
Evaluation of alignment methods for HTML
parallel text

Enrique Sánchez-Villamil, Susana Santos-Antón,
Sergio Ortiz-Rojas, and Mikel L. Forcada

Transducens group, Departament de Llenguatges i Sistemes Informàtics
Universitat d’Alacant, E-03071 Alacant, Spain

{esvillamil,ssantos,sortiz,mlf}@dlsi.ua.es

Abstract. The Internet constitutes a potential huge store of parallel
text that may be collected to be exploited by many applications such as
multilingual information retrieval, machine translation, etc. These ap-
plications usually require at least sentence-aligned bilingual text. This
paper presents new aligners designed for improving the performance of
classical sentence-level aligners while aligning structured text such as
HTML. The new aligners are compared with other well-known geomet-
ric aligners.

1 Introduction

Many machine translation applications are based on machine learning on parallel
corpora. The amount of parallel text required to obtain accurate translations
using these applications is quite high (up to hundreds of megabytes) although
it seems possible to generate such large corpora using the Internet. The utility
of the corpora increases dramatically when they are aligned at sentence or word
levels.

A number of sentence-alignment approaches have been developed during the
last years. The first effective approach at aligning large corpora was based on
modeling the relationship between the lengths of sentences that are mutual trans-
lations (Brown et al., 1991; Gale and Church, 1991, 1993). Chen (1993) used a
different approach, based on lexical information to improve accuracy, but it was
slower than sentence-length-based algorithms. Some years later, Melamed (1996)
developed a method based on word correspondences and supported by external
linguistical knowledge.

All these aligners are designed to work with text segmented in sentences. In
our case, collections of hundreds of megabytes of downloaded webpages, which
are not segmented, have to be aligned at sentence-level. These pages are turned
into XML1 using the tidy program,2 which may be used to turn HTML into
XHTML.3

1 http://www.w3.org/TR/2004/REC-xml-20040204/
2 http://www.w3.org/People/Raggett/tidy/
3 XHTML is a stricter and cleaner XML-version of HTML.

The aligners proposed in this paper are being used to generate a large col-
lection of aligned text corpora. The corpora will be segmented, and segments
will be aligned to build translation units. The resulting translation units may be
used to train translation applications.

In particular, this paper presents a type of aligners that combine sentence-
splitting and alignment generation, and take advantage of the structured nature
of web documents to improve the accuracy of sentence-aligned text in the absence
of linguistic knowledge. The aligners are compared to classical approaches in the
experiments.

2 Notation

In this paper, we define the alignment as a sequence of edit operations, that
is, a sequence of insertions, deletions and substitutions of segments.4 Let L =
(l1, l2, ..., l|L|) and R = (r1, r2, ..., r|R|) be two parallel texts split in segments
and S = (s1, s2, ..., s|S|), a sequence of edit distance operations, where si can
be an insertion (mi), a deletion (md) or a substitution (ms) of a segment. It is
straightforward to obtain the aligned segment pairs (li, ri) using the edit distance
sequence. We define A as the function returning the edit-distance alignment of
two texts, so that A(L,R) −→ S.

Additionally, we define the alignment distance D that is considered as a
measure of the similarity of the texts that have been aligned. The distance D is
defined as the addition of the differences in length of all aligned segments:

D(S) =
|S|∑
i=1

abs(|li| − |ri|) (1)

where bars | · | are used to represent the length of a text segment. The mi and
md operations where either li or ri would be the empty string are also taken
into account.

3 Classical geometric aligners

Geometric aligners are based only in geometric properties of the documents,
such as sentence lengths, word lengths, paragraph lengths, etc. They are fully
independent of the language because they do not use linguistic information.

Classical geometric aligners were designed to align plain text segmented in
sentences. However, they can be adapted to marked-up corpora, such as XHTML,
in several ways. The simplest approach would be the removal of all tags in both
sides, so that a pair of plain texts would be obtained and would then be split;
such aligner is called Remover. A more elaborate algorithm would require the
substitution of some tags by sentence boundaries5 (and the removal of the rest
4 This definition induces a monotone alignment.
5 The tags replaced are hr, br, p, li, ul, ol, tr, td, th, div.

of tags) and the aligner that implements this algorithm is called Replacer. Both
aligners will be used as a baseline to evaluate the sentence-alignment algorithms
presented in this paper.

