
Finite-state computation in analog neural
networks: steps towards biologically plausible

models?

Mikel L. Forcada and Rafael C. Carrasco

Departament de Llenguatges i Sistemes Informàtics,
Universitat d’Alacant,

E-03071 Alacant, Spain.
E-mail: {mlf,carrasco}@dlsi.ua.es

In Wermter, S., Austin, J., Willshaw, D., eds. (2001) Emergent Neural
Computational Models Based on Neuroscience (Heidelberg: Springer-Verlag),

p. 482-486.

Abstract. Finite-state machines are the most pervasive models of com-
putation, not only in theoretical computer science, but also in all of its
applications to real-life problems, and constitute the best characterized
computational model. On the other hand, neural networks —proposed
almost sixty years ago by McCulloch and Pitts as a simplified model of
nervous activity in living beings— have evolved into a great variety of
so-called artificial neural networks. Artificial neural networks have be-
come a very successful tool for modelling and problem solving because
of their built-in learning capability, but most of the progress in this field
has occurred with models that are very removed from the behaviour of
real, i.e., biological neural networks. This paper surveys the work that
has established a connection between finite-state machines and (mainly
discrete-time recurrent) neural networks, and suggests possible ways to
construct finite-state models in biologically plausible neural networks.

1 Introduction

Finite-state machines are the most pervasive models of computation, not only in
theoretical computer science, but also in all of its applications to real-life prob-
lems (natural and formal language processing, pattern recognition, control, etc.),
and constitute the best characterized computational model. On the other hand,
neural networks, —proposed almost sixty years ago by McCulloch and Pitts [1]
as a simplified model of nervous activity in living beings—, have evolved into
a great variety of so-called artificial neural networks. Artificial neural networks
have become a very successful tool for modelling and problem solving because
of their built-in learning capability, but most of the progress in this field has
occurred with models that are very removed from the behaviour of real, i.e.,
biological neural networks.



This paper surveys the work that has established a connection between finite-
state machines and (mainly discrete-time recurrent) neural networks, and re-
views possible ways to construct finite-state models in biologically plausible neu-
ral networks. The paper is organized as follows: section 2 describes the simulta-
neous inception of discrete-state discrete-time neural net models and finite-state
machines; section 3 describes the relation between continuous-state discrete-time
neural networks and finite-state machines; section 4 moves on to a more realistic
model, namely, continuous-state continuous-time neural nets; spiking neurons
as a biologically plausible continuous-time continuous-state model of finite-state
computation is discussed in section 5. Finally, concluding remarks are presented
in section 6.

2 The early days: discrete-time, discrete-state models

2.1 McCulloch-Pitts nets

The fields of neural networks and finite-state computation started indeed si-
multaneously: when McCulloch and Pitts [1] formulated mathematically the be-
haviour of ensembles of neurons (after a number of simplifying assumptions such
as the discretization of time and signals), they defined what we currently know
as a finite-state machine (FSM). McCulloch & Pitts’ simplified neurons work on
binary signals and in discrete time; they receive one or more input signals and
produce an output signal as follows:

– input and output signals can be high or low;
– inputs can be excitatory or inhibitory;
– the neuron has an integer activation threshold A;
– the neuron’s output is high at time t+ 1 if, at time t,
• more than A excitatory inputs are high and
• no inhibitory input is high

and it is low otherwise.

McCulloch & Pitts’ neuron may be easily shown to be equivalent to the current
formulation of a linear threshold unit :

– input (ui) and output (y) signals are 0 (low) or 1 (high);
– the neuron has real weights Wi, one for each input signal, and a real bias b;
– the neuron’s output at time t+ 1, y[t+ 1] is given by

y[t+ 1] = θ

(∑
i

Wiui[t] + b

)
(1)

where θ(x) is the step function1 (time indices t, t + 1 may be dropped in
some applications).

