Inferencia Estocástica y Aplicaciones de los Lenguajes de Árboles

Autor: Juan Ramón Rico

Tesis doctoral

Dirigida por:

Dr. Rafael C. Carrasco

Dr. Jorge Calera

Aprendizaje inductivo

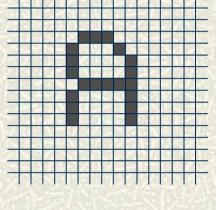
Tarea de descubrir estructuras comunes a partir de ejemplos

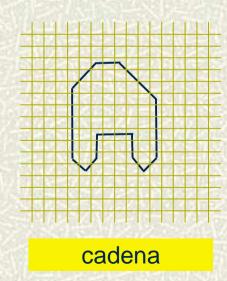
Inferencia gramatical

Basada en lenguajes formales (Fu 1982)

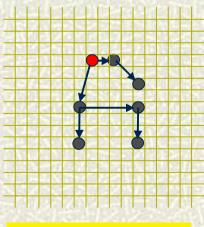
Inferencia gramatical estocástica

Aporta información estadística


Cadenas, árboles y grafos.


- Cadenas. Lenguajes de cadenas.
- Gramáticas de grafos (Engelfriet y Heyker 1991; Fahmy y Blostein 1992; Courcelle et al. 1993).
 - Reconocimiento de patrones (Flasinsky 1992 y Rekers 1994).
 - × Problemas de eficiencia.
- Gramáticas de árboles (Sima'an et al. 1996; Abe y Mamitsuka 1997; Carrasco et al. 2001).

Entrada datos

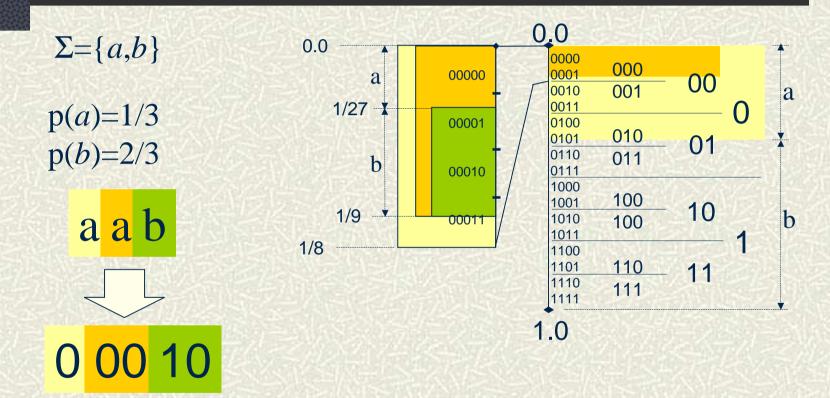

Representación

simbólica

árbol

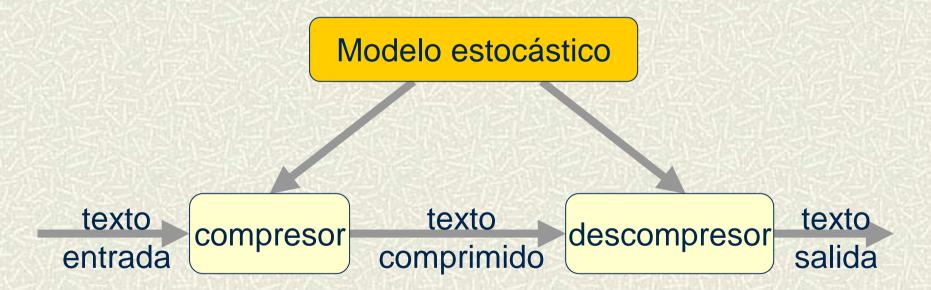
límite entrópico

datos

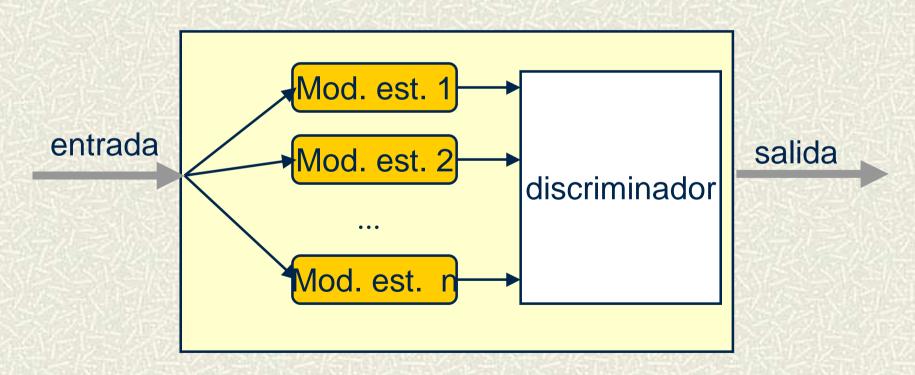

compresión descompresión

datos comprimidos

	Estáticos	Adaptativos
Símbolo a símbolo	Huffman (5)	Compresión aritmética (2)
Basado en diccionario		Ziv-Lempel (4)


✓ Los mejores resultados se obtienen usando compresión aritmética

Codificación aritmética



No funciona con probabilidad nula

Esquema de compresión.

