
Comparing nondeterministic and quasideterministic finite-state
transducers built from morphological dictionaries∗

Alicia Garrido-Alenda and Mikel L. Forcada
Departament de Llenguatges i Sistemes Informàtics

Universitat d’Alacant
E-03071 Alacant, Spain

{alicia, mlf}@dlsi.ua.es

Resumen: Se presenta una comparación entre transductores de estados finitos
cuasideterministas y no deterministas generados a partir de diccionarios morfológicos
que contienen el vocabulario (lemas) y la información sobre flexión morfológica de
una aplicación de procesamiento del lenguaje natural tal como el analizador mor-
fológico en un sistema de traducción automática. Los resultados indican que los
transductores no deterministas son más compactos que los cuasideterministas sin
ser mucho más lentos.
Palabras clave: Transductores de estados finitos, diccionarios morfológicos

Abstract: This paper describes a comparison between quasideterministic and non-
deterministic finite-state transducers generated from morphological dictionaries con-
taining the vocabulary (lemmas) and the morphological inflection information of a
natural language processing application such as the morphological analyser of a ma-
chine translation system. Results show that non-deterministic transducers are more
compact than their quasideterministic counterparts while being almost as fast.
Keywords: Finite-state transducers, morphological dictionaries

1 Introduction

This paper describes a comparison between
quasideterministic and non-deterministic
finite-state transducers generated from
morphological dictionaries containing the
vocabulary (lemmas) and the morpholog-
ical inflection information of a natural
language processing (NLP) application
such as the morphological analyser of a
machine translation (MT) system. Results
show that non-deterministic transducers are
more compact than their quasideterministic
counterparts while being almost as fast,
especially when linguists have found a good
alignment between the strings representing
surface and lexical forms in the morphologi-
cal dictionary, and justify their current use
in real applications such as the MT system
www.interNOSTRUM.com (Canals-Marote
et al., 2001). The paper is organized as
follows: section 2 describes morphological
dictionaries, analysers and generators; sec-
tion 3 reviews subsequential tranductions

∗ Work supported by the Spanish Comisión In-
terministerial de Ciencia y Tecnoloǵıa through
grant TIC2000-1599-CO2-02, and by the Universi-
tat d’Alacant and Caja de Ahorros del Mediterráneo
through project internostrum.com.

and transducers, and their problems are
stated in section 4. Letter transducers are
introduced as an alternative in section 5;
the comparison is described in section 6
and some concluding remarks are given in
section 7.

2 Morphological dictionaries,
analysers and generators

A morphological dictionary (MD) is a file
containing correspondences between surface
forms (SFs), that is, the (possibly inflected)
forms of words and lexical units as found
in texts, and lexical forms (LFs), consisting
of the lemma or base form of the word as
found in a printed dictionary, its lexical cat-
egory, and inflection information. For exam-
ple, the Spanish SF cantaŕıamos corresponds
to the LF with lemma cantar, lexical cate-
gory (verb), and inflection information condi-
tional, 1st person, plural. Although MDs are
usually written in a compact way by encod-
ing the regularities observed in LF-SF corre-
spondences (usually as inflection paradigms),
we will, consider them as lists of SF–LF pairs
(that is, after paradigm expansion). The in-
formation in a MD is used to describe the
behavior of morphological analysers and mor-

phological generators, two important compo-
nents of MT systems and many other NLP
applications. Morphological analysers are the
first to deal with the source text and iden-
tify and classify lexically relevant units; they
are ideally compact and read text left-to-
right, quickly, and only once, divide the text
into SFs, and incrementally output the cor-
responding LFs (one or more per SF). Mor-
phological generators are one of the the last
steps in the generation of the target text and
generate SFs from LFs.