4 Geometric aligners based on structure

The sentence-alignment algorithms that are presented in this paper combine
sentence splitting with the alignment process. The algorithms work with struc-
tured text such as XHTML, but can be generalized easily to be applied to other
XML-based formats.

These algorithms are based on a classification of tags that guide the initial
splitting of the text. After that, a sequence of tags and text segments is extracted
to perform the alignment, which will never allow the alignment of tags to text
segments.

4.1 Classification of XHTML tags

In order to maximize the alignment accuracy, XHTML tags have been classified
in several different categories. Originally, tags were divided in block and inline
tags as in the XHTML DTD, but these partition was refined and the following
four categories were defined:

– Structural tags: Tags that compose the structure of the webpage and its
graphical representation: blockquote, body, caption, col, colgroup, dd, dir,

div, dl, dt, h1, h2, h3, h4, h5, h6, head, hr, html, li, menu, noframes,

noscript, ol, optgroup, option, p, q, select, table, tbody, td, tfoot,

th, thead, tr, ul.

– Format tags: Tags that specify the format of some elements of the webpage:
abbr, acronym, b, big, center, cite, code, dfn, em, font, i, pre, s, small,

span, strike, strong, style, sub, sup, tt, u.

– Content tags: Tags that contain relevant elements (for alignment purposes),
which are neither structural nor format tags: a, area, fieldset, form, iframe,

img, input, isindex, label, legend, map, object, param, textarea, title.

– Irrelevant tags: Tags that are ignored6 during the alignment process: address,
applet, base, basefont, bdo, br, button, del, ins, kbd, link, meta, samp,

script, var.

Most block tags are structural tags, and most inline tags are format tags.
Content tags represent basically inline tags that do not contain format. Tags
that are not useful in the alignment process are classified as irrelevant tags.

Such a classification allows to set specific substitution costs regarding to the
categories of the tags; for instance, the costs of substitutions involving structural
tags will be higher than those of substitutions involving format tags.

6 In fact, irrelevant tags are simply removed before aligning.

Characters before Characters after Points

1 - a number −0.5
2 - a blank space +0.5
3 - a non-capital letter −0.2
4 - another dot −0.5
5 - a blank space and a capital letter +0.5
6 - a blank space and a non-capital letter −0.2
7 a capital letter - −0.5
8 a word of 3 characters or less - −0.5
9 a blank space - +0.2
10 a ’ or ” character a ’ or ” character −0.5
11 another dot - +0.4

Table 1. Triggers applied to the context of dots to score sentence borders.

4.2 Sentence-splitting heuristics

Text segments have to be split into sentences so that they can be aligned. The
splitting algorithm considers many of the tags as sentence boundaries, which
often generates small segments that do not even contain a single sentence. After
that, sentence splitting algorithms are applied to ensure that the alignment is
performed at sentence-level, so that no segment contains more than one sentence.

The algorithms in this paper use heuristics to find sentence boundaries. Ini-
tially, all breaking points7 inside a text segment are located. After that, question
marks and exclamation marks are considered sentence boundaries and dots are
analysed to detect if they constitute sentence boundaries.

The analysis of dots is based on a list of triggers, which is shown in table
1, that assign scores to breaking points, so that breaking points with a score
higher than a threshold, which was defined as −0.2, will be considered sentence
borders. The scores associated with the triggers and the threshold have been
experimentally adjusted. The threshold was defined to be negative so that if no
trigger is executed the breaking point is considered as a sentence border.

4.3 Text alignment

The alignment process is performed at the same time for tags and text segments,
that is, the edit distance algorithm is applied to generate the best alignment
between tags and text segments.

The edit distance costs were specified according to our alignment constraints
and some decisions about the alignment of parallel texts:

– A tag cannot be aligned to a text segment or vice versa.
– A structural tag should not be aligned to a format, content or irrelevant tag,

and the cost of the alignment with a different structural tag should be high.