Esquema de clasificación.

Ventajas:

- ✓ Eficiencia.
- ✓ Incremental → adaptativo.

Inconvenientes:

ightharpoonup Probabilidad nula(k grande) \rightarrow solución muy estudiada

Métodos de descuento básicos:

- Katz (1987).
- Absoluto (Ney y Essen 1993).
- Lineal (Katz 1987; Jelinek 1990).

Métodos de descuento extendidos:

- Interpolación de modelos (Ney et al. 1997).
- Suavizado multinivel (Ney et al. 1997).

Modelos de predicción por concordancia parcial (PPM).

- Asignación de la probabilidad a eventos nos vistos.
- Compresión (Witten et al. 1999).

Parte I

Lenguajes de árboles k-testables

- Estimación de las probabilidades a partir de las frecuencias experimentales.
- # Alternativa a métodos como:
 - *Inside-outside* (Sakakibara 1992).
 - Fusión de estados (Carrasco et al. 2001).

NO probabilísticos

probabilísticos

cadenas

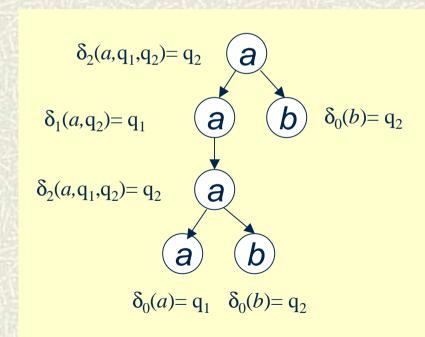
k-testables (García y Vidal 1990; Yokomori 1995)

k-gramas

árboles

k-testables (Knuutila 1993; García 1993).

?


Autómatas de árboles ascendentes deterministas (AAAD).

$$\Sigma = \{a,b\}$$

$$Q = \{q_1, q_2\}$$

$$F = \{q_2\}$$

$$\delta_0(a) = q_1$$
 $\delta_0(b) = q_2$
 $\delta_1(a, q_2) = q_1$
 $\delta_2(a, q_1, q_2) = q_2$

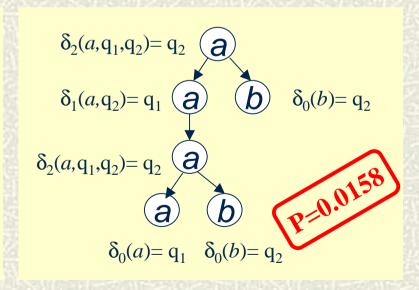
Autómatas de árboles ascendentes deterministas estocásticos(AAADE).

$$\Sigma = \{a,b\}$$

$$Q = \{q_1, q_2\}$$

$$F = \{q_2\}$$

$$1$$


$$\delta_0(a) = q_1$$

$$\delta_0(b) = q_2$$

$$\delta_1(a,q_2) = q_1$$

$$\delta_2(a,q_1,q_2) = q_2$$

$$0.7$$

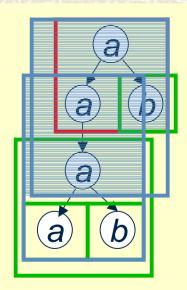
Autómatas k-testables.

■ Definiciones: *k*-root, *k*-fork y *k*-subtree.

```
Para k=3 y \Sigma=\{a,b\}

Q = \{a,b,a(ab),a(a)\}

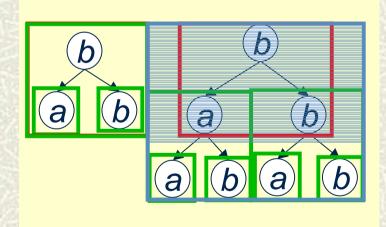
F = \{a(ab)\}


\delta_0(a) = a

\delta_0(b) = b

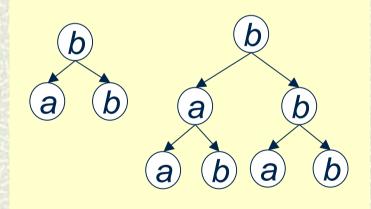
\delta_1(a,a(ab)) = a(a)

\delta_2(a,a,b) = a(ab)


\delta_2(a,a(a),b) = a(ab)
```


Extensión estocástica de los lenguajes de árboles localmente testables

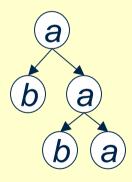
■ Ejemplo: AAADE para k=3


q	r(q)	$\sigma(t_1,,t_m)$	$p_m(\sigma,t_1,,t_m)$
a	0	$a \leftarrow a$	3/3
b	0	b	3/3
a(ab)	0	a(ab)	1/1
b(ab)	2/2	b(ab)	2/3
		b(a(ab)b(ab))	1/3

