
Parameter reduction in unsupervisedly trained sliding-window part-of-speech
taggers

Enrique Sánchez-Villamil and Mikel L. Forcada and Rafael C. Carrasco
{esvillamil,mlf,carrasco }@dlsi.ua.es

Transducens, Departament de Llenguatges i Sistemes Informàtics
Universitat d’Alacant, E-03071 Alacant, Spain

Abstract
A new, robust sliding-window part-of-speech tagger
is presented, which itself is an approximation of an
existing model, and a method is described to esti-
mate its parameters from an untagged corpus. The ap-
proximation reduces the memory requirements with-
out a significant loss in accuracy. Its performance
is compared to that of the original sliding-window
tagger as well as to that of a standard Baum-Welch-
trained hidden-Markov-model part-of-speech tagger
and a random tagger.

1 Introduction

A large fraction (typically 30%, but varying from one
language to another) of the words in natural language
texts are words that, in isolation, may be assigned
more than one morphological analysis and, in partic-
ular, more than one part of speech (PoS). The correct
resolution of PoS ambiguity for each occurrence of
the word in the text is crucial in many natural lan-
guage processing applications; for example, in ma-
chine translation, the correct equivalent of a word may
be very different depending on its PoS.

This paper presents a new version of a sliding-
window (SW) PoS tagger, that is, a system which as-
signs the PoS of a word based on the information pro-
vided by a fixed window of words around it. The SW
tagger idea is not new (Sánchez-Villamilet al. 04),
but the number of parameters required to achieve ac-
ceptable results is high compared to that of more usual
approaches such as hidden Markov Models (HMM).
The new light sliding-window (LSW) PoS tagger pro-
posed here reduces greatly the number of parameters
with a negligible loss of performance.

The paper is organized as follows: section 2 gives
some definitions and describes the notation that will
be used throughout the paper; section 3 describes the
approximations that allow a SW tagger to be trained
in an unsupervised manner and the training process it-
self; section 4 describes the LSW tagger in parallel to

the SW tagger training algorithm; section 5 describes
a series of experiments performed to compare the per-
formance of a LSW tagger to that of a HMM tagger
and to that of the SW tagger; and, finally, concluding
remarks are given in section 6.

2 Preliminaries

Let Γ = {γ1, γ2, . . . , γ|Γ|} be thetagsetfor the task,
that is, the set of PoS tags a word may receive in a
specific language, andW = {w1, w2, . . . , w|W |} be
the vocabularyof the task. A partition ofW is es-
tablished so thatwi ≡ wj (that is, both words belong
to the same equivalence class) if and only if both are
assigned the same subset of tags by the lexical cate-
gorizer.1

It is usual (Cuttinget al. 92) to refine this partition
so that, for high-frequency words, each word class
contains just one word whereas, for lower-frequency
words, word classes are made to correspond exactly to
ambiguity classescontaining all words receiving the
same subset of PoS tags (although it would also be
possible to use one-word classes for all words or to
use only ambiguity classes). This refinement allows
for improved performance on very frequent ambigu-
ous words while keeping the number of parameters of
the tagger under control.

Any such refinement will be denoted asΣ =
{σ1, σ2, . . . , σ|Σ|} whereσi are word classes. In this
paper, word classes will simply be ambiguity classes,
without any refinement. We will callT : Σ → 2Γ the
function returning the setT (σ) of PoS tags for each
word classσ.

The PoS tagging problem may be formulated as fol-
lows: given a textw[1]w[2] . . . w[L] ∈ W+, each
wordw[t] is assigned a word classσ[t] ∈ Σ to obtain

1The lexical categorizer function may be implemented by a
dictionary, a morphological analyser, a guesser, or any combina-
tion thereof.

an ambiguously taggedtext σ[1]σ[2] . . . σ[L] ∈ Σ+;
the task of the PoS tagger is to obtain ataggedtext
γ[1]γ[2] . . . γ[L] ∈ Γ+ (with all γ[t] ∈ T (σ[t])) as
correct as possible.