1 The step function is defined as follows: θ(x) = 1 if x ≥ 0, 0 otherwise.



A McCulloch-Pitts net is a finite set of interconnected McCulloch-Pitts neu-
rons. Some neurons receive external inputs; they are called inputs to the net .
Other neurons compute the outputs of the net. The remaining neurons are called
hidden neurons. Connections between neurons may form cycles (i.e., the net may
be recurrent). A McCulloch-Pitts net may be seen as a discrete-time sequence
processor which turns a sequence of binary input vectors u[t] into a sequence of
binary output vectors y[t]. The state of a McCulloch-Pitts at time t is the vector
of the outputs at time t of its recurrent neurons (i.e., those involved in cycles, if
any). Therefore, one may see a a McCulloch-Pitts recurrent net as a finite-state
machine2 M = (Q,Σ, Γ, δ, λ, qI), because

– The net may be found at any time t in a state from a finite set Q =
{high, low}nX , where nX is the number of recurrent units.

– The vector of inputs at time t takes values from a finite setΣ = {high, low}nU ,
where nU is the number of inputs to tne net. The set Σ is finite and may be
seen as an alphabet.

– The vector of outputs at time t takes values from a finite set Γ = {high, low}nY ,
where nY is the number of output signals going out from the network. This
set is finite and may also be seen as an alphabet.

– The state of the net at time t+ 1 is a function δ of inputs and states at time
t which is defined by the architecture of the net.

– The output of the net at time t + 1 is a function λ of inputs and states at
time t which is defined by the architecture of the net.

– The initial state qI ∈ Q is formed by the outputs of neurons and by the
inputs to the net at time t = 0.

2.2 Regular sets

Later, Kleene [3] formalized the sets of input sequences that led a McCulloch-
Pitts network to a given state. He called them regular events; we currently know
them as regular sets or regular languages. Nowadays, computer scientists relate
regular sets to finite-state machines, not to neural nets [2, p. 28].

2.3 Constructing finite-state machines in McCulloch-Pitts nets

Minsky [4] showed that any FSM can be simulated by a discrete-time recur-
rent neural net (DTRNN) using McCulloch-Pitts units; the construction used
a number of neurons proportional to the number of states in the automaton;
more recently, Alon et al. [5], Indyk [6], and and Horne and Hush [7] have estab-
lished better (sublinear) bounds on the number of discrete neurons necessary to
simulate an finite state machine.

2 Such as Mealy and Moore machines, see [2, p. 42].



3 Relaxing the discrete-state restriction: sigmoid
discrete-state recurrent neural networks

Discrete neurons (taking values, for example, in {0, 1}) are a very rough model
of neural activity, and, on the other hand, error functions for discrete networks
are not continuous with respect to the values of weights, which is crucial for
the application of learning algorithms such as those based in gradient descent.
Researchers have therefore also shown interest in neural networks containing
analog units with continuous, real-valued activation functions g such as the lo-
gistic sigmoid gL(x;β) = 1/(1 + exp(−βx)), with β a positive number called the
gain of the sigmoid. A logistic neuron has the form

y[t+ 1] = gL

(∑
i

Wiui[t] + b;β

)
; (2)

this relaxes the discrete-signal restriction. The logistic function has the follow-
ing limiting properties: limx→∞ gL(x;β) = 1 and limx→−∞ gL(x;β) = 0, and
limβ→∞ gL(x;β) = θ(x), where θ is the step function. The last property has the
consequence that a logistic neuron with infinite gain is equivalent to a linear
threshold unit. In summary, these are the advantages of relaxing the discrete-
state restriction:

– Differentiability allows for gradient-descent learning
– Graded response gives a better model of some biological processes
– May, in principle, emulate discrete-state behaviour (the same as digital com-

puters are built from analog units as transistors and diodes).

The use of analog units turns the state of the network into a real-valued vec-
tor. In principle, neural networks having neurons with real-valued states should
be able to perform not only finite-state computation but also more advanced
computational tasks.

3.1 Neural state machines

A neural state machine, by analogy with a FSM M = (Q,Σ, Γ, δ, λ, qI), is N =
(X,U, Y, f ,h,x0) with

– X = [0, 1]nX (for nX state neurons);
– U = [0, 1]nU (for nU input signals);
– Y = [0, 1]nY (for nY output neurons);
– f : X × U → X and h : X × U → Y are computed by feedforward neural

nets;
– x0 ∈ [0, 1]nX is the initial state.