We will distinguish two kinds of morpho-
logical dictionaries: aligned MDs (AMDs)
and unaligned MDs. AMDs, the specify SF–
LF correspondences at the character level, in
an explanatory attempt; a possible alignment
(not the only possible one) for the previous
example would be: (c, c) (a, a) (n, n) (t, t)
(θ, a) (θ, r) (θ, <vb>) (a, θ) (r, θ) (ı́, <cnd>)
(a, θ) (m, <1>) (o, <pl>) (s, θ), Where θ is an
empty symbol, and <vb>, <cnd>, <1>, <pl>
are specialized one-symbol entities which
stand for verb, conditional, 1st person and
plural. Since MDs can be used to specify
both analysers and generators, we will talk
of input and output : in the example, the in-
put is the SF and the output is the LF, as in
an analyser. Formally, if Σ is the alphabet of
input symbols and Γ the alphabet of output
symbols, an AMD is a subset A ⊂ L∗ where

L = (Σ ∪ {θ})× Γ ∪ Σ× (Γ ∪ {θ}) (1)

is the “alphabet” of all possible alignment
pairs,1 including pairs with no input (θ, γ)
or no output (σ, θ) (θ is the empty symbol).

An unaligned MD (UMD) is
simply a set U ⊂ Γ∗ × Σ∗ of
input–output string pairs such as
(cantarı́amos, cantar<vb><cnd><1><pl>),
without alignment information. An UMD
may be trivially obtained from an AMD.

The domain or set E ⊂ Σ∗ of input strings
of an MD is E = {w : (w,w′) ∈ U}. In mor-
phological analysis, some SFs may be am-
biguous (homographs) and have more than
one LF. A function τ : E → 2Γ∗ mapping
input strings in E to the corresponding sets
of output strings may be defined as follows:
τ(w) = {w′ : (w, w′) ∈ U} for all w ∈ E.

1These alignment pairs correspond the edit oper-
ations specified in string edit distances (Wagner and
Fischer, 1974): substitutions (σ : γ), deletions (σ : θ),
and insertions (θ : γ).

Usually, there exists a p = maxw∈E |τ(w)| (no
SF w has more than p LFs).

3 Subsequential processing

3.1 Subsequential transductions

Many lexical transformations, such as mor-
phological analysis and generation, or even
the lookup of a bilingual dictionary may be
formulated in a sequential manner: output
prefixes may be incrementally built as input
is read from left to right. For many lan-
guages (e.g., Indoeuropean languages), this
is because usually, a set of SFs sharing a
prefix corresponds to a set of LFs sharing
a nontrivial prefix (morphological variations
mainly affect the suffixes of forms). The same
may occur between the lemmas of a bilin-
gual dictionary. This is formalized through
the concepts of sequential and subsequential
transductions.

A transformation η : E → Γ∗, where E is
the subset of Σ∗ where η is defined, and Γ∗
is the output language, is called sequential if

η(ε) = µ0

η(wσ) = η(w)ζ(w, σ) ∀w,wσ ∈ Pr(E), σ ∈ Σ

where µ0 ∈ Γ∗ is the initial output string
(usually empty), ζ(w, σ) ∈ Γ∗ is the exten-
sion added to the result when reading sym-
bol σ after the input w, and Pr(E) = {x :
(∃y ∈ Σ∗ : xy ∈ E)} is the set of all prefixes
of strings in E.

But, as has been mentioned above, a SF
may in some cases have more than a single
LF associated to it and will be assumed that
it never has more than p LFs. For exam-
ple, the Spanish SF recuerdo may be a mas-
culine singular noun or the first person sin-
gular of the present tense of verb recordar ;
therefore, analysis should produce two LFs.
If one wants to process recuerdo sequentially
(letter by letter) so that the longest com-
mon prefix (LCP) of all possible LFs is al-
ways produced, one finds that after reading
rec, reading more letters does not increase
the LCP rec since this is indeed the LCP
of both LFs; it is only after detecting the
end of the input that one can actually com-
plete rec with either uerdo<n><m><sg> or
ordar<v><pri><1><sg>. This behavior can-
not be modelled with sequential transduc-
tions; therefore we introduce the concept of
earliest p-subsequential transduction.