7 Breaking points are dots (.), question marks (?) and exclamation marks (!).

Insertion Struct. tags Format tags Content tags Text segm.

Deletion - 1 0.75 1.25 0.01 |r|
Struct. tags 1 1.5 1.75 H H
Format tags 0.75 1.75 0.4 H H
Content tags 1.25 H H H H
Text segm. 0.01 |l| H H H ∆

Table 2. Edit distance costs between different items in the text. See text for a definition
of ∆.

– A format tag should not be aligned to a tag of different type, and the cost
of the alignment with a different format tag should be low.

– A content tag should only be aligned with the same tag.
– To favor tag alignment, text chunks should only be aligned between them

and costs of their aligment should be lower than those that involve tags.

These costs are defined in table 2, where H is a value high enough to be never
used in the edit distance process. The value of the symbol ∆ will be defined
specifically for each aligner.

The 2-in-1 aligner splits both texts in tags and text sentences and then
aligns them. This aligner defines ∆ = 0.015 (abs(|l|− |r|)), that is, the difference
between the text sentences lengths multiplied by a factor. The factor 0.015 has
been established to be between the cost of inserting/deleting text characters and
the sum of both costs, that was defined experimentally as 0.01 in the table 2.

The 2-steps aligner splits the text in tags and text segments, which can
contain more than one sentence. The first step consists in aligning tags and
text segments among them. After that, the second step consists in aligning the
sentences contained in the text segments obtained in the first step.

Two variants of this last aligner have been tested: the first one defines ∆ =
0.015 (abs(|l| − |r|)), that is called 2-steps-L aligner, where L means length,
given that this first variant is based in length differences. The second one defines
∆ = 0.01 D(A(l, r)), that is the alignment distance between the text segments
multiplied by a factor, and it is called 2-steps-AD aligner.8 The 2-step-L factor
is the same used in the 2-in-1 aligner, but the 2-steps-AD factor is the cost
of inserting/deleting text characters, so that the substitution cost would remain
lower than the sum of the insertion cost plus the deletion costs if the substitution
were possible.

5 Experiments

The experiments performed to assess the quality of the aligners are based on
several sentence-aligned corpora. These corpora were downloaded from three
different websites. Then, all corpora were aligned and manually corrected using

8 AD stands for alignment distance.

a program with a graphical user interface9 oriented to checking and manipulating
alignments.

5.1 Corpora

Three different corpora have been used to evaluate the quality of the alignments.
Each of them represents a step forward in alignment difficulty. A measure of the
difficulty in the alignment of parallel text could be the number of sentences that
are aligned to blank in a manual alignment. The higher the number of blank
alignments established, the less parallel the aligned texts are.

The first corpus has been downloaded from the Internet with a collector of
parallel corpora called Bitextor (Sánchez-Villamil et al., 2006)10. This corpus
contains 3.3 megabytes of Spanish–Catalan parallel text that was downloaded
from www.elperiodico.com, an online daily newspaper.

The second one is a small fragment of the Quixote (196 kilobytes) that was
downloaded from the Miguel de Cervantes Digital Library,11 and it constitutes
an Spanish–English corpus.

And the third one is a little collection of parallel text files in Spanish, Por-
tuguese, Italian, Catalan and Galician that compose the help texts of the popular
chatting program mIRC.12 It contains a total of 96 kilobytes distributed in the
five languages. All ten possible language pairs were aligned.

The corpus downloaded using Bitextor has 2.14% of sentences aligned to
blank, which makes it the easiest one. The Quixote corpus has 19.08% which
makes it harder to be aligned, and the 26.42% of the mIRC corpus makes it the
hardest one.