(the use of the [0, 1] interval is consistent with the use of the logistic sigmoid
function, but other choices are possible). This construction is usually called a
discrete-time recurrent neural net (DTRNN).



Similarly to FSM, we can divide neural-state machines in neural Mealy ma-
chines and neural Moore machines [2, p. 42]. In neural Mealy machines the
output is a function of the previous state and the current input. Figure 1 shows
a block diagram of a neural Mealy machine. Robinson and Fallside’s [8] recurrent

feedforward net
(next state)

feedforward net
(output)

u[t]x[t-1]

x[t] y[t]

Fig. 1. A neural Mealy machine

error propagation nets, used for speech recognition, are an example of a neural
Mealy machine. In a neural Moore machine, the output is simply a function of
the state just computed (h : X → Y ), see figure 2. Elman’s simple recurrent net
[9] is an example of a neural Moore machine.

3.2 Learning finite-state behaviour in sigmoid DTRNN

Under this intuitive assumption, a number of researchers set out to test whether
sigmoid DTRNN could learn FSM behaviour from samples [10–20]. Sigmoid
DTRNN may be trained to be FSM as follows:

– Define a learning set (input and output strings).
– Choose a suitable architecture (some DTRNN architectures are incapable of

representing all FSM [21, 22])
– Decide on an encoding for inputs.
– Define output targets for each symbol and establish tolerances.
– Initialize weights, biases and initial states adequately.
– Use a suitable learning algorithm to vary weights, biases, and, optionally,

initial states until the net outputs the correct output string (within tolerance)
for each input string in the learning set .

– If a test set has been set aside, check the network’s generalization behaviour.
– If a FSM is needed, extract (see section 3.3) one from the dynamics of the

network (even if dynamics is not finite-state!).



x[t-1]

feedforward net
(output)

u[t]

feedforward net
(next state)

x[t]

y[t]

-

Fig. 2. A neural Moore machine

However, a number of open questions arise when training DTRNN to behave
as FSM, among which

– How does one choose nX? This introduces a definite inductive bias: too
small a value may yield an incapable DTRNN; too big a value may hamper
its generalization ability.

– Will the DTRNN exhibit finite-state behaviour? A continuous-state DTRNN
has an infinite number of states available and therefore has no bias toward
discrete-state behaviour.

– Will it indeed learn? A DTRNN may be computationally capable to perform
a task but learning that task from examples may not be easy or even possible.

– As with all neural networks, learning may get trapped in undesirable local
minima of the error function.

The results obtained so far by the researchers cited show that, indeed, DTRNN
can learn FSM-like behaviour from samples, althogh some problems persist.

One such problem is called instability : after learning, FSM-like behaviour is
observed only for for short input sequences but degrades with sequence length;
indeed, we will say that a DTRNN shows stable FSM behaviour when out-
puts are within tolerance of targets for input strings of any length. As will be
explained later, DTRNN may be constructed to emulate finite-state machines;
stable DTRNN constructed in that way have high weights, which in turn has



the consequence that the error function has very small gradients; this may be
part of the explanation why stable behaviour is hard to learn.

Another related problem occurs when the task to be learned has long-term
dependencies, that is, when late outputs depend on very early inputs; when this
is the case, gradient-descent algorithms have trouble relating late contributions
to the error to small changes in the state of neurons in early stages of the
processing; these problems have been studied in detail by Bengio et al. [23].

3.3 Extracting finite-state machines from trained networks

Once successfully trained, specialized algorithms may extract FSM from the dy-
namics of the DTRNN; some use a straightforward equipartition of neural state
space followed by a branch-and-bound algorithm [12], or a clustering algorithm
[10, 16, 20]. Very often, the finite-state automaton extracted behaves correctly
for strings of any length, even better than the original DTRNN. But automa-
ton extraction algorithms have been criticised [24, 25] in the sense that FSM
extraction may not reflect the actual computation performed by the DTRNN.
More recently, Casey [26] has shown that DTRNN can indeed “organize their
state space to mimic the states in the [...] state machine that can perform the
computation” and be trained or programmed to behave as FSM. Also recently,
Blair and Pollack [27] presented an increasing-precision dynamical analysis that
identifies those DTRNNs that have actually learned to behave as FSM.

