Recursive Hetero-Associative Memories
for Translation

Mikel L. Forcada and Ramén P. Neco

Departament de Llenguatges i Sistemes Informatics,
Universitat d’Alacant,
E-03071 Alacant, Spain.
E-mail: {mlf,neco}@dlsi.ua.es

Abstract. This paper presents a modification of Pollack’s RAAM (Re-
cursive Auto-Associative Memory), called a Recursive Hetero-Associative
Memory (RHAM), and shows that it is capable of learning simple trans-
lation tasks, by building a state-space representation of each input string
and unfolding it to obtain the corresponding output string. RHAM-based
translators are computationally more powerful and easier to train than
their corresponding double-RAAM counterparts in the literature.

1 Introduction

Recently, Pollack (1990) introduced a new connectionist model called the re-
cursive auto-associative memory (RAAM). This model is capable of obtaining
compact representations for compositional structures such as trees and lists, i.e.,
is capable of representing variable-sized recursive data structures. This architec-
ture can indeed be viewed simply as a distributed memory for storing composi-
tional data structures. In particular, it was shown that properly trained RAAM
are capable of building representations for strings acting much in the same way
as a stack (strings are pushed and may then be popped).

More recently, Chalmers (1990) and Chrisman (1991) used the RAAM for-
malism to learn simple syntactic transformations and translations. They show
how RAAM learn to perform computations directly with the distributed rep-
resentations obtained by them, without accessing their compositional structure
(holistic computations). Chrisman (1991) used a (double, stack-like) RAAM ar-
chitecture in the domain of natural language translation (a small English +
Spanish translation task). Chrisman distinguishes two possible ways to perform
the translations: transformational and confluent. In the transformational trans-
lations, the auto-association of the sentence and its translation are used to learn
separate representations before learning the translation function between these
representations. In the confluent approach, the network is trained to obtain the
same internal representation for the sentence and its translation, i.e., the origi-
nal and final sentences should have identical internal representations, and they
may have two different decodings, one corresponding to the original sentence,
and the other to its translation. This implies that the network must be trained
to auto-associate the two sentences by learning two different encoding-decoding
mechanisms.

The translations performed by these models have some limitations. In partic-
ular, the tasks used by Chrisman (1991) are limited to one-to-one translations;
that is, no two different sentences in one language can have the same transla-
tion in the other language. Chalmers’ (1991) translators may learn many-to-one
translations, but the fact that each input sentence has a unique representation
forces the translation function to perform the many-to-one mapping on its own.

We propose a new model, called the RHAM (Recursive Hetero-Associative
Memory), which has a computational power which is equivalent or superior to
that of the RAAMs used by Chalmers (1990) and Chrisman (1991), and may be
applied to learn general translations from examples in which different sentences
may have the same translation. The main difference between the RAAM mod-
els used so far for translation and the new model is that in the new learning
algorithm the network does not need to learn to auto-associate the input and
output strings separately; we only train the network to obtain a suitable inter-
nal representation of the input, and to decode this representation to obtain the
corresponding output string.

2 Definitions

We will study input strings over an input alphabet X; the set of all finite-length
strings over X will be denoted X*. The output strings (translations) are strings
over an output alphabet A, that is, strings in A*. The class of translations we
will consider are those that may be represented by a function (an application)

T X — AF, (1)

so that there is a single translation for each string in X* but two different strings
in X* may have the same translation.