A transduction τ : E → 2Γ∗ assigning to
each string in E ⊆ Σ∗ a set of strings in Γ∗

is the earliest p-subsequential transduction2

if there exists a sequential transduction η so
that

τ(w) = η(w)S(w) ∀w ∈ E, |S(w)| ≤ p (2)

where S(w) ∈ 2Γ∗ is a set of at most p tails
(suffixes), with

µ0 = LCP(τ(E));
ζ(w, σ) = [LCP(τ(ww−1E))]−1

[LCP(τ((wσ)(wσ)−1E))]; and
S(w) = [LCP(τ(ww−1E))]−1τ(w),

where ww−1E = {x ∈ E : w ∈ Pr(x)} and
(wσ)(wσ)−1E = {x ∈ E : wσ ∈ Pr(x)}. In
this way, each time that a symbol σ is read,
function ζ(w, σ) appends the longest possi-
ble suffix to η(w) to form η(wσ), the cur-
rent output prefix; finally, τ(w) is computed
by concatenating the result of the sequen-
tial transduction η with a set of at most p
suffixes S(w). In particular, sequential tran-
ductions are a special case of p subsequen-
tial transductions: those with p = 1 and
S(w) = {ε} ∀w ∈ E. This kind of process-
ing allows to organize a NLP application as a
pipeline, with each module receiving as early
as possible the output of previous modules.

The requirement that transductions be de-
terministic, however, is not without prob-
lems; the only way that an input word can
have more than a possible output associated
to it is by producing first the LCP of all out-
put, only producing different output suffixes
of each output after seeing the whole input.

3.2 Earliest deterministic
finite-state p-subsequential
transducers

The usual implementation3 earliest p-
subsequential transductions for a finite
UMD U (tranduction τ) is through earliest
deterministic finite-state p-subsequential
transducers, defined as follows: Given a
p-subsequential transduction τ : E → 2Γ∗ ,
with E a finite set, the corresponding
earliest deterministic (finite-state) p-
subsequential transducer (EDpSST) is
T = (Q,Σ, Γ, δ, λ, qI , ψ), where Q is the set

2Mohri (1997) defines p-subsequential transduc-
tions similarly; Oncina, Garćıa, and Vidal (1993) call
their 1-subsequential transductions onward instead of
earliest.

3See, e.g. Oncina, Garćıa, and Vidal (1993), who
use, however, a different notation.

Pr(E) ∪ {⊥} of all input prefixes plus an
absorption state; Σ is the input alphabet; Γ
is the output alphabet; δ : Q×Σ → Q is the
transition function

δ(x, σ) =
{

xσ if x, xσ ∈ Pr(E)
⊥ otherwise ; (3)

λ : Q× Σ → Γ∗ is the output function

λ(x, σ) = [LCP(τ(xx−1E))]−1

[LCP(τ((xσ)(xσ)−1E))], (4)

for x, xσ ∈ Pr(E), and undefined otherwise; 4

qI = {ε} is the initial state, and ψ : Q → 2Γ∗

is a function assigning to each state a set of
tails to be appended to the output at the end
of the input:

ψ(w) =
{

[LCP(τ(xx−1E))]−1τ(w) if w ∈ E
∅ otherwise .

(5)
This construction is basically a trie for the
strings in E endowed with output functions
λ and ψ such that output is produced as
early as possible (output information may
be easily added along a post-order traversal
of the trie). The resulting (acyclic) trans-
ducer may be easily minimized into an equiv-
alent transducer producing the same output
for all prefixes in Pr(E) and appending the
same tails to all strings in E while using the
minimal number of states. The usual tech-
nique (Mohri, 1997) iteratively refines a par-
tition of Q into equivalence classes by testing
nonequivalence in each iteration: states q and
r go to different classes if (a) ψ(q) 6= ψ(r),
(b) if for some σ δ(q, σ) does not belong to
the same class as δ(r, σ), or (c) if for some σ
λ(q, σ) 6= λ(r, σ).

4 Some problems associated to
deterministic transducers

EDpSSTs have some inconvenient features:

• As was described in section 3, if a trans-
duction is only validated at the end of
the input, output has to be delayed. Sec-
tion 6 gives data about the typical length
of tails in real dictionaries.

• If a new entry is added to the MD, the
new transducer has to be (almost) com-
pletely rebuilt: the LCP computations
and the ensuing state equivalences may
be no longer correct for most states.

4Note that if LCP[τ(E)] 6= ε, all of the outputs
λ(ε, σ) have LCP[τ(E)] prepended.

As will be seen, these problems may be
avoided by allowing the transducer to main-
tain several transduction hypotheses alive
during the process, some of which could be
discarded after reading some more input (i.e.,
a nondeterministic transducer). This kind of
processing does not require a realignment of
inputs and outputs but may instead preserve
the alignments in an AMD.

