
A compiler for morphological analysers and generators

based on finite-state transducers ∗

Alicia Garrido, Amaia Iturraspe,
Sandra Montserrat, Hermı́nia Pastor,

and Mikel L. Forcada

Departament de Llenguatges i Sistemes Informàtics,
Universitat d’Alacant,

E-03071 Alacant, Spain.
E-mail: {alicia,amaia,sandra,herminia}@torsimany.ua.es, mlf@dlsi.ua.es

Abstract

Morphological analyzers and generators are es-
sential parts of many natural-language pro-
cessing systems such as machine translation
systems; they may be efficiently implemented
as finite-state transducers. This paper de-
scribes a compiler that converts a morpholog-
ical dictionary (a dictionary augmented with
descriptions of the flexive paradigms) into a C
program implementing a very compact finite-
state transducer that performs the desired
morphological analysis or generation task.

1 Introduction

Morphological analysis and generation are es-
sential to many natural-language processing
tasks such as machine translation. Morpholog-
ical analysis reads the inflected surface form of
each word in a text and writes its lexical form,
consisting of a canonical form (or lemma) of

∗Work supported by the Caja de Ahorros del
Mediterráneo.

the word and a set of tags showing its syntac-
tical category and morphological characteris-
tics. Generation is the inverse process. Both
analysis and generation rely on two sources
of information: a dictionary of the valid lem-
mas of the language and a set of inflection
paradigms.

One of the most efficient approaches to
morphological analysis and generation uses
finite-state transducers (FST) (Mohri 1997;
Oncina et al. 1993; for a review in Spanish
see also Alegria 1996), a class of finite-state
automata, that will be described in the fol-
lowing. FST may be used used as one-pass
morphological analysers and generators and
may be very efficiently implemented. Other
analysers–generators, of which Pérez Aguiar’s
(1996) is a complete example for Spanish, use
an intuitive pattern-matching approach which
tries first to decompose the word in a num-
ber of stem–inflection pairs which are subse-
quently validated. There are a number of tools
for the construction of FST-based morpholog-
ical analysers available, the best known being
those developed by Xerox (Karttunen 1994;

1

Karttunen 1993; Chanod 1994).
We have developed an aid to the construc-

tion and maintenance of FST-based morpho-
logical analysers and generators. It is a com-
piler that reads a morphological dictionary
containing a static description of the lemmas
and the inflection paradigms and writes a C
program that implements a compact FST-
based morphological analyser (or generator)
performing the task. This allows the linguist
to focus on describing the lexicon and mor-
phology of the language in question in a sim-
ple format and frees him or her of having to
think as a programmer.

2 Finite-state transducers

The morphological analysers and generators
are based on finite-state transducers; in par-
ticular, we use letter transducers (Roche &
Schabes 1997). Any finite-state transducer
may always be turned into an equivalent let-
ter transducer. A letter transducer is defined
as T = (Q,L, δ, qI , F), where Q is a finite set
of states, L a set of transition labels, qI ∈ Q
the initial state, F ⊆ Q the set of final states,
and δ : Q × L → 2Q the transition function
(where 2Q represents the set of all finite sets
of states).

The set of transition labels is L = (Σ∪{ε})×
(Γ ∪ {ε}) where Σ is the alphabet of input
symbols, Γ the alphabet of output symbols,
and ε represents the empty symbol. According
to this definition, state transition labels may
therefore be of four kinds: (σ : γ), meaning
that symbol σ ∈ Σ is read and symbol γ ∈ Γ
is written; (σ : ε), meaning that a symbol is
read but nothing is written; (ε : γ), meaning
that nothing is read but a symbol is written;
and (ε : ε) means that a state transition oc-
curs without reading or writing. The last kind
of transitions are not necessary neither conve-
nient in final FSTs, but may be useful dur-

ing construction. It is customary to represent
the empty symbol ε with a zero (“0”). A let-
ter transducer is said to be deterministic when
δ : Q× L → Q. Note that a letter transducer
which is deterministic with respect to the al-
phabet L = (Σ ∪ {ε}) × (Γ ∪ {ε}) may still
be non-deterministic with respect to the input
alphabet Σ.