3.4 Programming sigmoid DTRNN to behave as finite-state
machines

Finally, some researchers have set out to study whether it is possible to program
a sigmoid-based DTRNN so that it behaves as a given FSM, that is, they have
tried to formulate sets of rules for choosing the weights and initial states of
the DTRNN based on the transition function and the output function of the
corresponding FSM. In summary, to simulate a FSM in a sigmoid DTRNN one
has to decide:

– How to encode the input symbols σk ∈ Σ as vectors uk ∈ U . The usual choice
is a (one-hot) encoding: nU = |Σ|, (uk)i = δik, where δik is Kronecker’s delta,
defined as δik = 1 if i = k and 0 otherwise.

– How to interpret outputs as symbols γm ∈ Γ . For example, nonempty disjoint
regions Ym ⊆ Y (defined e.g. by a tolerance around suitable target values)
may be assigned to each γm ∈ Γ .

– How many state neurons nX to use (this will be discussed later).
– Which neural architecture to use.
– The values for weights.
– A value for the initial state x0 (for qI).

As has been said in section 3.2, not all DTRNN architectures can emulate all
FSM [21, 22].

When does a DTRNN behave as a FSM? A DTRNN N = (X,U, Y, f ,h,x0)
is said to behave as a FSM M = (Q,Σ, Γ, δ, λ, qI) when (Casey 1996):



1. States qi ∈ Q are assigned nonempty disjoint regions Xi ⊆ X such that the
DTRNN N is said to be in state qi at time t when x[t] ∈ Xi.

2. The initial state of the DTRNN N , belongs to the region assigned to state
qI , that is, x0 ∈ XI .

3. fk(Xj) ⊆ Xi ∀qj ∈ Q, σk ∈ Σ : δ(qj , σk) = qi, where fk(A) = {f(x,uk) :
x ∈ A} for short (see figure 3).

� �

��

�

Fig. 3. Correctness of the next-state function of a FSM as computed by a DTRNN.
The transition δ(qj , σk) = qi is illustrated.

4. hk(Xj) ⊆ Ym ∀qj ∈ Q, σk ∈ Σ : λ(qj , σk) = γm, where hk(A) = {h(x,uk) :
x ∈ A} for short (see figure 4).

� �

��

�

Fig. 4. Correctness of the output function of a FSM as computed by a DTRNN. The
production of output λ(qj , σk) = γm is illustrated.

Omlin and Giles [28] have proposed an algorithm for encoding deterministic
finite-state automata (DFA, a class of FSM) in second-order recurrent neural
networks which is based on a study of the fixed points of the sigmoid function.
Alquézar and Sanfeliu [29] have generalized Minsky’s [4] result to show that
DFA may be encoded in Elman [9] nets with rational (not real) sigmoid transfer
functions. Kremer [30] has recently shown that a single-layer first-order sigmoid



DTRNN can represent the state transition function of any finite-state automa-
ton. Frasconi et al. [31] have shown similar encodings for radial-basis-function
DTRNN. All of these constructions use a number of hidden units proportional
to the number of states in the FSM. More recently, Š́ıma [32] has shown that the
behaviour of any discrete-state DTRNN may be stably emulated by a continuous-
state DTRNN using activation functions in a very general class which includes
sigmoid functions. In a more recent paper, Š́ıma and Wiedermann [33] show that
any regular language may be more efficiently recognized by a DTRNN having
threshold units. Combining both results, one concludes that sigmoid DTRNN
can act as DFA accepting any regular language.

