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Abstract
A new, robust sliding-window part-of-speech tagger
is presented, which itself is an approximation of an
existing model, and a method is described to esti-

mate its parameters from an untagged corpus. The ap-

proximation reduces the memory requirements with-
out a significant loss in accuracy. Its performance
is compared to that of the original sliding-window

the SW tagger training algorithm; section 5 describes
a series of experiments performed to compare the per-
formance of a LSW tagger to that of a HMM tagger
and to that of the SW tagger; and, finally, concluding
remarks are given in section 6.

2 Preliminaries

tagger as well as to that of a standard Baum-Welch-
trained hidden-Markov-model part-of-speech tagger

and a random tagger. Letl" = {y1,72,...,7r|} be thetagsetfor the task,

that is, the set of PoS tags a word may receive in a
specific language, and’ = {ws, w2, ..., wyy|} be
the vocabularyof the task. A partition ofit” is es-
A large fraction (typically 30%, but varying from one tablished so that; = w; (that is, both words belong
language to another) of the words in natural language the same equivalence class) if and only if both are
texts are words that, in isolation, may be assignesksigned the same subset of tags by the lexical cate-
more than one morphological analysis and, in partigorizer!
ular, more than one part of speech (PoS). The correctlt is usual (Cuttinget al. 92) to refine this partition
resolution of PoS ambiguity for each occurrence ofo that, for high-frequency words, each word class
the word in the text is crucial in many natural lan-contains just one word whereas, for lower-frequency
guage processing applications; for example, in mavords, word classes are made to correspond exactly to
chine translation, the correct equivalent of a word magmbiguity classesontaining all words receiving the
be very different depending on its PoS. same subset of PoS tags (although it would also be

This paper presents a new version of a slidingsossible to use one-word classes for all words or to
window (SW) PosS tagger, that is, a system which asise only ambiguity classes). This refinement allows
signs the PoS of a word based on the information prder improved performance on very frequent ambigu-
vided by a fixed window of words around it. The SWous words while keeping the number of parameters of
tagger idea is not new &chez-Villamilet al. 04), the tagger under control.
but the number of parameters required to achieve ac-Any such refinement will be denoted a5 =
ceptable results is high compared to that of more usuéd, oo, . ... , 015} Whereo; are word classes. In this
approaches such as hidden Markov Models (HMM)paper, word classes will simply be ambiguity classes,
The new light sliding-window (LSW) PoS tagger pro-without any refinement. We will call’ : ¥ — 2T the
posed here reduces greatly the number of parametéusiction returning the sef'(o) of PoS tags for each
with a negligible loss of performance. word classs.

The paper is organized as follows: section 2 gives The PoS tagging problem may be formulated as fol-
some definitions and describes the notation that wilbws: given a textw[1|w[2]...w[L] € W™, each
be used throughout the paper; section 3 describes thverd w|t] is assigned a word classt] € X to obtain
approximations that allow a SW tagger to be trained—; - ) ) _

The lexical categorizer function may be implemented by a

Inan unsyperwsed manner and the tralnlng process é‘iétionary, a morphological analyser, a guesser, or any combina-
self; section 4 describes the LSW tagger in parallel tton thereof.

1 Introduction



anambiguously taggetext o[1]o[2]...o[L] € ¥F; whereC(_\[t] = o[t—N_lo[t—N_y+1]---o[t—1]

the task of the PoS tagger is to obtaitaggedtext is aleft contextof word classes of lengttV_) and

Y[1]y[2]...~4[L] € T (with all v[t] € T(o[t])) as  Cy[t] = oft + 1]oft + 2] - - o[t + Ny is aright

correct as possible. contextof word classes of lengtlV ., so that fort <
Statistical PoS tagging looks for thmost likely 1 andt > L, o[t] = o4, a special delimiting word

tagging~y*[1],7*[2], ..., 7*[L] given an ambiguously class such thaf' (o) = {y4}.