Fig. 1 shows a nondeterministic finite-
state transducer which however is deter-
ministic with respect to input–output pairs
whereas fig. 2 shows the equivalent earliest
deterministic p-subsequential transducer in
which state chains have been collapsed for
clarity. Both transducers have been produced
from the MD in table 1.

As may be seen, the FST which is deter-
ministic with respect to input–output pairs
(1) may advance along more than one trans-
duction; a transduction may be discarded
later. For example, when processing the
input tienta, after reading t-, the trans-
ducer maintains a single transduction alive,
but after reading ti-, it forms two possi-
ble outputs, ti- and te-; further along, af-
ter having read tient-, two possible out-
puts are still alive, tient- and tent-. It
is after reading the character a that the
output tient- is discarded and the output
tentar<vblex><pri><3><sg> is assembled.
The corresponding earliest deterministic sub-
sequential transducer (fig. 2) can only build
the output string t- until it sees the last let-
ter (a).

This suggests that transducers which are
deterministic with respect to the input–
output pair may be an interesting alternative:
(1) they naturally integrate ambiguity in the
form of nondeterminism; (2) input-output
alignments used to express linguistically-
motivated analyses and regularities in the
MD may not be compatible with a deter-
ministic processing of input, but may how-
ever have very compact representations; (3)
they may be easily built from AMDs, because
there is a direct correspondence between
alignments and state paths; (4) they are
more compact than their input-deterministic
counterparts (see sect. 6) because they are
not forced to delay their output, but instead
maintain more than one output hypothesis
until they are found to be invalid; and (5)
they are not much slower (see section 6).

re c o rd áis
re c o rd ar<vblex><pri><2><pl>
re c o rd amos
re c o rd ar<vblex><pri><1><pl>
re c o rd amos
re c o rd ar<vblex><ifi><1><pl>
re c ue rd o
re c o rd ar<vblex><pri><1><sg>
re c ue rd o
re c ue rd o<n><m><sg>
re c ue rd a
re c ue rd ar<vblex><pri><3><sg>

t e nt áis
t e nt ar<vblex><pri><2><pl>
t e nt amos
t e nt ar<vblex><pri><1><pl>
t e nt amos
t e nt ar<vblex><ifi><1><pl>
t ie nt o
t e nt ar<vblex><pri><1><sg>
t ie nt o
t ie nt o<n><m><sg>
t ie nt a
t e nt ar<vblex><pri><3><sg>
c o nt áis
c o nt ar<vblex><pri><2><pl>
c o nt amos
c o nt ar<vblex><pri><1><pl>
c o nt amos
c o nt ar<vblex><ifi><1><pl>
c ue nt o
c o nt ar<vblex><pri><1><sg>
c ue nt o
c ue nt o<n><m><sg>
c ue nt a
c o nt ar<vblex><pri><3><sg>
t ie nt o
t ie nt o<n><m><sg>

re t áis
re t ar<vblex><pri><2><pl>
re t amos
re t ar<vblex><pri><1><pl>
re t amos
re t ar<vblex><ifi><1><pl>
re t o
re t ar<vblex><pri><1><sg>
re t o
re t o<n><m><sg>
re t a
re t ar<vblex><pri><3><sg>

Table 1: The short, partially aligned MD used
to build the transducers in figs. 1 and 2.

5 Letter transducers

A convenient formalization of nondetermin-
istic transducers is that of letter transduc-
ers (LTs); any finite-state transducer may
be turned into an equivalent LT(Roche and

c:c

re:re

t:t

ont:ont

uent:ont

uent:uent

or
d:
or
d

uerd:ord

uerd:uerd

en
t:
en
t

ient:ient

c:c o:ar<vblex><pri><1><sg>

a:ar<vblex><pri><3><sg>

amos:ar<vblex><pri><1><pl>

amos:ar<vblex><ifi><1><pl>

o:o
<n>

<m>
<sg

>

ie
nt
:e
nt

áis:ar<vblex><pri><2><pl>

t:t

o:
o<
n>
<m
><
sg
>

a:
ar
<v
bl
ex
><
pr
i>
<3
><
sg
>

o:
ar
<v
bl
ex
><
pr
i>
<1
><
sg
>

ái
s:
ar
<v
bl
ex
><
pr
i>
<2
><
pl
>

amos:ar<vblex><pri><1><pl>

amos:ar<vblex><ifi><1><pl>

Figure 1: Nondeterministic transducer corresponding to the MD in table 1, which is deterministic with
respect to input–output pairs (state chains collapsed for clarity).