Recently, Carrasco et al. [22] (see also [34, 35]) have expanded the current
results on stable encoding of FSM on DTRNN to a larger family of sigmoids, a
larger variety of DTRNN (including first- and second-order architectures), and
a wider class of FSM architectures (DFA and Mealy and Moore FSM), by estab-
lishing a simplified procedure to prove the stability of a devised encoding and
to obtain weights as small as possible. Small weights are of interest if encoding
is used to inject partial a priori knowledge into the DTRNN before training it
through gradient descent.

One of Carrasco et al.’s [22] constructions is explained here in more detail:
the encoding of a Mealy machine in a second-order DTRNN; this construction
is similar to the one proposed earlier by Omlin and Giles [28]. It uses a one-hot
encoding for inputs and a “one-hot” interpretation for outputs, and nX = |Q|
state units (DTRNN is in state qi at time t if xi[t] is high and the xj [t], j 6= i, are
low). Then the initial state is chosen so that xI [0] = 1 and all other xi[0] = 0. A
single-layer second-order neural net [12] is used for both δ and λ as follows:

– Next state: for each i = 1, 2, . . . nX ,

xi[t] = g

 nX∑
j=1

nU∑
k=1

W xxu
ijk xj [t− 1]uk[t]

 (3)

– Output: for each i = 1, 2, . . . nY ,

yi[t] = g

 nX∑
j=1

nU∑
k=1

W yxu
ijk xj [t− 1]uk[t]

 , (4)

where g(x) = gL(x; 1). The next-state weights are chosen as follows: W xxu
ijk = H

if δ(qj , σk) = qi and −H otherwise (σk ∈ Σ, qi, qj ∈ Q). The output weights
are W yxu

ijk = H if λ(qj , σk) = γi and −H otherwise (γi ∈ Γ ). It may also be
said that weights are +1 and −1 and that the gain of the sigmoid is β = H (see
section 3). Now, the key is to choose H high enough to ensure correct output
for strings of any length; Carrasco et al. [22] obtain the lowest possible values
for H by mathematical induction after a worst-case study; the results are shown
in table 1. Encoding results such as this are very important: they show that
discrete-state behaviour may be obtained with continuous-state units having a
finite sigmoid “gain” H (discrete-state behaviour is always guaranteed by an
infinite gain, see section 3).



|Q| H

2 2+

3 3.113
6 4.181
10 4.863
30 6.224

Table 1. Values of the weight parameter H for stable finite-state behaviour of a
DTRNN as a function of the number of states |Q| of the FSM (the value 2+ indi-
cates any value infinitesimally larger than 2)

4 Relaxing the discrete-time restriction

All of the encodings discussed are for finite-state machines in discrete-time re-
current neural networks which assume the existence of a non-neural external
clock which times their behaviour and a non-neural storage or memory for the
previous state of the network, which is needed to compute the next state from
the inputs. However, real (biological) neural networks are physical systems that
operate in continuous time and should contain, if involved in the emulation of
finite-state behaviour, neural mechanisms for synchronization and for memory.

Clocks and memories are indeed present in digital computers that, on the
one hand, show discrete-time behaviour, but, on the other, are built from analog
transistors and diodes having continuous-time dynamics. Therefore, it should in
principle be possible to build a more natural model of finite-state computation
based on continuous-time recurrent neural networks (CTRNN). CTRNN are a
class of networks whose inputs and outputs are functions of a continuous-time
variable and whose neurons have a temporal response that is described as a
differential equation in time (for an excellent review on CTRNN, see [36]). We
are not aware of any attempt to describe the finite-state computational behaviour
of CTRNN.

The continuous-time version of the sigmoid unit may be written as follows
[37, 38]:

τ
dy

dt
= −y + g

(∑
i

Wiui + b

)
, (5)

where τ is the unit’s time constant (dynamics). The stationary (infinite-time)
state is, obviously, that of a discrete-time or instantaneous neuron

y = g

(∑
i

Wiui + b

)
. (6)

CTRNN may be constructed and trained [36] to process a continuous input
signal into a continuous output signal :

u(t)→ y(t). (7)



In particular, CTRNN may also be built to act as a memory (bistable device) or
as a clock (oscillator). Therefore, CTRNN may emulate DTRNN (using CTRNN
clocks and CTRNN memories), if inputs follow a precise chronogram (as they do
in digital computers). As a corollary, CTRNN may be programmed to emulate
FSM behaviour.