A string w′ ∈ Γ∗ is considered to be a trans-
duction of an input string w ∈ Σ∗ if there is at
least one path from the initial state qI to a fi-
nal state in F whose transition labels form the
pair w : w′ when concatenated. There may in
principle be more than one of such paths for
a given transduction; this should be avoided,
and is partially eliminated by determinization
(see below). On the other hand, there may
be more than a valid transduction for a string
w (in analysis, this would correspond to lex-
ical ambiguity; in generation, this should be
avoided). In analysis, the symbols in Σ are
those found in texts, and the symbols in Γ are
those necessary to form the lemmas and spe-
cial symbols representing morphological infor-
mation, such as <noun>, <fem>, <2p>, etc. In
generation, Σ and Γ are exchanged.

The general definition of letter transduc-
ers is completely parallel to that of non-
deterministic finite automata (NFA) and that
of deterministic letter transducers, parallel to
that of DFA; accordingly, letter transducers
may be determinized and minimized (with re-
spect to the alphabet L) using the existing al-
gorithms for NFA and DFA (Hopcroft & Ull-
man 1979; Salomaa 1973; van de Snepscheut
1993). Transitions labeled (ε : ε) may be elim-
inated during determinization using a tech-
nique parallel to ε-closure.

Unlike other compilers like Karttunen’s
(1993), the compiler described in this pa-
per builds letter transducers having no cy-
cles (transitions form a directed acyclic graph)
which, in addition, have a unique final state.
The absence of cycles is due to the fact that

only concatenations and alternations are al-
lowed in the morphological dictionary (see sec-
tion 3)1. To minimize the resulting trans-
ducer, we use an algorithm described by van
de Snepscheut (1993), which has two identi-
cal steps which may be summarized as follows:
in each step, the transition arrows in the let-
ter transducer are reversed, so that the final
state is initial and the initial state is final, and
the resulting transducer is determinized with
respect to L (that is, new states are formed
with sets of old states so that the new δ is
δ : Q×L→ Q). The transducer resulting from
the double reversal–determinization process is
minimal. This algorithm is particularly effi-
cient in the case of acyclic letter transducers.
Moreover, the two steps have a simple inter-
pretation: the first step joins common endings
(finds regularities in suffixes) and the second
one joins common beginnings of transductions
(finds regularities in prefixes).

FST-based analysers output all possible
analyses for a homograph2.

3 Morphological
dictionary

The morphological dictionary is a text file
where spaces, tabulators and newlines may be
freely inserted for legibility. Any text between
“#” and the end of line is ignored and may be
used as a comment. The dictionary has the
following three sections:

1. The symbol declaration section, where
output symbols representing morpholog-
ical features (such as <fem> or <sg>) are
explicitly declared.

1We plan to add a simple repetition operator to
allow for the recognition and analysis of numerical ex-
pressions or other variable-lengtht tokens which have
a non-finite number of valid forms.

2A homograph is a surface form having two or more
morphological analyses.

2. The paradigm section, where inflection
paradigms are declared: when a set of
lemmas in the dictionary share a com-
mon inflection pattern, this pattern may
be given a name in square brackets (such
as [verbs_in_ducir] for Spanish verbs
such as traducir, producir, inducir, etc.)
and declared in advance so that it may
be used in the dictionary. Paradigms
may be indefinitely nested, that is, the
names of paradigms previously defined
may be used to define other paradigms
(paradigms are compiled into subtrans-
ducers that are then integrated to build
the complete transducer). A paradigm
is basically a name for a set of alter-
nate transductions; the simplest trans-
duction is a pair of strings (input and
output), such as “(com:comer<verb>)”,
which we call a couple; a paradigm
name, such as “[pi1]”, is always a valid
transduction; and the concatenation of
one or more of transductions, such as
“(am:amar<verb>)[V1C]” is also a valid
transduction3.

Couples are treated as follows: if zeroes
(“0”) are used to align explicitly the in-
put and output strings in a couple so
that both have the same length, as in
“(am000:amar<verb>)”, zeroes are un-
derstood to represent the empty symbol
and the alignment is preserved in the
transducer; if both strings have differ-
ent length and contain no zeroes, as in
“(am:amar<verb>)”, then the compiler
will align them using a simple heuristic:
the shortest string in the couple is com-
pleted with trailing zeroes4. We have ex-
perimentally found this heuristic to work

3The input (resp. output) string of the concatena-
tion of two simple transductions is the concatenation
of their input (resp. output) strings.