r:re

o:ε

{ar<vblex><pri><1><sg>
o<n><m><sg>}

ec:c

o:ordar<vblex>
rd:ε

a:ar<vblex><pri><3><sg>

uerd:ε a:orda
r<vble

x><pri
><3><s

g>

o:ε
{ordar<vblex><pri><1><sg>
uerdo<n><m><sg>}

{}

áis:<pri><2><pl>

amos:ε {<pri><1><pl>
<ifi><1><pl>}

c:c

a:ontar<vblex><pri><3><sg>

nt:ε

o:ε

{ontar<vblex><pri><1><sg>
uento<n><m><sg>}

uent:ε

o:ontar<vblex>

t:t

e:entar<vblex>

ient:ε
o:ε

{entar<vblex><pri><1><sg>
iento<n><m><sg>}

a:entar<vblex><pri><3><sg>

et:t

{ar<vblex><pri><1><pl>
ar<vblex><ifi><1><pl>}

amos:ε

áis:<pri><2><pl>

Figure 2: Deterministic p-subsequential transducer corresponding to the MD in table 1 (state chains
collapsed for clarity).

Schabes, 1997). A LT is T = (Q,L, δ, qI , F),
where Q is a finite set of states; L is the set of
labels defined in eq. (1), qI ∈ Q is the initial
state, F ⊆ Q is the set of acceptance states,
and δ : Q×L → 2Q is the transition function
which assigns a finite set of destination states

to each state, input symbol pair.
According to this definition, state-to-state

transitions may be of three kinds: (σ : γ)
(a symbol is read and a symbol is written),
(σ : θ) (a symbol is read but nothing is writ-
ten), and (θ : γ) (a symbol is written but

nothing is read); during construction it is use-
ful to add (θ : θ) to L, that is, transitions that
don’t write or read anything (Garrido et al.,
1999). A LT is L-deterministic, that is, de-
terministic with respect to alphabet L when
δ : Q×L → Q; an L-deterministic transducer
need not be Σ-deterministic (i.e., determinis-
tic when reading its input).

A string w′ ∈ Γ∗ is taken to be an output
associated to input string w ∈ Σ∗ if there is a
path, that is, a sequence s0

l1→ s1
l2→ s2 . . .

ln→
sn, with si ∈ Q, ai ∈ L and sj+1 ∈ δ(sj , lj).,
from the initial state s0 = qI to an accep-
tance state sn ∈ F such that the concatena-
tion of the input (resp. output) part of the
transition labels (dropping the θs) is w (resp.
w′). In principle, there may be more than one
path for a given input–output pair (w, w′):
this should be avoided, and is partially, by
determinization. But in this construction it
is natural to have a finite number of valid
outputs τ(w) = {w′1, w′2, . . .} for a given in-
put w.

Input in a LT is processed by maintain-
ing a list of alive state–output pairs (ASOPs)
which is updated after reading each input
symbol. Before reading any input, this
set is initialized to the null-input closure
of (qI , (ε, ε)), that is, V [0] = {(q, z) : q ∈
δ∗(qI , (ε, z))}, where δ∗ is the obvious exten-
sion of δ to input-output string pairs. After
reading symbol σ[t], a set V [t] is built from
V [t−1] as follows:

V [t] = {(q, zγ) : q ∈ δ∗(q′, (σ[t], γ))
∧ (q′, z) ∈ V [t−1]}. (6)

After reading the whole word, τ(w) = {z :
(q, z) ∈ V [|w|] ∧ q ∈ F}. LTs may easily be
determinized and minimized with respect to
L by using customary algorithms (Hopcroft
and Ullman (1979), p. 19–25, p. 68), since
they are isomorphic to finite automata.