Nevertheless, a note regarding biological plausibility is in order. FSM be-
haviour is often a discrete-time simplification of continuous-time behaviour (e.g.,
speech, vision, etc.), which could be treated directly using CTRNN without
constructing a discrete-time computational model. Indeed, while discrete-state
discrete-time RNN were characterized in the 50’s as finite-state machines, to our
knowledge, the continuous-time continuous-state computational models repre-
sented by CTRNN have not been characterized theoretically.

5 Biologically inspired models: spiking or
integrate-and-fire neurons

5.1 Spiking or integrate-and-fire neurons

DTRNN and CTRNN are usually formulated in terms of sigmoid neurons trans-
mitting amplitude-modulated signals, but most real neurons may be seen as
using some kind of temporal encoding:

– trains of impulses (spikes) are sent,
– they are received and integrated by each neuron (possibly with some leak-

age),
– the neuron fires (sends an impulse) when the integral reaches a certain

threshold.

These are the rudiments of integrate-and-fire or spiking neuron models. The com-
putational capabilities of recurrent neural networks containing these biologically-
motivated neuron models have yet to be explored. This opens a wide field for
future interaction between theoretical computer scientists and neuroscientists.

5.2 Equivalence to sigmoid units and implications

While integrate-and-fire or spiking models may be seen as very different from
the sigmoid neurons discussed so far, they are not. The correspondence is, how-
ever, not straightforward. Biological neural systems perform visual processing
(10 synaptic stages) in ∼ 100 ms [39]. But real neurons are very slow: firing
frequencies are in the range of 100 Hz. Therefore, direct temporal encoding of
analog variables such as the output of a continuous-state sigmoid unit are not
biologically plausible. A variety of solutions have been proposed. One is called
the space-rate code: analog variables in [0, 1] are encoded as the fraction of neu-
rons in a pool of neurons which fire within a given time interval. Fast analog
space-rate computation (e.g. of sigmoids) and temporal processing (e.g. band-
pass filtering) has been demonstrated through simulation [40]. This suggests that



finite-state machines may be indirectly encoded in integrate-and-fire networks by
implementing a sigmoid DTRNN as a CTRNN and then converting the CTRNN
into an integrate-and-fire network.

5.3 Direct encoding of finite-state machines in integrate-and-fire
networks

A more direct, but related approach to finite-state behaviour in networks of spik-
ing neurons has been recently proposed by Wennekers [41]. Wennekers’ spiking
neurons form synfire chains, that is, sequences of events in which a particu-
lar subset of integrate-and-fire neurons synchronizedly fire in response to the
synchronized firing of another (or the same) subset of neurons after an approxi-
mately constant delay determined by the characteristics of the connections and
the neurons themselves. Each state in the finite-state machine is associated with
a particular subset of neurons and the network is said to be in a certain state
when the corresponding subset is synchronizedly firing. State transitions are
gated by special subsets which fire only when a certain external input is present
and a certain state was firing one delay unit before.

6 Concluding remarks

Our survey shows that

1. Very useful finite-state computation models stem from McCulloch & Pitts’
[1] idealized discrete-signal discrete-time recurrent neural network models.
These models are present in many successful theoretical and practical com-
putational solutions.

2. Continuous-state discrete-time models are more convenient in learning set-
tings and are shown to be able to stably emulate finite-state behaviour. These
networks use non-neural (external) devices such as clocks and memories.

3. Continuous-time RNN may, in principle, emulate clocks, memories and,
therefore, they should be capable of emulating FSM behaviour, although
we are not aware of any work about this aspect.

4. Theoretical models of the computational capabilities of continuous-time continuous-
state recurrent neural networks such as those available for discrete-time
discrete-state RNN (i.e. finite-state machines) are still missing.

5. The study of more biologically plausible models of finite-state computation
—e.g., integrate-and-fire neurons– has just started.