In this paper we consider translations that may be performed by Mealy ma-
chines and more general deterministic generalized sequential machines (DGSM)
(Hopcroft and Ullman 1979, Salomaa 1987). A Mealy machine is a six-tuple
M=(Q, X, A, 4, \, q1), where @ is a finite set of states, X' a finite set of input
symbols (input alphabet), A a finite set of output symbols (output alphabet),
d: @ x X — @ the next-state function, A : Q x ¥ — A the output function,
and ¢; € @ the initial state. The class of translations that a Mealy machine may
perform is limited: for example, input strings and their translations always have
the same length (Salomaa (1987) calls these translations length-preserving). A
deterministic generalized sequential machine may be formulated as a Mealy ma-
chine in which the next-state function is § : @ x (X' U {e}) = @, and the output
function is A : Q@ x (¥’ U {e}) = AU {e}, where € represents the empty string. In
this machine, states can have transitions defined either on the empty string or
on input symbols but not on both; in addition, for the machine to halt always,
it is required that no state be reachable from itself using only transitions with e
as input.

3 The RHAM Architecture

A RHAM, as a RAAM, consists basically of two feedforward neural networks,
which we will call the encoder and the decoder. The original RAAM model
can encode arbitrary tree structures, but we only need the sequential or “stack”
version of Pollack’s (1990) RAAM: that is, strings are encoded symbol by symbol.
However, the experiments shown in this paper could be generalized to perform
translations using the general RAAM version between trees (in this case we
would have the restriction that the number of units used to represent a terminal
symbol must be equal to the number of hidden neurons used to represent the
tree). In the case of the sequential version, where we are basically encoding
structures such as lists and stacks, this restriction is not necessary.

In our model each input string w € X* has a vector representation in [0, 1
where N is the number of hidden units in the hidden layer. A function

]N

r: X 0,1V (2)

assigns a (not necessarily distinct) vector representation to each string.
Let ro be the representation of the empty string e or “nil”:

r(e) = ro; 3)
then, the representation of any string wa (w € X*, a € X) is
r(wa) = encode (r(w),u,) (4)
where u, is a vector representing symbol a, and
encode : [0,1]" x [0,1]% = [0,1]V, (5)

is the encoding function which has a simple connectionist implementation; r[t] =
encode(r[t — 1], u[t]) is realized as a simple perceptron:

N K
rilt] =g Z Wii'rilt = 1]+ Z i ult] + Wi (6)
k=1

Jj=1

where the W’s represent weights and biases and g(z) = 1/(1 + exp(—z)); that
is, a single-layer feedforward neural network having N + K input units and NV
output units, and therefore (N + K + 1)N different parameters.

With the recursive function r, a string w of length L,, can be encoded by
placing a representation u[l] for the first symbol of the string in the left-hand
K units of the input, and a representation for the empty string, r(e) = r[0],
on the right-hand N units of the input. Then, the encoder produces a internal
representation for a string consisting of the first symbol on the N hidden units.
The activations of this hidden units are then copied recursively to the rightmost
N units of the input and the representation u[2] of the second symbol of the
string is placed on the left-hand K units; the process is repeated until all the

symbols of the string are processed and a representation r[L,] = r(w) for the
whole string is obtained.

The decoder, when properly trained, unfolds the representations of input
strings to obtain the corresponding output strings. States in [0,1]" are also
interpreted as representations of output strings; and the input representation
r(w) of string w is taken to be the output representation s(z) of its translation
z=71(w).

The output representation function s is analogous to the input representation
function r:

s: A = [0,1]V. (7)

The decoder works as follows: the representation y; of a symbol b from the
output alphabet A is popped from the representation s(xb) of string zb and
the representation s(z) of string z is simultaneously produced. Popping of a
complete string ends when a special representation sg, representing the empty
string over the output alphabet, appears in the hidden layer.

The implementation of the decoder is also a perceptron with N input units
and N + M output units, having therefore (N + M) (N + 1) different parameters
(weights and biases). The first N outputs correspond to the representation of
the rest of the output:

N
silt =1 =g (Z W;esilt] + Wf) ; (8)

and the remaining M outputs to the representation y of the popped output
symbol

N
yeltl =g (Z W22 s[t] + W;’) . 9)

i=1
If we have the internal representation of an input string encoded in the hidden
units, then we can obtain the translation by repeating the decoding process until
the end of the string is detected (the representation sg). In the first iteration, the
leftmost M units of the output return the local representation y[L,] for the last
symbol of the string z, while the rightmost N units return the representation
for the remainder of the string.