tagged textr[1|o[2] ... o[L]: This sliding windowmethod is local in nature; it

does not consider any context beyond the window of

vl = 1) N(y+ N4+ 1 words; its implementation is straight-
argmax P(y[1]...y([L] | o[1]...co[L]). forward, even more than that of Viterbi’s algorithm.
VeT(ot]) The main problem is the estimation of the probabili-

ambiguously tagged sequeneél]...o[L]. In hid- tiesp(y[t] | C()[tlo[t]C4[t]). If a tagged corpus is

den Markov models (Rabiner 89), use of the Bayesivailable, these probabilities may be easily obtained
formula, modelling of tag sequences as first-orddsy counting; however, the SW tagger has a specific
Markov processes, and additional approximationgay of estimating them from an untagged corpus, as

lead to we will see below. Another problem is the large num-
. . ber of parameters of the modéE(NH V) |1)).
vy = The main approximation in the model consists in
t=L assuming that the best tag|¢] contained in the win-
argmax [ ps(y[t+1][7[t]) x  (2) dow depends on the preceding conigxt,[t] and the
MIeT(t]) t=0 succeeding context(,[t], and onlyselectionallyon
t=L the word (one could say that it is the context which
11 pe(olt] [, determines the probabilities of each tag, whereas the
t=1

word justselectsags among those (o [t])).
where Ps is the syntactical probability modelling The most probable tag*[¢] is
tag sequences an;, is thelexical probability mod-
elling the relations between tags and word classes,~*[t] = argmax p(v[t] = 7|C(_)[t]o[t]C4)[t]).
with v[0] = y[L + 1] = 7%, a special delimiting V€T (at]) @

tag analogous to a sentence boundary. The numbher . o )
d g y t{fle will drop the position indext| because of time

of trainable parameters i§I'| + |X|)|'|. Tagging . ~ _ .

(searching for the optimal*[1]*[2] ..~*[L]) s im- [vaTANCe: and wiite (y|Ci o €. These proba

plemented using an efficient, left-to-right algorithmbI es a?a east;ytes 'tma?. rtt:Jr:na ?gge COI‘thJS (e.%.,

usually known as Viterbi's algorithm (Cuttinet al. y coun ing) bu estimating them from an untagge
corpus involves an iterative process, which proceeds

92; Rabiner 89), which, if conveniently implemented imat i hich thef
can output a partial tagging each time a nonambiguo estimating counte, _,, ¢, WNICh express thet-
gctlvenumber of times that tagy would appear in the

word is seen, but has to maintain multiple hypothest ¢ betw X 4C" .- Theref
when reading ambiguous words. HMM taggers may - 2o Ween CONEXIS—) andt.,). Theretore,

be trained either from tagged text (simply by count- -

ing and taking probabilities to be equal to frequen- P(YC(0C 1) = ko yocryy o yvey,  (O)
cies) or from untagged text, using the well-known _
expectation-maximization backward-forward Baumif 7 € T'(¢) and zero otherwise, wheke, _.c , =

Welch algorithm (Rabiner 89; Cuttiref al. 92). (X yer(o) ey o, )~! is a normalization factor.
Accordingly, equation (4) could be written as:
3 The Sliding-Window PoS Tagger model

The sliding-window PoS tagger §8chez-Villamilet vl = igﬁ% el oy s 6)

al. 04) approximates the probability in eq. dijectly

as follows: where the dependence with respectatid] can be
PO L] | o[1]o[2] ... o[L]) ~ clearly seen to be only selectional.

But, how can the countse ¢, be estimated?
If the window probabilitiesp(y | C(—yoC(4)) were

t=L
tl;[l POUT CololICHE) B oun, the effective counts could be easily obtained



from the text itself as follows: training and tagging equations are more complicated

to compute.
Ao vom = D Moo, P(7 1 CyaCyy), The best tag~* is obtained by consider-
o:y€T (o) ing for each possibley[t] all possible disam-
(7) biguations E_[t]y[t|Ey[t] of the current win-
yvherenc(_)gc( is the number of times that ambigu- g,y C([t)loC 4 [t] and adding their probabilities
ity cIaSSJ appears between contexts_) andC(); BN EL I | C)Hal]Cphlt]) as if they
that is, one would add(y | C(—yoC(4)) each timea ere mdependent
word classs containing tagy appears betweefl_) The LSW tagger approximates eq. (4) as follows:

andC(,. Equations (5) and (7) may be iteratively
solved until theﬁc(_)w ., converge. For the compu-  7*[t] = argmax

tation to be more efficient, one can avoid storing the VET (olt])
er)babI|ItIeSp(’y ]~C(,)JC(+)) by organizing the' |t_er- S p(BVE4 | C[tloltlCw[t])  (9)
ations around thec(iwcﬂ as follows, by combining E(_)€T'(C(_,[t])

egs. (5) and (7) and using an iteration index denoted “+) €7 ¢+

with a superscripbm|, wherel_[t] = At~ N_yylti— Ny +1] ... A[t—1]

_m]  ime1] is aleft context of tagef size N(_y, [E,)[t] = [t +

Mo yyony = Moy ™ 1yt +2]...4[t + Ny is aright context of tagef
> (Z _[m—1] >‘1 size N(4, andv[t] Vt < 1,Vt > L are all set to the
oy €T (o) ey \&reTo) Mo yiiey, ) special delimiting tagy.4.