However, an important question remains unanswered: is finite-state computation
still a relevant model of biological information processing or is it a computation-
ally convenient simplification of this behaviour?

Acknowledgements: The authors thank Juan Antonio Pérez-Ortiz for comments
on this manuscript and acknowledge the support of the Spanish Comisión Inter-
ministerial de Ciencia y Tecnologia through grant TIC97-0941.



References

1. W. S. McCulloch and W. H. Pitts. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 5:115–133, 1943.

2. J. E. Hopcroft and J. D. Ullman. Introduction to automata theory, languages, and
computation. Addison–Wesley, Reading, MA, 1979.

3. S.C. Kleene. Representation of events in nerve nets and finite automata. In C.E.
Shannon and J. McCarthy, editors, Automata Studies, pages 3–42. Princeton Uni-
versity Press, Princeton, N.J., 1956.

4. M.L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1967. Ch: Neural Networks. Automata Made up of Parts.

5. N. Alon, A. K. Dewdney, and T. J. Ott. Efficient simulation of finite automata by
neural nets. Journal of the Association of Computing Machinery, 38(2):495–514,
1991.

6. P. Indyk. Optimal simulation of automata by neural nets. In Proceedings of the
12th Annual Symposium on Theoretical Aspects of Computer Science, pages 337–
348, Berlin, 1995. Springer-Verlag.

7. B. G. Horne and D. R. Hush. Bounds on the complexity of recurrent neural network
implementations of finite state machines. Neural Networks, 9(2):243–252, 1996.

8. Tony Robinson and Frank Fallside. A recurrent error propagation network speech
recognition system. Computer Speech and Language, 5:259–274, 1991.

9. J. L. Elman. Finding structure in time. Cognitive Science, 14:179–211, 1990.

10. A. Cleeremans, D. Servan-Schreiber, and J. L. McClelland. Finite state automata
and simple recurrent networks. Neural Computation, 1(3):372–381, 1989.

11. Jordan B. Pollack. The induction of dynamical recognizers. Machine Learning,
7:227–252, 1991.

12. C. L. Giles, C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun, and Y. C. Lee. Learning
and extracted finite state automata with second-order recurrent neural networks.
Neural Computation, 4(3):393–405, 1992.

13. R. L. Watrous and G. M. Kuhn. Induction of finite-state languages using second-
order recurrent networks. Neural Computation, 4(3):406–414, 1992.

14. Arun Maskara and Andrew Noetzel. Forcing simple recurrent neural networks to
encode context. In Proceedings of the 1992 Long Island Conference on Artificial
Intelligence and Computer Graphics, 1992.

15. A. Sanfeliu and R. Alquézar. Active grammatical inference: a new learning method-
ology. In Dov Dori and A. Bruckstein, editors, Shape and Structure in Pattern
Recognition, Singapore, 1994. World Scientific. Proceedings of the IAPR Interna-
tional Workshop on Structural and Syntactic Pattern Recognition SSPR’94 (Na-
hariya, Israel).

16. P. Manolios and R. Fanelli. First order recurrent neural networks and deterministic
finite state automata. Neural Computation, 6(6):1154–1172, 1994.

17. M. L. Forcada and R. C. Carrasco. Learning the initial state of a second-order
recurrent neural network during regular-language inference. Neural Computation,
7(5):923–930, 1995.

18. Peter Tiňo and Jozef Sajda. Learning and extracting initial Mealy automata with
a modular neural network model. Neural Computation, 7(4), July 1995.

19. R. P. Ñeco and M. L. Forcada. Beyond Mealy machines: Learning translators
with recurrent neural networks. In Proceedings of the World Conference on Neural
Networks ’96, pages 408–411, San Diego, California, September 15–18 1996.



20. Marco Gori, Marco Maggini, E. Martinelli, and G. Soda. Inductive inference from
noisy examples using the hybrid finite state filter. IEEE Transactions on Neural
Networks, 9(3):571–575, 1998.

