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Abstract

This paper explores the use of external
sources of bilingual information available
on-line for word-level machine translation
quality estimation (MTQE). These sources
of bilingual information are used as a black
box to spot sub-segment correspondences
between a source-language (SL) sentence
S to be translated and a given translation
hypothesis T in the target-language (TL).
This is done by segmenting both S and
T into overlapping sub-segments of vari-
able length and translating them into the
TL and the SL, respectively, using the avail-
able bilingual sources of information on the
fly. A collection of features is then obtained
from the resulting sub-segment translations,
which is used by a binary classifier to de-
termine which target words in T need to be
post-edited.

Experiments are conducted based on the
data sets published for the word-level
MTQE task in the 2014 edition of the Work-
shop on Statistical Machine Translation
(WMT 2014). The sources of bilingual
information used are: machine translation
(Apertium and Google Translate) and the
bilingual concordancer Reverso Context.
The results obtained confirm that, using
less information and fewer features, our ap-
proach obtains results comparable to those
of state-of-the-art approaches, and even out-
perform them in some data sets.

c� 2015 The authors. This article is licensed under a Creative
Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.

1 Introduction

Recent advances in the field of machine translation
(MT) have led to the adoption of this technology
by many companies and institutions all around the
world in order to bypass the linguistic barriers and
reach out to broader audiences. Unfortunately, we
are still far from the point of having MT systems
able to produce translations with the level of qual-
ity required for dissemination in formal scenarios,
where human supervision and MT post-editing are
unavoidable. It therefore becomes critical to min-
imise the cost of this human post-editing. This
has motivated a growing interest in the field of MT
quality estimation (Blatz et al., 2004; Specia et al.,
2010; Specia and Soricut, 2013), which is the field
that focuses on developing techniques that allow to
estimate the quality of the translation hypotheses
produced by an MT system.

Most efforts in MT quality estimation (MTQE)
are aimed at evaluating the quality of whole trans-
lated segments, in terms of post-editing time, num-
ber of editions needed, and other related metrics
(Blatz et al., 2004). Our work is focused on the
sub-field of word-level MTQE. The main advantage
of word-level MTQE is that it allows not only to
estimate the effort needed to post-edit the output
of an MT system, but also to guide post-editors on
which words need to be post-edited.

In this paper we describe a novel method which
uses black-box bilingual resources from the Inter-
net for word-level MTQE. Namely, we combine
two on-line MT systems, Apertium1 and Google
Translate,2 and the bilingual concordancer Reverso
Context3 to spot sub-segment correspondences be-
tween a sentence S in the source language (SL) and

1http://www.apertium.org
2http://translate.google.com
3http://context.reverso.net/translation/
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a given translation hypothesis T in the target lan-
guage (TL). To do so, both S and T are segmented
into overlapping sub-segments of variable length
and they are translated into the TL and the SL, re-
spectively, by means of the bilingual sources of
information mentioned above. These sub-segment
correspondences are used to extract a collection
of features that is then used by a binary classifier
to determine the words to be post-edited. Our ex-
periments confirm that our method provides results
comparable to the state of the art using considerably
fewer features. In addition, given that our method
uses (on-line) resources which are publicly avail-
able on the Internet, once the binary classifier is
trained it can be used for word-level MTQE on the
fly for new translations.

The rest of the paper is organised as follows.
Section 2 briefly reviews the state of the art in
word-level MTQE. Section 3 describes our binary-
classification approach, the sources of information,
and the collection of features used. Section 4 de-
scribes the experimental setting used for our experi-
ments, whereas Section 5 reports and discusses the
results obtained. The paper ends with some con-
cluding remarks and the description of ongoing and
possible future work.

2 Related work

Some of the early work on word-level MTQE can
be found in the context of interactive MT (Gan-
drabur and Foster, 2003; Ueffing and Ney, 2005).
Gandrabur and Foster (2003) obtain confidence
scores for each word t in a given translation hypoth-
esis T of the SL sentence S to help the interactive
MT system to choose the translation suggestions
to be made to the user. Ueffing and Ney (2005)
extend this application to word-level MTQE also
to automatically reject those target words t with
low confidence scores from the translation propos-
als. This second approach incorporates the use of
probabilistic lexicons as a source of translation in-
formation.

Blatz et al. (2003) introduce a more complex
collection of features for word-level MTQE, using
semantic features based on WordNet (Miller, 1995),
translation probabilities from IBM model 1 (Brown
et al., 1993), word posterior probabilities (Blatz et
al., 2003), and alignment templates from statistical
MT (SMT) models. All the features they use are
combined to train a binary classifier which is used
to determine the confidence scores.