6 Results

This section describes a quantitative com-
parison between LTs which are determin-
istic with respect input–output pairs (L-
deterministic LTs or L-DLTs) and earliest
deterministic p-subsequential (finite-state)
transducers (EDpSSTs), using realistic MDs
for the morphological analysis of representa-
tive text corpora. To perform the compar-
ison, EDpSSTs are converted into L-DLTs
which are deterministic with respect to their

Dict. Corpus size Ambig. rate
d500 224 007 1.6(0.5)
d1000 250 390 1.6(0.5)
d2000 277 004 1.5(0.5)
d4000 331 443 1.5(0.5)
d6000 390 281 1.5(0.5)
d8000 838 759 1.2(0.4)
d12000 1 040 156 1.2(0.4)
d15000 1 241 661 1.2(0.4)
d16500 1 260 273 1.2(0.5)

Table 2: Average number of LFs per SF (ambi-
guity rate) for a series of inclusive dictionaries

input, except for the fact that each of the
tails in non-null ψ(q) sets is turned into null-
input paths (which lead to input indetermin-
ism in case that |ψ(q)| > 1); these last trans-
ducers are called Σ-quasideterministic LTs or
Σ-QDLTs (construction detailed below).

The Spanish corpus used contains about
two millon words, mainly from newspaper
text. For each possible linguist-aligned MD,
the corpus is filtered so that unknown words
are removed. In the following, the names of
dictionaries refer to the number of lemmas
they contain. Each AMD contains the previ-
ous one in the list plus new pairs.

Table 2 shows the average lexical ambi-
guity of Spanish, computed as the number of
LFs assigned to each SF, averaged on the cor-
pus (standard deviations shown in parenthe-
ses). Ambiguity manifests itself in EDpSSTs
as the cardinal of tail sets ψ(q).

Next, the results of a comparison between
the L-DLTs and the Σ-QDLTs deriving from
these dictionaries has been performed. Σ-
QDLTs are obtained from EDpSSTs as fol-
lows:

• Expand transitions λ(q, σ) = γ1γ2 . . . γn

with n > 1, into a state path with tran-
sitions labeled (σ, γ1), (θ, γ2), . . . , (θ, γn).

• For each state q and for each tail
γ1γ2 . . . γn ∈ ψ(q), build a state path
starting at q and ending in a single ac-
ceptance state qF with transitions la-
beled (θ, γ1), (θ, γ2), . . . (θ, γn). This is
the only source of input nondetermin-
ism.

• Minimize the resulting Σ-QDLT with re-
spect to L. This is necessary to merge
equivalent states resulting from the pre-
vious expansion.

0 1

2

7

3
<n><m><sg>

r : ε <adj><mf><sg>

5
e : εp:p

a:ar

e:ero

6s : ε <n><m><pl>
<adj><mf><pl>

r : ε 8 o : ε 9
<n><m><sg>
<cnj>

s:<n><m><pl>
10

Figure 3: A minimal p-subsequential transducer.

0
p:p

1

a:a

e:e

15
:rθ

16
:oθ

17
r:θ

18
o:θ

19
:<cnj>θ

:<n>θ

:<n>s

2
:rθ

3
r:θ

4

:<n>θ 5

:<adj>θ
7

9
e:θ

:<m>θ
6

:<mf>θ

s:θ
10

:<n>θ

11
:<adj>θ :<mf>θ

12

13
:<m>θ

14
20

:<sg>θ

:<pl>θ

:<pl>θ

Figure 4: The minimal Σ-QDLT resulting from expanding the p-subsequential transducer in fig 3 and
then minimizing it.

This transformation is performed in order to
make a fair comparison between both strate-
gies which is based on the same finite-state
architecture. For example, expansion and
minimization of the minimal p-subsequential
transducer in fig. 3 results in the Σ-QDLT
shown in fig. 4.