Statistical PoS tagging looks for themost likely
taggingγ∗[1], γ∗[2], ..., γ∗[L] given an ambiguously
tagged textσ[1]σ[2] . . . σ[L]:

γ∗[1] . . . γ∗[L] =

argmax
γ[t]∈T (σ[t])

P (γ[1] . . . γ[L] | σ[1] . . . σ[L]). (1)

ambiguously tagged sequenceσ[1] . . . σ[L]. In hid-
den Markov models (Rabiner 89), use of the Bayes’
formula, modelling of tag sequences as first-order
Markov processes, and additional approximations
lead to

γ∗[1] . . . γ∗[L] =

argmax
γ[t]∈T (σ[t])

t=L∏

t=0

pS(γ[t + 1] | γ[t])× (2)

t=L∏

t=1

pL(σ[t] | γ[t]),

where PS is the syntactical probability modelling
tag sequences andPL is the lexical probability mod-
elling the relations between tags and word classes,
with γ[0] = γ[L + 1] = γ#, a special delimiting
tag analogous to a sentence boundary. The number
of trainable parameters is(|Γ| + |Σ|)|Γ|. Tagging
(searching for the optimalγ∗[1]γ∗[2] . . . γ∗[L]) is im-
plemented using an efficient, left-to-right algorithm
usually known as Viterbi’s algorithm (Cuttinget al.
92; Rabiner 89), which, if conveniently implemented,
can output a partial tagging each time a nonambiguous
word is seen, but has to maintain multiple hypotheses
when reading ambiguous words. HMM taggers may
be trained either from tagged text (simply by count-
ing and taking probabilities to be equal to frequen-
cies) or from untagged text, using the well-known
expectation-maximization backward-forward Baum-
Welch algorithm (Rabiner 89; Cuttinget al. 92).

3 The Sliding-Window PoS Tagger model

The sliding-window PoS tagger (Sánchez-Villamilet
al. 04) approximates the probability in eq. (1)directly
as follows:

P (γ[1]γ[2] . . . γ[L] | σ[1]σ[2] . . . σ[L]) '
t=L∏

t=1

p(γ[t] | C(−)[t]σ[t]C(+)[t]) (3)

whereC(−)[t] = σ[t−N(−)]σ[t−N(−)+1] · · ·σ[t−1]
is a left contextof word classes of lengthN(−) and
C(+)[t] = σ[t + 1]σ[t + 2] · · ·σ[t + N(+)] is a right
contextof word classes of lengthN(+), so that fort <
1 and t > L, σ[t] = σ#, a special delimiting word
class such thatT (σ#) = {γ#}.

This sliding windowmethod is local in nature; it
does not consider any context beyond the window of
N(−)+N(+)+1 words; its implementation is straight-
forward, even more than that of Viterbi’s algorithm.
The main problem is the estimation of the probabili-
tiesp(γ[t] | C(−)[t]σ[t]C(+)[t]). If a tagged corpus is
available, these probabilities may be easily obtained
by counting; however, the SW tagger has a specific
way of estimating them from an untagged corpus, as
we will see below. Another problem is the large num-
ber of parameters of the model (|Σ|N(+)+N(−) |Γ|).

The main approximation in the model consists in
assuming that the best tagγ∗[t] contained in the win-
dow depends on the preceding contextC(−)[t] and the
succeeding contextC(+)[t], and onlyselectionallyon
the word (one could say that it is the context which
determines the probabilities of each tag, whereas the
word justselectstags among those inT (σ[t])).

The most probable tagγ∗[t] is

γ∗[t] = argmax
γ∈T (σ[t])

p(γ[t] = γ|C(−)[t]σ[t]C(+)[t]).