Ueffing and Ney (2007) divide the features used

by their approach in two types: those which are
independent of the MT system used for transla-
tion (system-independent), and those which are
extracted from internal data of the SMT system
they use for translation (system-dependent). These
features are obtained by comparing the output of
an SMT system T1 to a collection of alternative
translations {Ti}NT

i=2 obtained by using the N -best
list from the same SMT system. Several distance
metrics are then used to check how often word tj ,
the word in position j of T , is found in each trans-
lation alternative Ti, and how far from position j.
These features rely on the assumption that a high
occurrence frequency in a similar position is an
evidence that tj does not need to be post-edited.
Biçici (2013) proposes a strategy for extending this
kind of system-dependent features to what could
be called a system-independent scenario. His ap-
proach consists in choosing parallel data from an
additional parallel corpus which are close to the
segment S to be translated by means of feature-
decay algorithms (Biçici and Yuret, 2011). Once
this parallel data are extracted, a new SMT system
is trained and its internal data is used to extract
these features.

The MULTILIZER approach to (sentence-level)
MTQE (Bojar et al., 2014) also uses other MT
systems to translate S into the TL and T into the
SL. These translations are then used as a pseudo-
reference and the similarity between them and the
original SL and TL sentences is computed and taken
as an indication of quality. This approach, as well
as the one by Biçici and Yuret’s (2011) are the most
similar ones to our approach. One of the main
differences is that they translate whole segments,
whereas we translate sub-segments. As a result,
we can obtain useful information about specific
words in the translation. As the approach in this pa-
per, MULTILIZER also combines several sources
of bilingual information, while Biçici and Yuret
(2011) only uses one MT system.4

Among the recent works on MTQE, it is worth
mentioning the QuEst project (Specia et al., 2013),
which sets a framework for MTQE, both at the
sentence level and at the word level. This frame-
work defines a large collection of features which
can be divided in three groups: those measuring the
complexity of the SL segment S, those measuring
the confidence on the MT system, and those mea-
suring both fluency and adequacy directly on the

4To the best of our knowledge, there is not any public descrip-
tion of the internal workings of MULTILIZIER.
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translation hypothesis T . In fact, some of the most
successful approaches in the word-level MTQE task
in the Workshop on Statistical Machine Translation
in 2014 (WMT 2014) (Bojar et al., 2014) are based
on some of the features defined in that framework
(Camargo de Souza et al., 2014).

The work described in this paper is aimed at
being a system-independent approach that uses
available on-line bilingual resources for word-level
MTQE. This work is inspired by the work by Esplà-
Gomis et al. (2011), in which several on-line MT
systems are used for word-level quality estimation
in translation-memory-based computer aided trans-
lation tasks. In the work by Esplà-Gomis et al.
(2011), given a translation unit (S, T ) suggested to
the translator for the SL segment to be translated
S�, MT is used to translate sub-segments from S
into the TL, and TL sub-segments from T into the
SL. Sub-segment pairs obtained through MT that
are found both in S and T are an evidence that they
are related. The alignment between S and S�, to-
gether with the sub-segment translations between
S and T help to decide which words in T should
be modified to get T �, the desired translation of
S�. Based on the same idea, we built a brand-new
collection of word-level features to extend this ap-
proach to MTQE. One of the main advantages of
this approach as compared to other approaches de-
scribed in this section is that it uses light bilingual
information extracted from any available source.
Obtaining this information directly from the Inter-
net allows us to obtain on the fly confidence esti-
mates for the words in T without having to rely on
more complex sources, such as probabilistic lexi-
cons, part-of-speech information or word nets.

3 Word-level quality estimation using
bilingual sources of information from
the Internet

The approach proposed in this work for word-level
MTQE uses binary classification based on features
obtained through sources of bilingual information
available on-line. We use these sources of bilingual
information to detect connections between the origi-
nal SL segment S and a given translation hypothesis
T in the TL following the same method proposed
by Esplà-Gomis et al. (2011): all the overlapping
sub-segments of S and T , up to a given length L,
are obtained and translated into the TL and the
SL, respectively, using the sources of bilingual in-
formation available. The resulting collections of
sub-segment translations MS→T and MT→S can

be then used to spot sub-segment correspondences
between T and S. In this section we describe a
collection of features designed to identify these re-
lations for their exploitation for word-level MTQE.