Table 3 shows the results obtained when
turning each MD into a L-DLT and a Σ-
QDLT. As may be seen in fig. 5, the size
(number of states) of L-DLT is about 2.5
times smaller than that of the correspond-
ing Σ-QDLT. Table 3 shows a comparison be-
tween the number of alive state-output pairs
(ANASOPs) or nondeterminism rate for each
MD, averaged on the corresponding corpus
(standard deviation in parentheses). Results
show that the average nondeterminism rate
of L-DLT is not much larger than that of
Σ-QDLT; in this last case, the only source
of nondeterminism are the p-subsequential
tails. Indeed, the nondeterminism rate ob-
served is of the order of the lexical ambiguity
of the texts themselves. In summary, the sac-
rifice in time efficiency resulting from the use
of L-DLT instead of Σ-QDLT appears small
in comparison to the large improvement in
space efficiency. Note that these results may
be interpreted as evaluating the effect of us-
ing or dropping the alignment in an AMD

Dictionary ANASOPs ANASOPs
(Σ-QDLT) (L-DLT)

d500 1.3(0.6) 1.9(1.0)
d1000 1.3(0.6) 1.8(0.9)
d2000 1.3(0.6) 1.7(0.9)
d4000 1.3(0.5) 1.6(0.9)
d6000 1.3(0.5) 1.6(0.9)
d8000 1.2(0.5) 1.5(0.8)
d12000 1.3(0.5) 1.6(0.9)
d15000 1.3(0.5) 1.5(0.9)
d16500 1.3(0.5) 1.5(0.9)

Table 3: Non-determinism (expressed as the av-
erage number of alive states-output pairs or ANA-
SOPs) as a function of the size of the MD for
Σ-QDLTs and L-DLTs.

and suggest that alignments may lead to very
compact transducers.

To consider the amount of output delayed
to the end of input, note that, for MD d16500,
the average number of characters written per
character read by a Σ-QDLT is 0.7 (standard
deviation 1.2) and that the average number
of characters delayed to the end of input is
2.2 (standard deviation 2.4).

0

5

10

15

20

0 5 10 15 20

|Q|/1000

Nw/1000

Σ-QDLT

3
3

3

3
3

3

3

3 3

3
L-DLT

++ +
+ +

+
+

+ +

+

Figure 5: Number of states |Q| in L-DLT and Σ-QDLT as a function of the number of words Nw in the
MD.

7 Concluding remarks

We show how nondeterministic letter trans-
ducers may be a viable alternative to
p-subsequential transducers (Mohri, 1997)
when it comes to implement morphological
analysers and generators for a natural lan-
guage application: they are very compact
while showing a low rate of indeterminism
(i.e., keep in average less than two alive
states during processing). Nondeterministic
letter transducers are currently in use in the
MT system interNOSTRUM (Canals-Marote
et al., 2001).

References

Canals-Marote, R., A. Esteve-Guillen,
A. Garrido-Alenda, M. Guardiola-Savall,
A. Iturraspe-Bellver, S. Monserrat-
Buendia, S. Ortiz-Rojas, H. Pastor-Pina,
P.M. Perez-Antón, and M.L. For-
cada. 2001. El sistema de traducción
automática castellano-catalán interNOS-
TRUM. Procesamiento del Lenguaje
Natural, 27:151–156. XVII Congreso de
la Sociedad Española de Procesamiento
del Lenguaje Natural, Jaén, Spain,
12-14.09.2001.

Garrido, A., A. Iturraspe, S. Montserrat,
H. Pastor, and M. L. Forcada. 1999. A
compiler for morphological analysers and

generators based on finite-state transduc-
ers. Procesamiento del Lenguaje Natural,
(25):93–98.

Hopcroft, J. E. and J. D. Ullman. 1979. In-
troduction to automata theory, languages,
and computation. Addison-Wesley, Read-
ing, MA.

Mohri, Mehryar. 1997. Finite-state trans-
ducers in language and speech processing.
Computational Linguistics, 23(2):269–
311.

Oncina, J., P. Garćıa, and E. Vidal. 1993.
Learning subsequential transducers for
pattern recognition interpretation tasks.
IEEE Transactions on Pattern Analysis
and Machine Intelligence, 15:448–458.

Roche, E. and Y. Schabes. 1997. Intro-
duction. In E. Roche and Y. Schabes,
editors, Finite-State Language Processing.
MIT Press, Cambridge, Mass., pages 1–
65.

Wagner, Robert A. and Michael J. Fis-
cher. 1974. The string-to-string cor-
rection problem. Journal of the ACM,
21(1):168–173.