(8) Let 77 : ¥* — 2" now be the function that re-

where the iteration may be easily seen as a procelsgns all the tag sequences that can be assigned to a
of successive multiplicative corrections to the effecgiven sequence of ambiguity classes. The probabili-
tive countsiic_,c,,,. A convenient starting point ti€spr_, s, may be easily estimated in an analo-
is given byp(y | C(_ )UC(+)) IT(0)|~* which is 90OUS way to equation (5), dropping time indices for
equivalent to assuming that initially all possible tagdvariance:
are equally probable for each word class.

Equation (8) contains the counts, ¢, which
depend onV(,) + Ny + 1 word classes; if mem- if
ory is at a premium, instead of reading the text oncg,
to count these and then iterating, the text may be reag 71
in each iteration to avoid storing th?cm(’cw’ and (ZWGT(G),E<,)€T’(C(,)[t]),EH)ET’(C(H[t}) ﬁE(—wE(H)

the n[k] o .. may be computedn the fly Itera- is a norrr_lal_ization factor. Thus, equation (9) could be
) o) iJuritten similarly to eq. (6) as:

tions proceed until a selected convergence conditi

PIETE4) [ C0C) = koo s v,
10)
E(f)”yE(Jr) € T’(C(,)O’C(Jr)), and
otherwise, where k:c(i)gcw =

has been met (e.g. a comparison of ﬁ@ ) v*[t] = argmax Tin vmy)
with respect to ther[k >1LC , or the completion of a VeTlell) G /RN
(—) B )
predetermined number o% iterations). Clay B (1) €T/ (C 4 lt)
(11)

4 Light Sliding-Window PoS Tagger model s in (6),y*[¢] depends only selectionally arit].

The model proposed in this paper may be con&deredI}he cot;m;slnE( VB could be easily estimated
as an approximation to the SW tagger just describell, (N€ Probabilitiesp(EyyE(4) I|I ?( )0C()) were
with the objective of reducing the number of param"OWn: using an equation parallel to (7):

eters to estimate without a significant loss in taggin

accuracy. The number of parameters of the LSW tag- “(-)" “(+) ET: (nc<f)”c<+> X

ger in the worst case i§'|V V1 compared to c<_):§f_€)e(;')<c(_)>

the |S|Y N |T| of the SW tagger. The number Cly B €T (O4))

of parameters of the LSW tagger depends only on the P(E(y7E4 | O +))) (12)

size of the set of tags, which is much smaller than the
number of word classes. However, as expected, the iBut, since they are unknown, the counts are esti-
duction of parameters makes the tagger slower, as theated through an adapted version of the iterative



equation (8) of the SW tagger, applied until it con{the openclass) containing all tags representing parts

verges: of speech that can grow (i.e. a new word can be a noun
or a verb but hardly ever a prepositich).
ﬁg}_)w(ﬂ = ﬁﬂgg‘_‘)ﬂ,ﬂw X In order to train the taggers we have applied the
[m—1] following strategy, so that we can use as much text
Z nC(_)aC(+) kC(_)dCH_) (13)

P as possible for training: the Treebank is divided into
Oy () ET(C () 20 similarly-sized sections; a leaving-one-out proce-
C(+>:E(+)€T’(C(+)) . . . . .

dure is applied, using 19 sections for training and the

A convenient equiprobable initialization takesf€maining one for testing, so that our results are the
p(EvE( | CnClay) = (\T’(O(_)JC(+))\)‘1. average of gll 20 different train—test configurations.