The representation y; € [0,1]¥ of each output symbol b and the representa-
tion of the empty output string s¢ € [0, 1] may be chosen in advance but might
also be learned during the learning. The representation of the empty input string
r[0] € [0,1]Y may also be chosen or learned.

Figure 1 shows schematically the architecture of a RHAM. In the example the
encoder reads the input “1011”, symbol by symbol, to obtain a representation
of the input sentence r(“1011”). This representation is also the representation
of the translation of this sentence, s(“001”). The representations of the symbols
of the translated sentence are popped by the decoder: first symbol ‘1’, second,
symbol ‘0’, and then, symbol ‘0’ and in the right side of the decoder’s output, the

y('1) S('00)

OO0-0|0000 -0

DECODER
r¢(1011') = g'001)
OO0 -0
N N
ENCODER
OO-O0000 -O
K N
uC'r) r(101')

Fig. 1. Architecture of a RHAM performing one step of the translation of sentence
“1011” into sentence “001”.

representation for the empty output string (sg), indicating that the translation
has finished. Note that if 7(z) = z, Vz, A = ¥ and rq = sq, this is Pollack’s
(1990) RAAM acting as a stack.

4 Training
4.1 Error Function

We train the network by minimizing an error function for a training sample S
containing translations ¢ from X* x A* which are compatible with the existence of
a single-valued function 7 : X* — A*. This error function reflects the difference
between the output obtained by the net and the desired output. The total error
E for the sample is

E=Y e (10)

teS

where e; is the error for each translation ¢. In the rest of this section, we will drop
the subscript ¢ to alleviate the notation. Assume that the sample translation is
(w, z). First, the string w is “pushed” into the RHAM by recursive application of
the encoder, to obtain a representation r(w) which is taken to be the represen-
tation s(z) of its translation z = byby ... b|;|. The total error in the translation is
the departure of the successive output symbol vectors y[|z|],¥[|2| — 1],...,¥[1]

from their desired values ys, ., ¥b.,_,»--->¥b, Plus the departure of the final
representation s[0] from that of the empty output string so:

1
e =g | 3 Iyl — y= I + 0] - soll (1)

I=|z|

The values of the local representations of the output symbols y, and the empty
output string so may be chosen in advance (as in this paper) or allowed to change
during learning. In the latter case, they might be taken to be the instantaneous
average (over the whole sample) of the actual values observed where they should
have appeared, but in that case, an additional penalty term would be needed
to keep the y;’s as far apart from each other as possible, in order to avoid
the collapse of all of them into a single value. Details of this procedure will be
reported elsewhere.

4.2 Training Algorithm

The above formulation allows for the use of gradient-descent-based methods,
such as a modified version of RTRL (real-time recurrent learning, Williams and
Zipser 1989) or an adaptation of backpropagation through time (Rumelhart et
al. 1986). This approach to training RHAMs will be reported elsewhere. In the
preliminary experiments reported here we have chosen a non-gradient method,
Alopex (Unnikrishnan and Venugopal 1994), which is related to simulated an-
nealing but instead of being driven by changes in the error function it is driven
by correlations between changes in error and changes in each particular weight.
The method relies only on successive evaluations of the error function and needs
no information about the particular structure of the system being trained. In a
related task (Neco and Forcada 1996) where discrete-time recurrent neural net-
works were trained to perform simple formal translations similar to those shown
here, the method proved to be a very attractive alternative to gradient descent,
specially when the architecture is new (as in Neco and Forcada 1996) or being
used in a new way for the first time (as here).

5 Experiments

We have made experiments in order to explore the translation capability of this
new architecture. This experiments include simple translation tasks performed
by Mealy and deterministic generalized sequential machines.