(4)
We will drop the position index[t] because of time
invariance; and writep(γ|C(−)σ C(+)). These proba-
bilities are easily estimated from a tagged corpus (e.g.,
by counting) but estimating them from an untagged
corpus involves an iterative process, which proceeds
by estimating counts̃nC(−)γ C(+)

which express theef-
fectivenumber of times that tagγ would appear in the
text between contextsC(−) andC(+). Therefore,

p(γ|C(−)σC(+)) = kC(−)σC(+)
ñC(−)γ C(+)

(5)

if γ ∈ T (σ) and zero otherwise, wherekC(−)σC(+)
=

(
∑

γ′∈T (σ) ñC(−)γ′ C(+)
)−1 is a normalization factor.

Accordingly, equation (4) could be written as:

γ∗[t] = argmax
γ∈T (σ[t])

ñC(−)[t]γ C(+)[t]
, (6)

where the dependence with respect toσ[t] can be
clearly seen to be only selectional.

But, how can the counts̃nC(−)γ C(+)
be estimated?

If the window probabilitiesp(γ | C(−)σC(+)) were
known, the effective counts could be easily obtained

from the text itself as follows:

ñC(−)γ C(+)
=

∑

σ:γ∈T (σ)

nC(−)σ C(+)
p(γ | C(−)σC(+)),

(7)
wherenC(−)σC(+)

is the number of times that ambigu-
ity classσ appears between contextsC(−) andC(+);
that is, one would addp(γ | C(−)σC(+)) each time a
word classσ containing tagγ appears betweenC(−)

andC(+). Equations (5) and (7) may be iteratively
solved until thẽnC(−)γ C(+)

converge. For the compu-
tation to be more efficient, one can avoid storing the
probabilitiesp(γ | C(−)σC(+)) by organizing the iter-
ations around thẽnC(−)γ C(+)

as follows, by combining
eqs. (5) and (7) and using an iteration index denoted
with a superscript[m],

ñ
[m]
C(−)γ C(+)

= ñ
[m−1]
C(−)γ C(+)

×
∑

σ:γ∈T (σ)
nC(−)σC(+)

(∑
γ′∈T (σ) ñ

[m−1]
C(−)γ′C(+)

)−1

,

(8)
where the iteration may be easily seen as a process
of successive multiplicative corrections to the effec-
tive countsñC(−)γ C(+)

. A convenient starting point

is given byp(γ | C(−)σC(+)) = |T (σ)|−1 which is
equivalent to assuming that initially all possible tags
are equally probable for each word class.

Equation (8) contains the countsnC(−)σC(+)
which

depend onN(+) + N(−) + 1 word classes; if mem-
ory is at a premium, instead of reading the text once
to count these and then iterating, the text may be read
in each iteration to avoid storing thenC(−)σC(+)

, and

the ñ
[k]
C(−)γ C(+)

may be computedon the fly. Itera-
tions proceed until a selected convergence condition
has been met (e.g. a comparison of theñ

[k]
C(−)γ C(+)

with respect to thẽn[k−1]
C(−)γ C(+)

, or the completion of a
predetermined number of iterations).

4 Light Sliding-Window PoS Tagger model

The model proposed in this paper may be considered
as an approximation to the SW tagger just described,
with the objective of reducing the number of param-
eters to estimate without a significant loss in tagging
accuracy. The number of parameters of the LSW tag-
ger in the worst case is|Γ|N(−)+N(+)+1, compared to
the |Σ|N(−)+N(+) |Γ| of the SW tagger. The number
of parameters of the LSW tagger depends only on the
size of the set of tags, which is much smaller than the
number of word classes. However, as expected, the re-
duction of parameters makes the tagger slower, as the

training and tagging equations are more complicated
to compute.

The best tag γ∗ is obtained by consider-
ing for each possibleγ[t] all possible disam-
biguations E(−)[t]γ[t]E(+)[t] of the current win-
dow C(−)[t]σC(+)[t] and adding their probabilities
p(E(−)[t]γ[t]E(+)[t] | C(−)[t]σ[t]C(+)[t]) as if they
were independent.