Positive features. Given a collection of sub-
segment translations M (either MS→T or MT→S),
one of the most obvious features consists in comput-
ing the amount of sub-segment translations (σ, τ) ∈
M that confirm that word tj in T should be kept in
the translation of S. We consider that a sub-segment
translation (σ, τ) confirms tj if σ is a sub-segment
of S, and τ is a sub-segment of T that covers posi-
tion j. Based on this idea, we propose the collection
of positive features Posn:

Posn(j, S, T,M) =
|{τ : τ ∈ confn(j, S, T,M)}|

|{τ : τ ∈ segn(T ) ∧ j ∈ span(τ, T )}|
where segn(X) represents the set of all possible
n-word sub-segments of segment X and func-
tion span(τ, T ) returns the set of word positions
spanned by the sub-segment τ in the segment T .5

Function confn(j, S, T,M) returns the collection
of sub-segment pairs (σ, τ) that confirm a given
word tj , and is defined as:

confn(j, S, T,M) = {(σ, τ) ∈ M :
τ ∈ segn(T ) ∧ σ ∈ seg∗(S) ∧ j ∈ span(τ, T )}

where seg∗(X) is similar to segn(X) but without
length constraints.6

Additionally, we propose a second collection of
features, which use the information about the trans-
lation frequency between the pairs of sub-segments
in M . This information is not available for MT, al-
though it is for the bilingual concordancer we have
used (see Section 4). This frequency determines
how often σ is translated as τ and, therefore, how
reliable this translation is. We define Posfreqn to
obtain these features as:

Posfreqn (j, S, T,M) =
�

∀(σ,τ)∈confn(j,S,T,M)

occ(σ, τ,M)�
∀(σ,τ �)∈M occ(σ, τ �,M)

where function occ(σ, τ,M) returns the number of
occurrences in M of the sub-segment pair (σ, τ).
5Note that a sub-segment τ may be found more than once
in segment T : function span(τ, T ) returns all the possible
positions spanned.
6Two variants of function confn were tried: one applying also
length constraints when segmenting S (with the consequent
increment in the number of features), and one not applying
length constraints at all. Preliminary results confirmed that
constraining only the length of τ was the best choice.
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Both positive features, Pos(·) and Posfreq(·), are
computed for tj for all the values of sub-segment
length n up to L. In addition, they can be computed
for both MS→T and MT→S , producing 4L positive
features in total for each word tj .

Negative features. Our negative features, i.e.
those features that help to identify words that should
be post-edited in the translation hypothesis T , are
also based on sub-segment translations (σ, τ) ∈ M ,
but they are used in a different way. Negative fea-
tures use those sub-segments τ that fit two criteria:
(a) they are the translation of a sub-segment σ from
S but cannot be matched in T ; and (b) when they
are aligned to T using the Levenshtein edit distance
algorithm (Levenshtein, 1966), both their first word
θ1 and last word θ|τ | can be aligned, therefore de-
limiting a sub-segment τ � of T . Our hypothesis is
that those words tj in τ � which cannot be aligned
to τ are likely to need to be post-edited. We define
our negative feature collection Negmn� as:

Negmn�(j, S, T,M) =
�

∀τ∈NegEvidencemn� (j,S,T,M)

1

alignmentsize(τ, T )

where alignmentsize(τ, T ) returns the length of
the sub-segment τ � delimited by τ in T . Func-
tion NegEvidencemn�(·) returns the set of τ sub-
segments that are considered negative evidence and
is defined as:

NegEvidencemn�(j, S, T,M) = {τ : (σ, τ) ∈ M
∧σ ∈ segm(S) ∧ |τ �| = n� ∧

τ /∈ seg∗(T ) ∧ IsNeg(j, τ, T )}
In this function length constraints are set so that
sub-segments σ take lengths m ∈ [1, L].7 However,
the case of the sub-segments τ is slightly different:
n� does not stand for the length of the sub-segments,
but the number of words in τ which are aligned to
T .8 Function IsNeg(·) defines the set of conditions
required to consider a sub-segment τ a negative
evidence for word tj :

IsNeg(j, τ, T ) = ∃j�, j�� ∈ [1, |T |] : j� < j < j��

∧ aligned(tj� , θ1) ∧ aligned(tj�� , θ|τ |)∧
� ∃θk ∈ seg1(τ) : aligned(tj , θk)

where aligned(X,Y ) is a binary function that
checks whether words X and Y are aligned or not.
7In contrast to the positive features, preliminary results showed
an improvement in the performance of the classifier when
constraining the length of the σ sub-segments used for each
feature in the set.
8That is, the length of longest common sub-segment of τ and
T .