4An analogous choice is done in Karttunen’s (1993)
finite-state lexicon compiler.

very well for Spanish; the corresponding
experiments are described in section 5.
If, for some reason, one of the strings
should be empty, a single zero may be
used instead, as in “(0:<3p><sg>)”. If
zeroes are used, but the lengths of in-
put and output strings do not match, as
in “(com00:comer<verb>)”, the compiler
assumes that the designer of the morpho-
logical dictionary intended to supply an
explicit alignment but has failed to give a
correct one; accordingly, the compiler is-
sues a warning to the effect, ignores the
zeroes and uses the heuristic described
above.

Note that paradigms do not necessarily
have to describe endings (suffixes), be-
cause they may be placed anywhere in a
transduction.

3. The dictionary section simply a large
paradigm containing all the lexical units
in the dictionary. Any valid transduction
may be an entry in the dictionary; for ex-
ample, the linguist may have chosen to
form a single paradigm “[tener]” with
all the forms of the irregular Spanish verb
tener (“to have”); the dictionary entry for
tener would then simply be the paradigm
name, which could be in turn be used to
define other entries sharing the same in-
flective pattern such as detener (“to ar-
rest”) as “(de:de)[tener]” or contener
(“to contain”) as “(con:con)[tener]”.

Figure 1 shows an example of the format of
the morphological dictionary.

4 The compiler

The compiler has been developed under Linux
using bison (an evolved version of yacc, John-
son 1975) and flex (an evolved version of lex,
Lesk 1975) to build a front-end which reads in

Grammatical symbol declaration
%symbol <PresInd>; # Indicative present
%symbol <1p>; # First person
%symbol <sg>; # Singular
%symbol <2p>; # Second person
%symbol <pl>; # Plural
... etc.

Paradigm definition:

[’on] > (’on:<sg>) # nouns
| (ones:<pl>) ; # -’on

[pi1] > (s:<2p><sg>) # indicative present
| (0:<3p><sg>)
| (mos:<1p><pl>)
| (n:<3p><pl>) ;

[ii1] > (a:<1p><sg>) # imperfect endings
| (as:<2p><sg>)
| (a:<3p><sg>)
| (ais:<2p><pl>)
| (an:<3p><pl>) ;

[pron1pl] # Enclitics after verb
| (l:’el<pron><ac><3p>)[pl_fem]
| (teme:

tu<pron><2p><MF><sg>+yo<pron><1p><MF><sg>)
| (le:’el<pron><dat><3p><MF>)[pl_vocal]

(...)
| (te:tu<pron><2p><MF><sg>+)[pron_’el]

(...)

[V1C] > (o:<PresInd><1p><sg>) # first conjugation
| (a:<PresInd>)[pi1]
| (’ais:<PresInd><2p><pl>)
| (ab:<ImpInd>)[ii1]
| (’abamos:<ImpInd><1p><pl>)

... etc.
| (emos:<Imper><1p><pl>)
| (’emos:<Imper><1p><pl>+)[pron1pl]

... etc.

[v1c] | (e:<Imper><3p><sg>+)[pron1pl] # first conj.
| (a:<Imper><2p><sg>+)[pron1pl] # with accent
| (en:<Imper><3p><pl>+)[pron1pl] ; # in root.

Dictionary
%dic

(am:amar<verb>)[V1C]; # amar
(’am:amar<verb>)[v1c];
(com:comer<verb>)[V2C]; # comer
(c’om:comer<verb>)[v2c];
(acci:acci’on<noun><fem>)[’on] # acci’on

Figure 1: Sample morphological dictionary

the morphological dictionary file and combines
the partial transducers corresponding to the
declared paradigms into a single transducer
containing one initial and one final state us-
ing (ε : ε) transitions as “glue” where con-
venient. Error messages are designed to help
the linguist correct possible errors in the for-
mat of the morphological dictionary file be-
ing compiled (such as paradigms or symbols
used but not defined, mismatched parenthe-
ses, etc.). The back-end minimizes the re-
sulting transducer (as described in section 2)
and combines the resulting code with a stan-
dard skeleton to produce a C program which
is ready to be used on its own or included in
a larger application such as a machine trans-
lation system.