5.2 Metrics

The metrics that have been selected to evaluate the quality of the alignment
generated by the different aligners are the same as in (Black et al., 1991), that
is, the precision, the recall and the F -measure. All of them require a reference
alignment to calculate the number of correct alignments and the total of reference
alignments. These metrics are based on sentences and are defined as follows:

precision =
correct alignments

proposed alignments
(2)

recall =
correct alignments

reference alignments
(3)

F = 2 · recall× precision
recall + precision

(4)

9 Very similar to that of the bitext2tmx bitext aligner, http://www.sourceforge.
net/projects/bitext2tmx/.

10 http://www.sourceforge.net/projects/bitextor/
11 http://www.cervantesvirtual.com/
12 http://www.mirc.co.uk/translations/index.html

However, in our case, the direct comparison of the results of the aligners
would not make sense because there is a significant length diference of the re-
sulting alignments generated by different aligners. Therefore, concatenation of
alignments was allowed in the comparison. This means that a pair of aligned
segments is correct if: (a) the same pair is found in the reference alignment or
(b) the same pair can be built by concatenating pairs of the reference alignment.

Furthermore, an additional metric has been applied to perform the evalu-
ation. This metric is based on considering the number of sentence boundaries,
instead of sentences, that were aligned properly. In (Melamed, 1996), Melamed
used a method of evaluating bitext mapping algorithms which consists in com-
paring their output to a hand-constructed reference set of points, which, in our
case, are the sentence boundaries. This metric allows to handle successfully the
differences in length in the alignments proposed, although does not completely
guarantee the correction of the alignments proposed.

5.3 Results

The experiments have been performed using five different aligners. The first two,
are the basic geometric aligners Remover and Replacer that were explained in
section 3, which are used as a baseline. The last three are the aligners proposed
in this paper, i.e., the 2-steps-AD aligner, the 2-steps-L aligner and the 2-in-1
aligner.

Fig. 1. Precision achieved by the aligners.

The results that we obtained with the metrics based on sentences are shown
in figures 1, 2 and 3. As can be seen, the precision and recall of the resulting

Fig. 2. Recall achieved by the aligners.

Fig. 3. F -measure achieved by the aligners.

Fig. 4. F -measure achieved by the aligners using the sentence-boundary metric.

Remover Replacer 2-steps-AD 2-steps-L 2-in-1

mIRC 38(65) 33(52) 29(46) 29(46) 29(47)
Quixote 75(166) 40(95) 37(85) 37(85) 37(86)
Bitextor 95(285) 22(31) 21(29) 21(29) 21(29)

Table 3. Average segment length (standard deviation) for each corpus and each aligner
in characters.

alignments is quite different for each corpus. As expected, the best results were
obtained in the Bitextor corpus, and the mIRC corpus had the worst results.
The results of the proposed aligners were clearly better than those of the basic
geometric aligners.

Similar results were obtained using the metric based on sentence boundaries,
as it is shown in figure 4 (only the F -measure is given). The results were slightly
better because the sentence-based metric requires the coincidence of two consec-
utive sentence boundaries,13 while the sentence-boundaries metric only requires
the coincidence of one of them.

The results obtained by the 2-in-1 aligner were the best in the three corpora,
with more than 93% of F -measure in the Bitextor corpus, more than 73% in the
Quixote corpus and more than 58% in the mIRC corpus.

Additionally, it is worth examining the average in segment length of the dif-
ferent aligners, given that they apply different sentence splitting criteria. In table
3 the comparison of the results of the different aligners is shown. As expected,
the proposed aligners build shorter sentences than basic geometric aligners. The
standard deviation is much higher than the average because the sentence length
13 Two consecutive sentence boundaries delimit a sentence.

Remover Replacer 2-steps-AD 2-steps-L 2-in-1

Time 155 s 153 s 318 s 294 s 323 s

Table 4. Time spent by the aligners while processing the Bitextor corpus.

Fig. 5. F -measure achieved by the aligners in related experiments: (a) Ignoring format
tags. (b) Ignoring content tags. (c) Ignoring format and content tags.

distribution in common texts is not a standard distribution, as it is explained in
(Sigurd et al., 2003).

Nevertheless, as a counterpart, the tag aligners are slower than basic ge-
ometric aligners. Table 4 contains the results of the time comparison of the
alignment of the Bitextor corpus. The processing times of basic geometric align-
ers were aproximately one half of the processing times of the tag aligners. The
tag aligners align a higher number of items than basic aligners; this is because
basic aligners do not consider the tags as items, which explains the significant
difference in processing time.

