error. An earlier algorithm also related to the one presented here, but

based on the propagation of targets was proposed in [16]. The algorithm introduced here,

instead, relies on propagating discrete error information, obtained with a �nite di�erence

approach.

A neural network can be represented as a series of local elements with each a forward

propagation function and an error propagation function. We will derive these functions for

a discrete element and show how they can be used together with standard di�erentiable

elements to minimize a cost function. Our building block for discrete elements is the

non-linear threshold function. The forward propagation is given by

yi(x) = sign(xi) (7)

where yi 2 f�1; 1g is the output of unit i and xi 2 R its input. We are now interested in

�nding the discrete counterpart of gradient propagation for this unit. To backpropagate

an error signal, we should �rst establish the relation between variations of the output �yi

and variations of the input �xi. This can be done in a systematic way. The variation

�yi(�xi) can be easily computed from equation 7 by considering under which conditions
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the output y of a discrete threshold unit will change by 2, -2 or 0:

�yi =

�������������

2 if xi < 0 and xi +�xi � 0

�2 if xi � 0 and xi +�xi < 0

0 otherwise

(8)

and from this equation we can compute the desired variation �xi(�yi) of xi when the

desired variation of yi is �yi:

�xi =

�������������

�� xi if �yi = 2

��� xi if �yi = �2

0 otherwise

(9)

where � is a positive constant. We now denote by �yi and �xi the desired changes in

yi and xi respectively. Let C be a cost function on our system when a certain pattern

(sequence) is presented. A \pseudo-gradient" �C
�xi

should re
ect the in
uence of a change

of xi on the cost C. In our experiment we set �C
�xi

to 1
�xi(�yi)

if �yi 6= 0 and 0 otherwise.

To use the \pseudo gradient" we must insure that �yi is in f2;�2; 0g since �xi(�yi) is

not de�ned for other values. This is achieved using a stochastic process. Let's assume

that there exist two constants MIN and MAX such that the error signal �C
�yi

= gi to be

backpropagated is a real number satisfying MIN � gi �MAX. We de�ne the stochastic

function �yi = S(gi) which maps gi to f�2; 2g as follows:

8>><
>>:
P (S(gi) = 2) = gi�MIN

MAX�MIN

P (S(gi) = �2) = MAX�gi
MAX�MIN

(10)

Provided that �2 < MIN and MAX < 2, it is easy to show that the expectation of

S(gi) is exactly gi, even though S(gi)can only take two values (if jgij > 2 the resulting

expected value will be -2 or +2). Furthermore the sum of this \pseudo gradient" over

several patterns quickly converges to the sum of the continuous valued gi's.
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The non-linear threshold unit can be used in combination with any other di�erentiable

elements which backpropagate the gradient in the usual fashion. The important point

is that when a non-linear threshold unit is connected to itself in a loop with a positive

gain, two stable �xed points are induced. The \pseudo gradient" along this loop doesn't

vanish with time which is the essential reason for using discrete units. This pseudo-gradient

doesn't vanish along the loop, as can be observed by repetitively applying equations 9 and

8 and noting that if the pseudo-gradient is large enough in magnitude then it is always

propagated.

This approach is in no way optimal and many other discrete error propagation algorithms

are possible. Another very promising approach for instance is the trainable discrete 
ip-


op unit [3] which also preserves error information in time. Our only claim here is that

discrete propagation of error o�ers interesting solutions to the vanishing gradient problem

in recurrent network. Our preliminary results on toy problems (see next subsection and

[3]) con�rm this hypothesis.

5.5 Experimental Results

Experiments were performed to evaluate various alternative optimization approaches on

problems on which one can increase the temporal span of input/output dependencies. Of

course, when it is possible, �rst training on shorter sequences helps a lot, but in many

problems no such \short-term" version of the problem is available. Hence a goal of these

experiments was to measure how these algorithms can perform when it is not possible

to train using sequences with equivalent short-term dependencies. Experiments were per-

formed with and without input noise (uniformly distributed in [-0.2,0.2]) and varying the

length of the input/output sequences. The criteria by which the performance of these al-
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gorithms were measured are (1) the average classi�cation error at the end of training, i.e.,

after the stopping criterion has been met (when either some allowed number of function

evaluations has been performed or the task has been learned), (2) the average number of

function evaluations needed to reach the stopping criterion.