The LSW tagger approximates eq. (4) as follows:

γ∗[t] = argmax
γ∈T (σ[t])

∑
E(−)∈T ′(C(−)[t])

E(+)∈T ′(C(+)[t])

p(E(−)γE(+) | C(−)[t]σ[t]C(+)[t]) (9)

whereE(−)[t] = γ[t−N(−)]γ[t−N(−)+1] . . . γ[t−1]
is a left context of tagsof sizeN(−), [E(+)[t] = γ[t +
1]γ[t + 2] . . . γ[t + N(+)] is a right context of tagsof
sizeN(+), andγ[t] ∀t < 1, ∀t > L are all set to the
special delimiting tagγ#.

Let T ′ : Σ∗ → 2Γ∗ now be the function that re-
turns all the tag sequences that can be assigned to a
given sequence of ambiguity classes. The probabili-
ties pE(−)γ E(+)

may be easily estimated in an analo-
gous way to equation (5), dropping time indices for
invariance:

p(E(−)γE(+) | C(−)σC(+)) = kC(−)σC(+)
ñE(−)γ E(+)

(10)
if E(−)γE(+) ∈ T ′(C(−)σC(+)), and
zero otherwise, where kC(−)σC(+)

=
(∑

γ∈T (σ),E(−)∈T ′(C(−)[t]),E(+)∈T ′(C(+)[t])
ñE(−)γ E(+)

)−1

is a normalization factor. Thus, equation (9) could be
written similarly to eq. (6) as:

γ∗[t] = argmax
γ∈T (σ[t])

∑
σ:γ∈T (σ)

C(−):E(−)∈T ′(C(−)[t])

C(+):E(+)∈T ′(C(+)[t])

ñE(−)γ E(+)
;

(11)
as in (6),γ∗[t] depends only selectionally onσ[t].

The countsñE(−)γ E(+)
could be easily estimated

if the probabilitiesp(E(−)γE(+) | C(−)σC(+)) were
known, using an equation parallel to (7):

ñE(−)γ E(+)
=

∑
σ:γ∈T (σ)

C(−):E(−)∈T ′(C(−))

C(+):E(+)∈T ′(C(+))

(
nC(−)σC(+)

×

p(E(−)γE(+) | C(−)γC(+))
)

(12)

But, since they are unknown, the counts are esti-
mated through an adapted version of the iterative

equation (8) of the SW tagger, applied until it con-
verges:

ñ
[m]
E(−)γ E(+)

= ñ
[m−1]
E(−)γ E(+)

×
∑

σ:γ∈T (σ)

C(−):E(−)∈T ′(C(−))

C(+):E(+)∈T ′(C(+))

nC(−)σC(+)
k

[m−1]
C(−)σC(+) (13)

A convenient equiprobable initialization takes
p(E(−)γE(+) | C(−)γC(+)) = (|T ′(C(−)σC(+))|)−1.

As has been advanced, the main difference between
the SW and LSW models is the number of parameters
needed; while the SW tagger keeps allñC(−)γ C(+)

, the
LSW tagger keeps only thẽnE(−)γ E(+)

; this results in
a lower complexity in the worst case at the expense of
an increase in tagging time, given that the computa-
tion of γ∗[t] needs to consider|Γ|N(−)+N(+) effective
counts instead of only one, as in the original. More-
over, it is clear that a reduction in the number of pa-
rameters means a loss of information, so the tagging
accuracy is expected to be worse.

5 Experiments

This section reports experiments to assess the perfor-
mance of the sliding-window PoS taggers using dif-
ferent amounts of context, and compares them with
that of customary Baum-Welch-trained HMM taggers
(Cuttinget al. 92).

For training and testing we have used the Penn
Treebank, version 3 (Marcuset al. 93; Marcuset al.
94), which has 1,014,377 PoS-tagged words of En-
glish text taken fromThe Wall Street Journal. The
word classesΣ of the Treebank will be taken simply
to be ambiguity classes. The Treebank uses 45 differ-
ent PoS tags; 24.08% of the words are ambiguous.