Negative features Negmn�(·) are computed for
tj for all the values of SL sub-segment lengths
m ∈ [1, L] and the number of TL words n� ∈ [2, L]
which are aligned to words θk in sub-segment τ .
Note that the number of aligned words between T
and τ cannot be lower than 2 given the constraints
set by function IsNeg(j, τ, T ). This results in a
collection of L× (L− 1) negative features. Obvi-
ously, for these features only MS→T is used, since
in MT→S all the sub-segments τ can be found in
T .

4 Experimental setting

The experiments described in this section compare
the results of our approach to those in the word-
level MTQE task in WMT 2014 (Bojar et al., 2014),
which are considered the state of the art in the task.
In this section we describe the sources of bilingual
information used for our experiments, as well as
the binary classifier and the data sets used for eval-
uation.

4.1 Evaluation data sets
Four data sets for different language pairs were
published for the word-level MTQE task in WMT
2014: English–Spanish (EN–ES), Spanish–English
(ES–EN), English–German (EN–DE), and German–
English (DE–EN). The data sets contain the original
SL segments, and their corresponding translation
hypotheses tokenised at the level of words. Each
word is tagged by hand using three levels of granu-
larity:

• binary: words are classified only taking into
account if they need to be post-edited (class
BAD) or not (class OK);

• level 1: extension of the binary classification
which differentiates between accuracy errors
and fluency errors;

• multi-class: fine-grained classification of er-
rors divided in 20 categories.

In this work we focus on the binary classification,
which is the base for the other classification granu-
larities.

Four evaluation metrics were defined for this
task:

• The F1 score weighted by the rate ρc of in-
stances of a given class c in the data set:

Fw
1 =

�

∀c∈C
ρc

2pcrc
pc + rc
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where C is the collection of classes defined
for a given level of granularity (OK and BAD
for the binary classification) and pc and rc are
the precision and recall for a class c ∈ C,
respectively;

• The F1 score of the less frequent class in the
data set (class BAD, in the case of binary clas-
sification):

FBAD
1 =

2× pBAD × rBAD

pBAD + rBAD
;

• The Matthews correlation coefficient (MCC),
which takes values in [−1, 1] and is more re-
liable than the F1 score for unbalanced data
sets (Powers, 2011):

MCC =
TOK × TBAD − FOK × FBAD

2
√
AOK ×ABAD × POK × PBAD

where TOK and TBAD stand for the number
of instances correctly classified for each class,
FOK and FBAD stand for the number of in-
stances wrongly classified for each class, POK

and PBAD stand for the number of instances
classified either as OK or BAD, and AOK and
ABAD stand for the actual number of each
class; and

• Total accuracy (ACC):

ACC =
TOK + TBAD

POK + PBAD

The comparison between the approach presented
in this work and those described by Bojar et al.
(2014) is based on the FBAD

1 score because this
was the main metric used to compare the different
approaches participating in WMT 2014. However,
all the metrics are reported for a better analysis of
the results obtained.

4.2 Sources of Bilingual Information
As already mentioned, two different sources of in-
formation were used in this work, MT and a bilin-
gual concordancer. For our experiments we used
two MT systems which are freely available on the
Internet: Apertium and Google Translate. These
MT systems were exploited by translating the sub-
segments, for each data set, in both directions (from
SL to TL and vice versa). It is worth noting that
language pairs EN–DE and DE–EN are not avail-
able for Apertium. For these data sets only Google
Translate was used.

The bilingual concordancer Reverso Context was
also used for translating sub-segments. Namely,
the sub-sentential translation memory of this sys-
tem was used, which is a much richer source of
bilingual information and provides, for a given SL
sub-segment, the collection of TL translation alter-
natives, together with the number of occurrences
of the sub-segments pair in the translation memory.
Furthermore, the sub-segment translations obtained
from this source of information are more reliable,
since they are extracted from manually translated
texts. On the other hand, its main weakness is the
coverage: although Reverso Context uses a large
translation memory, no translation can be obtained
for those SL sub-segments which cannot be found
in it. In addition, the sub-sentential translation
memory contains only those sub-segment transla-
tions with a minimum number of occurrences. On
the contrary, MT systems will always produce a
translation, even though it may be wrong or contain
untranslated out-of-vocabulary words. Our hypoth-
esis is that combining both sources of bilingual
information can lead to reasonable results for word-
level MTQE.