We train the network with the translations performed by the three automata
shown in figure 2. These automata perform translations between strings over
the alphabets ¥ = A = {0,1}. We trained networks with N = 3,...,12 hidden
neurons and encoded both input and output symbols with the unary (one-hot)
encoding, using Alopex (Unnikrishnan and Venugopal 1994) with a step-size
6 = 0.01, and an initial temperature 7" = 1000. The training set contained the
translations of all strings from length 1 to 8, and we check the generalization for

the whole set of strings from length 9 to 10. We stopped training the net when it
correctly translated all the sentences in the learning set. A successful translation
is reported when all the values of the output neurons depart less than a tolerance
& = 0.2 from their desired values. We consider that a network has failed to learn
the task when it takes more than 500,000 epochs.

Table 1 shows the results for the first automaton, which is a Mealy machine.
In this table we present the number of epochs needed to learn the task and
the generalization performance of the net, for N = 2,...,12 neurons. With
bigger values of N, we observed that the net either fails to learn the translation
task, or has worse generalization performance. The best generalization result
was obtained for NV = 6 hidden neurons, with 156,000 epochs of Alopex.

Ol

Fig. 2. Automata used in the experiments

In the second experiment we used a DGSM (automaton M, shown in fig-
ure 2). Note that this automaton performs a many-to-one translation in the
sense that two different input strings may have the same output string as trans-
lation: for example, 7(“0”) = 7(“00”) = “1”. The results obtained for this task
are shown in table 2. In this case we obtained the best generalization result
(87%) for N = 9 neurons, with 158,000 epochs, but for N > 9 we observed that
the generalization results are worse for this task (60 % for N = 10, 55 % for
N =11, 63% for N = 12).

In the third experiment we used automaton M3 shown in figure 2. This au-
tomaton also performs a many-to-one translation. For example, 7(“10”) = 7(“1”)

Table 1. Results for automaton M;. We show the number of Alopex epochs (in thou-
sands) used to learn the training set, and the generalization results (percentages) for
all input strings from length 9 to 10.

Neurons kepochs Generalization

3 failed, failed, 254, failed - — 656%, —
4 215, 250, failed, failed 68%, 62%, —, —
5 115, 105, 98, 117 67%, 77%, 60%, 78%
6 160, 177, 156, 189 |90%, 856%, 91%, 82%
7 98, 126, 117, 108 85%, 87%, 82%, 90%
8
9

177, 155, 165, 140 |75%, 73%, 81%, 79%
77, 90, 86, 105 75%, 4%, 55%, 76%
10 | 155, 284, failed, failed | 30%, 47%, —, —
11 | failed, 430, 350, failed | -, 53%, 42%, —
12 | 442, 270, failed, failed | 59%, 46%, —, —

Table 2. Results for automaton M>. We show the number of Alopex epochs (in thou-
sands) used to learn the training set, and the generalization results (percentages) for
all input strings from length 9 to 10.

Neurons kepochs Generalization

3 failed, 350, failed, failed -, 53%, —, —
4 270, failed, 362, 388 60%, —, 42%, 31%
5 226, 270, 231, 273 |70%, 68%, 55%, 80%
6 210, 224, 230, 205 |74%, 73%, 52%, 75%
7 175, 170, 215, 265 |70%, 756%, 80%, 656%
8
9

230, 180, 221, 192 |70%, 76%, 71%, 75%
150, 124, 290, 158 |67%, 84%, 82%, 87%

10 253, 306, 379, 366 |45%, 50%, 60%, 48%
11 | failed, 340, 365, failed | -, 45%, 55%, —
12 220, 166, 252, 330 |50%, 55%, 63%, 54%

= “10”. The results obtained for this automaton are shown in table 3. In this
case, we obtain the best generalization result (89%) for N = 8 neurons. In
this experiment, we consider that a network has failed when it takes more than
800,000 epochs.