The experiments use a lexicon extracted from the
Penn Treebank, that is, a list of words with all the pos-
sible parts of speech observed.2 Of course, the exact
tag given in the Treebank for each occurrence of each
word is taken into account only for testing but not for
training. To simulate the effect of using a real, lim-
ited lexical categorizer, we have filtered the resulting
lexicon to keep only the 14,276 most frequent words
(95% text coverage), and to remove, for each word,
any PoS tag occuring less than 5% of the time. Us-
ing this simplified, but realistic, lexicon, texts in the
Penn Treebank show 218 ambiguity classes (the word
classes for these experiments). Words not included in
the lexicon are assigned to a special ambiguity class

2Even if the Treebank were ambiguously tagged (i.e, with am-
biguity classes), a lexicon could still be extracted.

(theopenclass) containing all tags representing parts
of speech that can grow (i.e. a new word can be a noun
or a verb but hardly ever a preposition).3

In order to train the taggers we have applied the
following strategy, so that we can use as much text
as possible for training: the Treebank is divided into
20 similarly-sized sections; a leaving-one-out proce-
dure is applied, using 19 sections for training and the
remaining one for testing, so that our results are the
average of all 20 different train–test configurations.
In our experiments, the SW model was a 15% faster
in training time than LSW, but in our implementation
there was no significant difference in tagging timebe-
tween the models. Both models tag around 70,000
words per second in a Pentium IV 2.8GHz.

5.1 Effect of the amount of context

First of all, we show the results of the sliding-window
taggers using no context (N(−) = N(+) = 0) as
a baseline, and compare them to those of a Baum-
Welch-trained HMM tagger and to random tagging.
As expected, the performance of the taggers without
context is not much better than random tagging (see
table 1). This happens because without context the
SW tagger and the LSW tagger, whose behaviours
are completely equivalent in this case, simply deliver
an estimate of the most likely tag in each class. The
HMM tagger accuracy (90.7%) is also given for com-
parison. In this and the rest of experiments reported
here, standard deviations are in the range 0.25% –
0.30%, but they will not be shown for clarity. All re-
sults correspond to the 15th iteration of the SW, LSW
an HMM models, although the SW and LSW taggers
usually converge in 3 or 4 iterations.

In order to improve the results, one obviously needs
to increase the context (i.e., widen the sliding win-
dow). The results of using a reduced context of only
one word before the current word (N(−) = 1, N(+) =
0) (the results obtained using a context of one word
after the current word are worse) are also shown in
figure 1. It is worth noting that even using such a
limited context the performance of the LSW tagger
almost reaches that of the HMM tagger, and is com-
parable —within the standard deviation— to that of
the SW tagger, which has five times more parameters.

If we increase the size of the context to two context
words, we have three different possibilities: using the
two immediately preceding words, using one preced-
ing and one succeeding word , and using two succeed-

3Our open class contains the Penn Treebank tagsCD, JJ , JJR,
JJS , NN, NNP, NNPS, RB, RBR, RBS, UH, VB, VBD, VBG, VBN,
VBP, andVBZ.

Tagger N(−) N(+) Number of parameters Accuracy
RANDOM - - 0 85.0%

HMM - - 11,835 90.7%
LSW AND SW 0 0 45 86.4%

SW 1 0 9,810 90.4%
LSW 1 0 2,025 90.2%
SW 1 1 2,138,580 92.1%

LSW 1 1 91,125 91.8%

Table 1: Comparison of the accuracy and the number of parameters of sliding-window taggers to other tagging
strategies, as a function of the size of the left and right contexts.

ing words; the best results are achieved when using
one preceding and one succeeding word (N(−) = 1
andN(+) = 1), and are shown in table 1. The perfor-
mance of the sliding-window taggers is now clearly
better than that of the HMM tagger, in exchange for a
large increase in the number of parameters (still mod-
erate in the case of the LSW tagger). Increasing the
context a bit more, until using three context words in
all possible geometries does not improve results (the
corpus is not large enough to allow the estimation of
so many parameters).