Experiments were performed on three problems: the Latch problem, the 2-Sequence prob-

lem, and the Parity problem. For each of these problems, a suitable architecture was chosen

and all algorithms were used to search in the resulting parameter space (except that the

discrete error propagation algorithm used hard threshold neurons instead of symmetric

sigmoids). Initial parameters of the networks were randomly generated for each trial (uni-

formly between -0.5 and 0.5). The choice of inputs and the noise for each training sequence

was also randomly generated for each trial. The same initial conditions and training set

were used with each of the algorithms (at a given trial). For each trial, a training set was

generated with sequences whose length is uniformly distributed between T=2 and T . The

number T (maximum sequence length) is displayed in Figure 4. The tasks all involved a

single input and a single output at each time step.

Latch Problem The Latch problem is the same as described above in Section 3.

Here we considered only three adaptive parameters: the self-loop weight w, the initial input

value u1 for \positive" sequences (with positive �nal target), and the initial input value u0

for \negative" sequences (with negative �nal target). The network thus had only one unit.

2-Sequence Problem The 2-Sequence problem is the following: classify an input

sequence as one of two sequences when given the �rst N elements of this sequence. N varies

from pattern to pattern and noise may be added to the input. Hence the network can't

rely on the last particular values it saw. Instead, early on, it must recognize subsequences

belonging to one of the two classes and store that information (or update it if con
icting
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information arrives) until its output is read out (which may be at any time but is done

only once per sequence). These initial key subsequences were randomly generated from

a uniform distribution in [-1,1]. In all experiments we used a fully connected recurrent

network with 5 units and no bias (one of the units received external additive input, i.e.,

the network has 25 free parameters).

Parity Problem The Parity problem consists in producing the parity of an input

sequence of 1's and -1's (i.e., a 1 should be produced in output if and only if the number

of 1's in the input is odd). The target is only given at the end of the sequence. The length

of the sequence may vary and the input may be noisy. It is a di�cult problem that has

local minima (like the XOR problem), and that appears more and more di�cult for longer

sequences. Most local optimization algorithms tend to get stuck in a local minimum for

many initial values of the parameters. The minimal size network that we implemented

has 7 free parameters and 2 units (2 inputs connected to 1 hidden and 1 output units).

Although it requires less parameters than the 2-Sequence problem, it is a more di�cult

learning problem.

The results displayed in Figure 4 can be summarized as follows:

� Although simulated annealing performed well on all problems, it requires an order of

magnitude more training time than all the other algorithms. This is not surprising

since it is global search algorithm. The multi-grid algorithm is faster but fails on

the Parity problem, probably because of local minima. It is also interesting to note

that on the Latch problem with simulated annealing, training time increases with

sequence length. Although the best solution is the same for all sequence lengths, the

error surface for longer sequences could be more di�cult to search, even for simulated

annealing.
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� The discrete error propagation algorithm performed reasonably well on all the prob-

lems and sequence lengths, and was the only one with simulated annealing that could

solve the Parity problem. Because it performs an on-line local search it is however

much faster than simulated annealing. It seems to be more robust to local minima

than the multi-grid random search.

� The pseudo-Newton back-propagation algorithm consistently performs better than

the standard back-propagation. However, both see their performance worsen when

the temporal span of input/output dependencies increasing.

� The time-weighted pseudo-Newton algorithm appears to perform better than the

other two variants of back-propagation but its performance also appears to worsen

with increasing sequence length.

6 Conclusion

Recurrent networks are very powerful in their ability to represent context, often outperform-

ing static networks [4]. However, we have presented theoretical and experimental evidence

showing that gradient descent of an error criterion may be inadequate to train them for

tasks involving long-term dependencies. Assuming hyperbolic attractors are used to store

state information, we found that either the system would not be robust to input noise or

would not be e�ciently trainable by gradient descent when long term context is required.