5 Experiments

We have performed experiments to evaluate
the heuristic used by the compiler to align
string couples when the linguist who has con-
structed the morphological dictionary decides
not to supply an explicit alignment. To that
effect, a linguist constructed a morphological
dictionary D1 for 3 099 of the most frequent
Spanish words which included all the nomi-
nal, pronominal, adjectival and verbal flexive
paradigms of the Spanish language. She used
her linguistic knowledge to align explicitly all
couples in the dictionary using zeroes where
necessary. A second morphological dictionary
D2 was created from D1 by removing all ze-
roes. Each one of these morphological dic-
tionaries was compiled into an analyser (A1

and A2 respectively). The number of states
of A1 (5 574) and A2 (5 589) was almost in-
distinguishable. We also used a small cor-
pus of Spanish legal texts containing 798 801
words5 to study the number of live hypothe-

5The coverage of the 3 099-word dictionary on this
corpus was 66.8%.

ses per letter, that is, the number of partial
transductions, or, equivalently, the number of
states alive per input letter. This is a mea-
sure of non-determinism with respect to in-
put symbols and therefore of time complexity.
The results for A1 and A2 are almost indistin-
guishable: average 4.0 and standard deviation
2.5 for A1 (linguistically motivated alignment)
and average 3.9 and standard deviation 2.5 for
A2 (automatic alignment). Speeds observed
lie in the range of 20 000 words per second on
a Pentium running at 400 MHz.

6 Concluding remarks

A compiler to automatically build finite-state-
transducer-based morphological analysers and
generators from morphological dictionaries
has been described. This tool may be of great
interest when building natural-language pro-
cessing systems such as machine translation
programs. When the linguist does not supply
an explicit alignment between surface forms
and lexical forms, the compiler uses a sim-
ple heuristic to produce an alignment that has
been experimentally shown to be equally effi-
cient. We are currently testing an extended
version the program which determinizes and
minimizes the complete transducer into a p-
subsequential letter transducer (Mohri 1997)
which behaves exactly as the minimal deter-
ministic finite automaton with respect to the
input alphabet Σ; according to the experimen-
tal results presented in the previous section,
we expect to obtain speeds on the order of
100 000 words per second on state-of-the-art
desktop workstations.

Acknowledgements: We thank Francisco
Moreno-Seco and Rafael C. Carrasco for their
suggestions and help.

References

Alegria, Iñaki. 1996. Morfoloǵıa de esta-
dos finitos. Procesamiento del Lenguaje
Natural 18:1–26.

Chanod, Jean-Pierre. 1994. Finite-
state composition of French verb mor-
phology. Technical Report Technical Re-
port MLTT-005, Xerox Research Centre
Europe, Meylan, France.

Hopcroft, J. E., & J. D. Ullman. 1979.
Introduction to automata theory, lan-
guages, and computation. Reading, MA:
Addison–Wesley.

Johnson, S.C. 1975. Yacc – yet another com-
piler compiler. Technical Report Techni-
cal Report 32, AT&T Bell Laboratories,
Murray Hill, N.J.

Karttunen, Lauri. 1993. Finite-state lexi-
con compiler. Technical Report Techni-
cal Report ISTL-NLTT-1993-04-02, Xe-
rox Palo Alto Research Center, Palo Alto,
California.

——. 1994. Constructing lexical transducers.
In Proceedings of COLING-94 , volume 1,
406–411, Kyoto, Japan.

Lesk, M.E. 1975. Lex — a lexical ana-
lyzer generator. Technical Report Techni-
cal Report 39, AT&T Bell Laboratories,
Murray Hill, N.J.

Mohri, Mehryar. 1997. Finite-state
transducers in language and speech
processing. Computational Linguistics
23(2):269–311.

Oncina, Jose, Pedro Garćıa, & Enrique

Vidal. 1993. Learning subsequential
transducers for pattern recognition in-
terpretation tasks. IEEE Transactions

on Pattern Analysis and Machine Intel-
ligence 15:448–458.

Pérez Aguiar, José R., 1996. Re-
conocimiento y generación integrada de la
morfoloǵıa del español: una aplicación a
la gestión de un diccionario de sinónimos
y antónimos. Facultad de Informática,
Universidad de Las Palmas de Gran Ca-
naria dissertation.

Roche, E., & Y. Schabes. 1997. Introduc-
tion. In Finite-State Language Process-
ing , ed. by E. Roche & Y. Schabes, 1–65.
Cambridge, Mass.: MIT Press.

Salomaa, Arto. 1973. Formal Languages.
New York, NY: Academic Press.

van de Snepscheut, J.L.A. 1993. What
computing is all about . New York:
Springer-Verlag.