5.2 Effect of corpus size

To assess the effect of corpus size, we trained the tag-
gers with corpora built using an increasing number
of sections of the Treebank. The results show that
the LSW tagger reaches its peak performance with
smaller corpora than the SW tagger, which was ex-
pected in view of the difference in the number of pa-
rameters.

6 Concluding remarks

As commonly-used HMM taggers, simple and in-
tuitive sliding-window PoS taggers (SW taggers,
(Sánchez-Villamil et al. 04)) may be iteratively
trained in an unsupervised manner using reasonable
approximations to reduce the number of trainable pa-
rameters (LSW taggers, proposed here). Experimen-
tal results show that the performance of the sliding-
window taggers and HMM taggers having a similar
number of trainable parameters is comparable; the
best results are obtained with a context of one pre-
ceding and one succeeding word. LSW tagger results
are almost indistinguishable from SW tagger results.
Besides, the reduction of parameters allows the LSW
tagger to be trained with a smaller training set.

We are currently studying ways to improve the
training algorithm, so that incremental training (i.e.
automatically adding new text to the training set)

can be done. We also plan to test the models with
different corpora, using the morphological analysers
and finer tagsets in the Spanish–Catalan translator
interNOSTRUM.com (Canals-Maroteet al. 01).
In addition, we are studying the introduction of con-
straints (Laporte & Monceaux 00) and lexicalization
(using word classes finer than ambiguity classes).

Acknowledgements: Work funded by the Spanish
Government through grant TIC2003-08681-C02-01.

References
(Canals-Maroteet al.01) R. Canals-Marote, A. Esteve-Guillen, A. Garrido-Alenda,

M. Guardiola-Savall, A. Iturraspe-Bellver, S. Montserrat-Buendia, S. Ortiz-
Rojas, H. Pastor-Pina, P.M. Pérez-Ant́on, and M.L. Forcada. The Spanish-
Catalan machine translation system interNOSTRUM. In B. Maegaard, editor,
Proceedings of MT Summit VIII: Machine Translation in the Information Age,
pages 73–76, 2001. Santiago de Compostela, Spain, 18–22 July 2001.

(Cuttinget al.92) D. Cutting, J. Kupiec, J. Pedersen, and P. Sibun. A practical part-
of-speech tagger. InThird Conference on Applied Natural Language Process-
ing. Association for Computational Linguistics. Proceedings of the Conference,
pages 133–140, Trento, Italia, 31 marzo–3 abril 1992.

(Laporte & Monceaux 00)́E. Laporte and A. Monceaux. Elimination of lexical
ambiguities by grammars: The ELAG system. In John Benjamins Publishing
Company, editor,Liguisticae Investigationes, volume 22, pages 341–367(27),
2000.

(Marcus et al. 93) Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. Building a large annotated corpus of english: the Penn Tree-
bank. Computational linguistics, 19:313–330, 1993. Reprinted in Susan Arm-
strong, ed. 1994,Using large corpora, Cambridge, MA: MIT Press, 273–290.

(Marcuset al. 94) Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert
MacIntyre, Ann Bies, Mark Ferguson, Karen Katz, and Britta Schasberger. The
Penn Treebank: Annotating predicate argument structure. InProc. ARPA Hu-
man Language Technology Workshop, pages 110–115, 1994.

(Rabiner 89) Lawrence R. Rabiner. A tutorial on hidden Markov models and se-
lected applications in speech recognition.Proceedings of the IEEE, 77(2):257–
286, 1989.

(Sánchez-Villamilet al. 04) E. Śanchez-Villamil, Mikel L. Forcada, and Rafael C.
Carrasco. Unsupervised training of a finite-state sliding-window part-of-speech
tagger.Lecture Notes in Computer Science - Lecture Notes in Artificial Intelli-
gence, 3230(12):454–463, 2004.