Note that the theoretical results presented in this paper hold for any error criterion and

not only for the mean square error criterion. Two simple generalizations are obtained as

follows. As mentioned in the analysis section, a periodic attractor can be transformed into

a �xed point by subsampling time with the period of the attractor. Hence if corresponding
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�xed point is stable, it is also hyperbolic and our results hold in that case as well. Another

interesting case is the situation in which the system doesn't remain long near an attractor,

but rather, jumps rapidly from one stable (hyperbolic) attractor to another. This would

arise for example if the continuous dynamics can be made to correspond to the discrete

dynamics of a deterministic �nite-state automaton. In that case, our results hold as well

since the norm of Jacobian of the map derivatives near each of the attractor is less than

one ( @at
@at�1

= M 0(at�1)). What remains to be shown is that similar problems occur with

chaotic attractors, i.e., that either the gradients vanish or the system is not robust to input

noise. It is interesting to note that related problems of vanishing gradient may occur in

deep feedforward networks (since a recurrent network unfolded in time is just a very deep

feedforward network with shared weights).

The result presented here does not mean that it is impossible to train a recurrent network

on a particular task. It says that gradient descent becomes increasingly ine�cient when the

temporal span of the dependencies increases. Furthermore, for a given problem, there are

sometimes ways to help the training by setting the network connectivity and initial weights

(and even constraints on the weights) using prior knowledge (e.g., [8], [11]). For some

tasks, it is also possible to present a variety of examples of the input/output dependencies,

including short-term dependencies which are su�cient to infer similar but longer term

dependencies. For example, in the Latch problem or the Parity problem, if we start by

training with short sequences, the system rapidly settles in the correct region of parameter

space.

A better understanding of this problem has driven us to design alternative algorithms,

such as the time-weighted pseudo-Newton and the discrete error propagation algorithms.

In the �rst case, we consider the instantiation of the weights at di�erent times as dif-

ferent variables and consider the curvature of the cost function for these variables. This
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information is used to weight the gradient contributions for the di�erent times in such a

way as to make larger steps in directions where the cost function is 
atter. The discrete

error propagation algorithm propagates error information through a mixture of discrete

and continuous elements. The gradient is locally quantized with a stochastic decision rule

that appears to help the algorithm in locally searching for solutions and getting out of local

minima. We have compared these algorithms with standard optimization algorithms on toy

tasks on which the temporal span of the input/output dependencies could be controlled.

The very preliminary results we obtained are encouraging and suggest that there may be

ways to reconcile learning with storing. Good solutions to the challenge presented here to

learning long-term dependencies with dynamical systems such as recurrent networks may

have implications for many types of applications for learning systems, e.g., in language

related problems, for which long-term dependencies are essential in order to make correct

decisions.

Appendix

Proof of Theorem 1:

By hypothesis and de�nition of norm, 9 u s.t. kuk = 1 and kM 0(x)uk > 1. The Taylor

expansion of M at x for small value of � is:

M(x+ �u) =M(x) +M 0(x)�u+O(k�uk2) (11)

Since U(x) is an open set, 9 � s.t. kO(k�uk2)k < �(kM 0(x)uk�1) and x+�u 2 U(x). Let-

ting y = x+�u we can write kM(y)�M(x)�M 0(x)�uk = kO(k�uk2)k < �kM 0(x)uk��

or �kM(y)�M(x)�M 0(x)�uk+kM 0(x)�uk > �. This implies using the triangle inequal-

ity kM(y)�M(x)k > � = kx� yk.2
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Proof of Theorem 3:

Let us denote by �t the radius of the \uncertainty" ball �t = fa : k ~at � ak < �tg in which we

are sure to �nd at, where ~at gives the trajectory of the autonomous system. Let us suppose

that at time t, �t < d (this is certainly true at time 0, when ~a0 = a0). By Lagrange's mean

value theorem and convexity of Dt, 9z 2 Dt s.t.