For our experiments, we computed the features
described in Section 3 separately for both sources
of information. The value of the maximum sub-
segment length L used was set to 5, which resulted
in a collection of 40 features from the bilingual
concordancer, and 30 from MT.9

4.3 Binary classifier

Esplà-Gomis et al. (2011) use a simple percep-
tron classifier for word-level quality estimation in
translation-memory-based computer-aided transla-
tion. In this work, a more complex multilayer per-
ceptron (Duda et al., 2000, Section 6) is used, as
implemented in Weka 3.6 (Hall et al., 2009). Multi-
layer perceptrons (also known as feedforward neu-
ral networks) have a complex structure which in-
corporates one or more hidden layers, consisting
of a collection of perceptrons, placed between the
input of the classifier (the features) and the output
perceptron. This hidden layer makes multilayer
perceptrons suitable for non-linear classification
problems (Duda et al., 2000, Section 6). In fact,
Hornik et al. (1989) proved that neural networks
with a single hidden layer containing a finite num-
ber of neurons are universal approximators and may
therefore be able to perform better than a simple per-

9As already mentioned, the features based on translation fre-
quency cannot be obtained for MT.
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ceptron for complex problems. In our experiments,
we have used a batch training strategy, which iter-
atively updates the weights of each perceptron in
order to minimise a total error function. A subset of
10% of the training examples was extracted from
the training set before starting the training process
and used as a validation set. The weights were itera-
tively updated on the basis of the error computed in
the other 90%, but the decision to stop the training
(usually referred as the convergence condition) was
based on this validation set. This is a usual practice
whose objective is to minimise the risk of overfit-
ting. The training process stops when the total error
obtained in an iteration is worse than that obtained
in the previous 20 iterations.10

Hyperparameter optimisation was carried out us-
ing a grid search (Bergstra et al., 2011) in a 10-fold
cross-validation fashion in order to choose the hy-
perparameters optimising the results for the metric
to be used for comparison, F1 for class BAD:

• Number of nodes in the hidden layer: Weka
(Hall et al., 2009) makes it possible to choose
from among a collection of predefined net-
work designs; the design performing best in
most cases happened to have the same number
of nodes in the hidden layer as the number of
features.

• Learning rate: this parameter allows the di-
mension of the weight updates to be regulated
by applying a factor to the error function after
each iteration; the value that best performed
for most of our training data sets was 0.9.

• Momentum: when updating the weights at the
end of a training iteration, momentum smooths
the training process for faster convergence by
making it dependent on the previous weight
value; in the case of our experiments, it was
set to 0.07.

5 Results and discussion

Table 1 shows the results obtained by the base-
line consisting on marking all the words as BAD,
whereas Table 2 shows the reference results ob-
tained by the best performing system according to
the results published by Bojar et al. (2014). These
10It is usual to set a number of additional iterations after the er-
ror stops improving, in case the function is in a local minimum,
and the error starts decreasing again after a few more iterations.
If the error continues to worsen after these 20 iterations, the
weights used are those obtained after the iteration with the
lowest error.

language weighted BAD
pair F1 F1 MCC accuracy

EN–ES 18.71 52.53 0.00 35.62
ES–EN 5.28 29.98 0.00 17.63
EN–ES 12.78 44.57 0.00 28.67
DE–EN 8.20 36.60 0.00 22.40

Table 1: Results of the “always BAD” baseline for the differ-
ent data sets.

language weighted BAD
pair F1 F1 MCC accuracy

EN–ES 62.00 48.73 18.23 61.62
ES–EN 79.54 29.14 25.47 82.98
EN–DE 71.51 45.30 28.61 72.97
DE–EN 72.41 26.13 16.08 76.14

Table 2: Results of the best performing systems for the dif-
ferent data sets according to the results published by Bojar et
al. (2014).

tables are used as a reference for the results ob-
tained with the approach described in this work.

Table 3 shows the results obtained when using
Reverso Context as the only source of information.
Using only Reverso Context leads to reasonably
good results for language pairs EN–ES and EN–
DE, while for the other two language pairs results
are much worse, basically because no word was
classified as needing to be post-edited. This situ-
ation is caused by the fact that, in both cases, the
amount of examples of words to be post-edited in
the training set is very small (lower than 21%). In
this case, if the features are not informative enough,
the strong bias leads to a classifier that always rec-
ommends to keep all words untouched. However, it
is worth noting that with a small amount of features
(40 features) state-of-the-art results were obtained
for two data sets.11 Namely, in the case of the
EN–ES data set, the one with the largest amount of
training instances, the results for the main metric
(F1 score for the less frequent class, in this case
BAD) were better than those of the state of the art.
In the case of the EN–DE data set the results are
noticeably lower than the state of the art, but they
are still comparable to them.