6 Discussion and Conclusions

The results obtained for examples of the widest class of deterministic finite-state
translations (deterministic generalized sequential maps, Salomaa 1987) show
that recursive hetero-associative memories (RHAM) are a promising approach to
the neural induction of translators from examples. The RHAM architecture has

Table 3. Results for automaton Ms. We show the number of Alopex epochs (in thou-
sands) used to learn the training set, and the generalization results (percentages) for
all input strings from length 9 to 10.

Neurons kepochs Generalization
3 failed, failed, failed, failed - =y —

4 failed, failed, failed, failed - = =

5 450, failed, 572, failed 78%, —, 66%, —

6 failed, 550, 309, 674 -, 45%, 63%, 75%
7 420, 580, 331, 427 65%, 60%, 53%, 63%
8 failed, 494, 537, failed -, 75%, 89%, —

9 610, 537, 540, 593 85%, 72%, 87%, 63%
10 failed, 510, 638, failed -, 70%, 35%, —
11 failed, failed, 705, failed - - 62%, —

12 |failed, failed, failed, failed - = —

been shown to be computationally superior (they may deal with many-to-one
translations) to RAAMS as used by Chrisman (1991) and theoretically equiv-
alent to RAAMS as used by Chalmers (1990), but architecturally simpler and
easier to train (there is no need to train the network to auto-associate input and
output strings separately to learn the translation tasks).

Generalization results are good if we take into account that they refer to
strings that are always longer than those in the training set!. We are currently
studying a new training strategy which forces representations of all prefixes of
all strings in the training set to be decodable into prefixes of output strings; we
believe that this will improve the generalization performance as well as yield
partial translations as a byproduct. The results of this approach and a detailed
study of the representations learned by the network will be reported elsewhere.

The approach shown here is complementary to the one involving a new re-
current neural network architecture presented by us (Neco and Forcada 1996),
which has also been trained to learn deterministic generalized sequential ma-
chines. We are currently studying the relationships between both approaches,
with a possible hybrid approach in mind.

Acknowledgments: This work has been supported through grant TIC95-0984-
C02-01 of the Spanish Comisién Interministerial de Ciencia y Tecnologfa (CI-
CyT). Ramoén P. Neco is supported by the Generalitat Valenciana (Spain).

References

Chalmers, D.J. (1990) “Syntactic Transformations on Distributed Representations”,
Connection Science 2, 53—62.

! Chrisman (1991) and Chalmers (1990) always tested generalization on strings in the
same length range.

Chrisman, L. (1991) “Learning Recursive Distributed Representations for Holistic
Computation”, Connection Science 3:4, 345-366.

Hopcroft, J.E., Ullman, J.D. (1979) Introduction to automata theory, languages and
computation. Reading, Massachussets: Addison-Wesley.

Neco, R., Forcada, M.L. (1996) “Beyond Mealy machines: Learning translators with
recurrent neural networks”, Proc. World Congress on Neural Networks (San Diego,
Calif., Sept. 1996), p. 408-411.

Pollack, J.B. (1990) “Recursive distributed representations”, Artificial Intelligence 46,
77-105.

Rumelhart, D.E., Hinton, G.E., Williams, R.J. (1986) “Learning internal representa-
tions by error propagation”. In Parallel Distributed Processing: Explorations in the
Microstructure of Cognition (D.E. Rumelhart and J.L. McClelland, eds.), Vol. 1,
Chapter 8, Cambridge, MA: MIT Press.

Salomaa, A. (1987) Formal Languages, Boston, Massachusetts: Academic Press.

Unnikrishnan, K.P., Venugopal, K.P. (1994) “Alopex: A Correlation-Based Algorithm
for Feedforward and Recurrent Neural Networks”, Neural Computation 6, 469—490.

Williams, R.J., Zipser, D. (1989) “A learning algorithm for continually running fully
recurrent neural networks”, Neural Comp. 1, 270-280.

This article was processed using the ITEX macro package with LLNCS style