kM(x)�M(y)k � jM 0(z)jkx� yk, but jM 0(z)j < �t by hypothesis. Then by the con-

traction theorem [20] we have �t+1 � �td+ bt. Now by hypothesis we have bt = (1 � �t)d,

so �t+1 < d. The conclusion of the theorem is then obtained since ~at 2 Dt by our construc-

tion above and ~at converges to X for t!1. 2

Proof of Theorem 4:

By hypothesis and de�nitions 4 and 2,
��� @a�
@a��1

��� = jM 0(a��1)j < 1 for � > 0, hence @at
@a0

! 0

as t!1 2.

One could however ask what happens when at remains near the boundary between two

basins:

Lemma 1 Suppose that for t > 0, a0 and ut are such that at remains on the boundary

between two basins of attraction for attractors X1 and X2, and there exists an in�nites-

imal change in a0 yielding the state into either X1 or X2 and remaining there. Then

limt!1

��� @at
@a0

��� =1.

It appears that the hypotheses of this lemma will rarely be satis�ed, for two reasons.

Firstly, the system evolves in discrete time, making it improbable to obtain at precisely

on the boundary surface. Second, in order to stay on that surface, say S(at) = 0, ut must

satisfy the equation S(M(at�1) + ut) = 0. Hence the submanifold of values of ut in Rm

which satisfy this equation has dimension m� 1, thus having null measure.
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Generalization to a Projection of the State

The results obtained so far can be generalized to the case when a projection Pat of the state

at converges to an attractor under a map M . This would be the case for example when a

subset of the hidden units in a recurrent network participate directly in the dynamics of a

stable attractor. Let P and R be orthogonal projection matrices such that

at = P+zt + R+yt

zt = Pat; yt = Rat

PR+ = 0; RP+ = 0

(12)

where A+ denotes the right pseudo-inverse of A, i.e. AA+ = I. Suppose M is such that P

can be chosen so that zt converges to an attractor Z with the dynamics zt = MP (zt�1) =

PtM(P+zt+R+yt) for any yt. Then we can specialize all the previous de�nitions, lemmas

and theorems to the subspace zt. When we conclude with these results that @zt
@z0

! 0 , we

can infer that @at
@a0

! R+ @yt
@y0

R , i.e., that the derivatives of at with respect to a0 depend only

on the projection of a on the subspace Ra. Hence the in
uence of changes in the projection

of a on the subspace Pa is ignored in the computation of the gradient with respect to W ,

even though non-in�nitesimal changes in Pa could yield very di�erent results (i.e., jumping

into a di�erent basin of attraction). Although training can now proceed in some directions,

the e�ect of parameters that in
uence detecting and storing events for the long-term or

switching between stable states is still not taken very much into account.
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xt = f(at) = tanh(at)

at = wxt�1 + ht
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Figure 1: a) Latching recurrent neuron. b) Sample input to the recurrent neuron. The trainable

values h1; : : : ; hL (marked in bold) have been tuned by one of the successfully learning simulations.
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Figure 2: Experimental results for the minimal problem. a) Density of training convergence with

respect to the initial weight w0 and the noise variance s (white ) high density), with L = 3 and

T = 20. b) Frequency of training convergence with respect to the sequence length T , (with noise

variance s = 0:2, and initial weight w0 = 1:25).
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Figure 3: Basin of attraction (�), reduced attracting set (�) of an attractor X. Ball of

uncertainty grows exponentially (a) outside �, but is bounded (b) inside �.
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Figure 4: Comparative simulation results for: 2 standard back-propagation, 5 pseudo-Newton,

4 time-weighted pseudo-Newton, 
 discrete error propagation, � multi-grid random search,

jjjjjjjjjjjjjjjj simulated annealing. The horizontal axis (T ) represents maximum sequence length. On the

left, the vertical axis represents classi�cation error after training; on the right, the number of

sequence presentations to reach a stopping criterion.

35