21. M.W. Goudreau, C.L. Giles, S.T. Chakradhar, and D. Chen. First-order vs. second-
order single layer recurrent neural networks. IEEE Transactions on Neural Net-
works, 5(3):511–513, 1994.

22. Rafael C. Carrasco, Mikel L. Forcada, M. Ángeles Valdés-Muñoz, and Ramón P.
Ñeco. Stable encoding of finite-state machines in discrete-time recurrent neural
nets with sigmoid units. Neural Computation, 12, 2000. In press.

23. Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–
166, 1994.

24. J.F. Kolen and Jordan B. Pollack. The observer’s paradox: apparent computational
complexity in physical systems. Journal of Experimental and Theoretical Artificial
Intelligence, 7:253–277, 1995.

25. J. F. Kolen. Fool’s gold: Extracting finite state machines from recurrent network
dynamics. In J. D. Cowan, G. Tesauro, , and J. Alspector, editors, Advances in
Neural Information Processing Systems 6, pages 501–508, San Mateo, CA, 1994.
Morgan Kaufmann.

26. M. Casey. The dynamics of discrete-time computation, with application to recur-
rent neural networks and finite state machine extraction. Neural Computation,
8(6):1135–1178, 1996.

27. A. Blair and J. B. Pollack. Analysis of dynamical recognizers. Neural Computation,
9(5):1127–1142, 1997.

28. C. W. Omlin and C. L. Giles. Constructing deterministic finite-state automata in
recurrent neural networks. Journal of the ACM, 43(6):937–972, 1996.

29. R. Alquézar and A. Sanfeliu. An algebraic framework to represent finite state
automata in single-layer recurrent neural networks. Neural Computation, 7(5):931–
949, 1995.

30. Stefan C. Kremer. A Theory of Grammatical Induction in the Connectionist
Paradigm. PhD thesis, Department of Computer Science, University of Alberta,
Edmonton, Alberta, 1996.

31. Paolo Frasconi, Marco Gori, Marco Maggini, and Giovanni Soda. Representa-
tion of finite-state automata in recurrent radial basis function networks. Machine
Learning, 23:5–32, 1996.

32. Jǐŕı Š́ıma. Analog stable simulation of discrete neural networks. Neural Network
World, 7:679–686, 1997.

33. Jǐŕı Š́ıma and Jǐŕı Wiedermann. Theory of neuromata. Journal of the ACM,
45(1):155–178, 1998.

34. Ramón P. Ñeco, Mikel L. Forcada, Rafael C. Carrasco, and M. Ángeles Valdés-
Muñoz. Encoding of sequential translators in discrete-time recurrent neural nets. In
Proceedings of the European Symposium on Artificial Neural Networks ESANN’99,
pages 375–380, 1999.

35. Rafael C. Carrasco, Jose Oncina, and Mikel L. Forcada. Efficient encodings of finite
automata in discrete-time recurrent neural networks. In Proceedings of ICANN’99,
International Conference on Artificial Neural Networks, 1999. (in press).

36. B. A. Pearlmutter. Gradient calculations for dynamic recurrent neural networks:
a survey. IEEE Transactions on Neural Networks, 6(5):1212–1228, 1995.

37. F. J. Pineda. Generalization of back-propagation to recurrent neural networks.
Physical Review Letters, 59(19):2229–2232, 1987.



38. L.B. Almeida. Backpropagation in perceptrons with feedback. In R. Eckmiller
and Ch. von der Malsburg, editors, Neural Computers, pages 199–208, Neuss 1987,
1988. Springer-Verlag, Berlin.

39. S. Thorpe, D. Fize, and C. Marlot. Speed of processing in the human visual system.
Nature, 381:520–522, 1996.

40. Thomas Natschläger and Wolfgang Maass. Fast analog computation in networks of
spiking neurons using unreliable synapses. In Proceedings of ESANN’99, European
Symposium on Artificial Neural Networks, pages 417–422, 1999.

41. Thomas Wennekers. Synfire graphs: From spike patterns to automata of spiking
neurons. Technical Report Ulmer Informatik-Berichte Nr. 98–08, Universität Ulm,
Fakultät für Informatik, 1998.