As has been advanced, the main difference betwedhOur experiments, the SW model was a 15% faster
the SW and LSW models is the number of parametef8 training time than LSW, but in our implementation

needed:; while the SW tagger keeps@!,)wcm’ the there was no significant difference in tagging tibes

LSW tagger keeps only the . ; this results in tween the models. Both models tag around 70,000
a lower complexity in the worst case at the expense ¥f0rds per second in a Pentium IV 2.8GHz.

an increase in tagging time, given that the COMPUta 1 Effect of the amount of context

tion of v*[t] needs to considdl' |V N effective o _
counts instead of only one, as in the original. MoreFirst of all, we show the results of the sliding-window
over, it is clear that a reduction in the number of pal@99ers using no contexiV(_) = N) = 0) as

rameters means a loss of information, so the taggir&;/base“n?’ and compare them to those of a Baum-
accuracy is expected to be worse. elch-trained HMM tagger and to random tagglng.
As expected, the performance of the taggers without

5 Experiments context is not much better than random tagging (see

table 1). This happens because without context the

This section reports experiments to assess the perfeyy, tagger and the LSW tagger, whose behaviours

mance of the sliding-window PoS taggers using difare completely equivalent in this case, simply deliver

ferent amounts of context, and compares them with, egtimate of the most likely tag in each class. The
that of customary Baum-Welch-trained HMM taggersym tagger accuracy (90.7%) is also given for com-

(Cuttinget al. 92). . parison. In this and the rest of experiments reported
For training and testing we have used the PeMfere  standard deviations are in the range 0.25% —

Treebank, version 3 (Marcie al. 93; Marcuset al. g 3004, but they will not be shown for clarity. All re-
94), which has 1,014,377 PoS-tagged words of Engjis correspond to the 15th iteration of the SW, LSW

glish text taken fromrhe Wall Street Journal The 5, HMM models although the SW and LSW taggers
word classeg of the Treebank will be taken simply usually converge in 3 or 4 iterations.

to be ambiguity clas(?es. The Treebank uses 45 differ- |, orer to improve the results, one obviously needs
ent PoS tags; 24.08% of the words are ambiguous. 5 increase the context (i.e., widen the sliding win-

The experiments use a lexicon extracted from thgoy) The results of using a reduced context of only
Penn Treebank, that is, a list of words with all the POSsne word before the current worﬂf(_) —1,Nyy =

sible parts of speech observe®f course, the exact 0) (the results obtained using a context of one word
tag given in the Treebank for each occurrence of €acler the current word are worse) are also shown in
word is taken into account only for testing but not forfigure 1. It is worth noting that even using such a
training. To simulate the effect of using a real, liMyimited context the performance of the LSW tagger
ited lexical categorizer, we have filtered the resultmg,most reaches that of the HMM tagger, and is com-
lexicon to keep only the 14,276 most frequent word§araple —within the standard deviation— to that of

(95% text coverage), and to remoove, for each wordne sw tagger, which has five times more parameters.
any PoS tag occuring less than 5% of the time. Us- |t \ye increase the size of the context to two context

ing this simplified, but realistic, lexicon, texts in they,q s we have three different possibilities: using the
Penn Treebank show 218 ambiguity classes (the woygd, immediately preceding words, using one preced-

classes for these experiments). Words not included iRg and one succeeding word , and using two succeed-

the lexicon are assigned to a special ambiguity class—

- 30ur open class contains the Penn Treebank@ysJ , JJR,
2Even if the Treebank were ambiguously tagged (i.e, with amdJS, NN NNR NNPS RB RBR RBS UH VB, VBQ VBG VBN

biguity classes), a lexicon could still be extracted. VBP, andVBZ



Tagger Ny | N | Number of parameters | Accuracy
RANDOM - - 0 85.0%
HMM - - 11,835 90.7%
LSWaAaND SW| O 0 45 86.4%
SwW 1 0 9,810 90.4%
LSW 1 0 2,025 90.2%

SwW 1 1 2,138,580 92.1%
LSW 1 1 91,125 91.8%

Table 1: Comparison of the accuracy and the number of parameters of sliding-window taggers to other tagging
strategies, as a function of the size of the left and right contexts.

ing words; the best results are achieved when usirggn be done. We also plan to test the models with
one preceding and one succeeding wakg_(j = 1  different corpora, using the morphological analysers
andN(4) = 1), and are shown in table 1. The perfor-and finer tagsets in the Spanish-Catalan translator
mance of the sliding-window taggers is now clearlynterNOSTRUM.com (Canals-Maroteet al. 01).
better than that of the HMM tagger, in exchange for & addition, we are studying the introduction of con-
large increase in the number of parameters (still modtraints (Laporte & Monceaux 00) and lexicalization
erate in the case of the LSW tagger). Increasing th@sing word classes finer than ambiguity classes).

context a bit more, until using three context words i ) :
all possible geometries does not improve results (trl}\cknowledgements. Work funded by the Spanish

corpus is not large enough to allow the estimation Oﬁgovernment through grant TIC2003-08681-C02-01.

SO many parameters).
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automatically adding new text to the training set)