Table 4 shows the results obtained when com-
bining the information from Reverso Context and
the MT systems Apertium and Google Translate.
Again, one of the best results is obtained for the
EN–ES data set, which would again beat the state
of the art for the F1 score for the BAD class, and

11We focus our comparison on the F1 score for the BAD class
because this was the metric on which the classifiers were opti-
mised.
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language weighted BAD
pair F1 F1 MCC accuracy

EN–ES 60.18 49.09 16.28 59.46
ES–EN 74.41 0.00 0.00 82.37
EN–DE 65.88 41.24 17.05 65.71
DE–EN 67.82 0.00 0.00 77.60

Table 3: Results of the approach proposed in this paper for the
same data sets used to obtain Table 2 using Reverso Context
as the only source of bilingual information.

language weighted BAD
pair F1 F1 MCC accuracy

EN–ES 61.43 49.03 17.71 60.91
ES–EN 75.87 10.44 9.61 81.82
EN–DE 66.75 43.07 19.38 78.71
DE–EN 75.00 40.33 25.85 76.03

Table 4: Results of the approach proposed in this work for the
same data sets used to obtain Table 2 using both Reverso Con-
text and both Google Translate and Apertium as the sources of
bilingual information.

which obtained results still closer to those of the
state of the art for the rest of metrics. In addition,
the biased classification problem for data sets DE–
EN and ES–EN is alleviated. Actually, the results
for the DE–EN language pair are particularly good,
and outperform the state of the art for all the met-
rics. The low F1 score obtained for the ES–EN data
set may be explained by the unbalanced amount of
positive and negative instances. Actually, the ratio
of negative instances is somewhat related to the re-
sults obtained: 35% for EN–ES, 17% for ES–EN,
30% for EN–DE and 21% for DE–EN. A closer
analysis of the results shows that our approach is
better when detecting errors in the Terminology,
Mistranslation, and Unintelligible subclasses. The
ratio of this kind of errors over the total amount
of negative instances for each data set is again re-
lated to the results obtained: 73% for EN–ES, 27%
for ES–EN, 47% for EN–DE and 35% for DE–EN.
This information may explain the differences in the
results obtained for each data set.

Again, it is worth noting that this light method
using a reduced set of 70 features can obtain, for
most of the data sets, results comparable to those
obtained by approaches using much more features.
For example, the best system for the data set EN–ES
(Camargo de Souza et al., 2014) used 163 features,
while the winner system for the rest of data sets
(Biçici and Way, 2014; Biçici, 2013) used 511,000
features. The sources of bilingual information used
in this work are rather rich; however, given that
any source of bilingual information could be used
on the fly, simpler sources of bilingual information

could also be used. It would therefore be interesting
to carry out a deeper evaluation of the impact of
the type and quality of the resources used with this
approach.

6 Concluding remarks

In this paper we describe a novel approach for word-
level MTQE based on the use of on-line available
bilingual resources. This approach is aimed at being
system-independent, since it does not make any as-
sumptions about the MT system used for producing
the translation hypotheses to be evaluated. Further-
more, given that this approach can use any source
of bilingual information as a black box, it can be
easily used with few resources. In addition, adding
new sources of information is straightforward, pro-
viding considerable room for improvement. The
results described in Section 5 confirm that our ap-
proach can reach results comparable to those in the
state of the art using a smaller collection of features
than those used by most of the other approaches.

Although the results described in this paper are
encouraging, it is worth noting that it is difficult to
extract strong conclusions from the small data sets
used. A wider evaluation should be done, involving
larger data sets and more language pairs. As future
work, we plan to extend this method by using other
on-line resources to improve the on-line coverage
when spotting sub-segment translations; namely,
different bilingual concordancers and on-line dic-
tionaries. Monolingual target-language information
could also be obtained from the Internet to deal with
fluency issues, for example, getting the frequency
of a given n-gram from search engines. We will
also study the combination of these features with
features used in previous state-of-the-art systems
(see Section 2) Finally, it would be interesting to
try the new features defined here in word-level qual-
ity estimation for computer-aided translation tools,
as in Esplà-Gomis et al. (2011).
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