Finally, some related experiments (changing the classification of tags) have
been studied and are shown in figure 5. When format tags are considered as
irrelevant tags, the results are slightly worse (7–18% worse for the mIRC corpus,
6–16% worse for the Quixote corpus and 4–5% for the Bitextor corpus). When
content tags are considered as irrelevant tags, the results are quite different in
each of the corpus: 17–22% worse for the mIRC corpus, similar results for the
Quixote corpus and 2–4% better for the Bitextor corpus.

6 Conclusions

The alignment algorithms presented in this paper achieve a better level of quality,
compared to classical algorithms, as has been shown in the experiments. This
strongly suggests that using the tag structure of the webpages is very useful
when aligning bitexts.

The quality of the bitexts used to perform the experiments was not optimal,
that is, the bitexts were not accurate translations. In many cases, the tag struc-
ture of pairs of real parallel text was slightly different. In spite of this, the results
have been clearly better than simply filtering the tags before the alignment.

Additionally, the aligned text segments generated by the proposed aligners
have a smaller length than those obtained by basic geometric aligners. This may
improve the reusability of the resulting translation units in many translation
applications.

The comparison of the aligners revealed that the 2-in-1 aligner obtains the
best results in all corpora. This suggests that it is not necessary to apply two
steps in the aligners given that the results did not improve, but made the algo-
rithm more complex.

The aligners proposed in this paper can be downloaded freely14 because they
have been released under the GNU General Public License.15

7 Future work

We are developing translation applications that will be trained with the trans-
lation units generated by the aligners. They will translate sentences by choosing
the best combination of translation units that compose them.

However, it is not clear which one is the best combination of translation units
that compose a sentence-pair, although using the most frequent ones appears to
give better results. We are researching different ways of combining the harvested
translation units to improve the quality of the translation.

Acknowledgements Work funded by the Spanish Government through grant
TIC2003-08681-C02-01.

14 http://sourceforge.net/projects/tag-aligner
15 http://www.gnu.org/licenses/gpl.html

Bibliography

Black, E., Abney, S., Flickenger, D., Gdaniec, C., Grishman, R., Harrison, P.,
Hin-dle, D., Ingria, R., Jelinek, F., Klavans, J., Liberman, M., Marcus, M.,
Roukos, S., Santorini, B., and Strzalkowski, T. (1991). A procedure for quanti-
tatively comparing syntactic coverage of english grammars. In DARPA Speech
and Natural Language Workshop.

Brown, P. F., Lai, J. C., and Mercer, R. L. (1991). Aligning sentences in parallel
corpora. In Proceedings of the 29th Meeting of the Association for Computa-
tional Linguistics, pages 169–176, Berkeley. University of California.

Chen, S. F. (1993). Aligning sentences in bilingual corpora using lexical infor-
mation. In Proceedings of the 31st annual meeting on Association for Compu-
tational Linguistics, pages 9–16, Morristown, NJ, USA. Association for Com-
putational Linguistics.

Gale, W. A. and Church, K. W. (1991). A program for aligning sentences in
bilingual corpora. In Meeting of the Association for Computational Linguis-
tics, pages 177–184.

Gale, W. A. and Church, K. W. (1993). A program for aligning sentences in
bilingual corpora. Computational Linguistics, 19:75–102.

Melamed, I. D. (1996). A geometric approach to mapping bitext correspon-
dence. In Brill, E. and Church, K., editors, Proceedings of the Conference on
Empirical Methods in Natural Language Processing, pages 1–12. Association
for Computational Linguistics, Somerset, New Jersey.

Sánchez-Villamil, E., Tomás, J., and Forcada, M. L. (2006). Building parallel
text collections for closely related languages. Unpublished.

Sigurd, B., Eeg-Olofsson, M., and van Weijer, J. (2003). Word length, sentence
length and frequency - Zipf revisited. Studia Linguistica, 58(1):37–52.