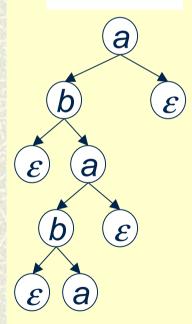
Extensión estocástica de los lenguajes de árboles localmente testables

■ Ejemplo modelos M^[3] y M^[2]

STATE OF STA	$\mathbf{M}^{[2]}$			
1 1 10 10 mm A	q	r(q)	$\sigma(t_1,,t_m)$	$p_m(\sigma,t_1,,t_m)$
Constant Action	а	0	а	3/4
		U	a(ab)	1/4
	b	2/2	b	3/6
			b(ab)	3/6



Método 1: modelo adaptativo con distribución a priori para árboles binarios.

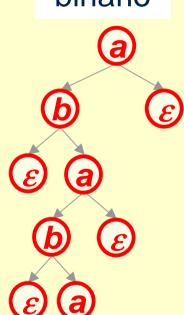


Método 1: modelo adaptativo con distribución a priori para árboles binarios.

n-ario

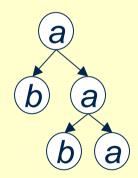
binario

Método 1: modelo adaptativo con distribución a priori para árboles binarios.


Iniciación AAADE

$oldsymbol{q}$	p(q)	n	p(n q)
- Cr	21/50	0	13/21
a		2	8/21
b	21/50	0	13/21
		2	8/21
\mathcal{E}	8/50	0	8/8

preorden


send(a,2)
send(ε,0)
send(a,2)
send(a,2)
send(b,2)
send(ε,0)
send(ε,0)
send(ε,0)
send(ε,0)

binario

Método 2: modelo contexto finito para árboles *n*-arios.

n-ario

Fase 1:

a|b|b(ba)|*

send_r(a)
send(a(ba))
send(b)

send(a(ba))

send(a(ab))

send(b)

send(a)

Fase 2:

send(a,2)

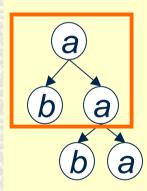
send(b,2)

 $send(\epsilon,0)$

send(a,2)

send(b,2)

 $send(\varepsilon,0)$


send(a,0)

 $send(\varepsilon,0)$

 $send(\varepsilon,0)$

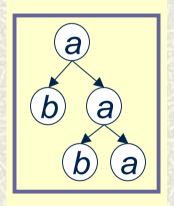
Método 3: predicción por concordancia parcial para árboles *n*-arios.

n-ario

modelo

1. $encode_r(a(ba),3)$ $send_r(\epsilon,2)$ $encode_r(a,2)$ $send_r(\epsilon,2)$ $send_1(a)$

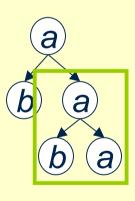
encode_p(a(ba),2) $send(\epsilon,a,2)$ $send_1M(2,a)$ $send_1(b)$ $send_1(a)$


compresión

Método 3: predicción por concordancia parcial para árboles *n*-arios.

n-ario

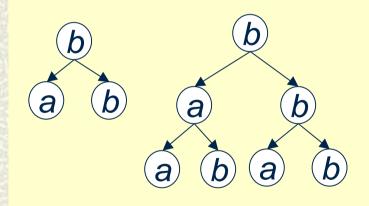
modelo


compresión

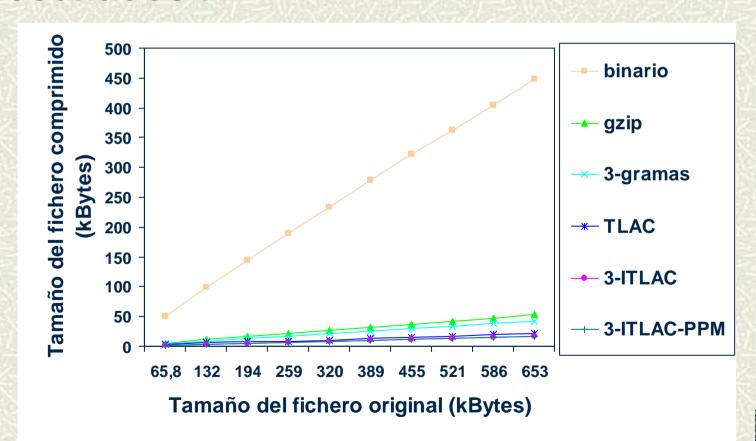
2. encode_p(a(ba(ba)),3) send(ϵ ,a(ba),3) encode_p(b,2) send(ϵ ,b,2) send_1M(0,b) encode_p(a(ba),2) send(a(ba),a(ba),2)

Método 3: predicción por concordancia parcial para árboles *n*-arios.

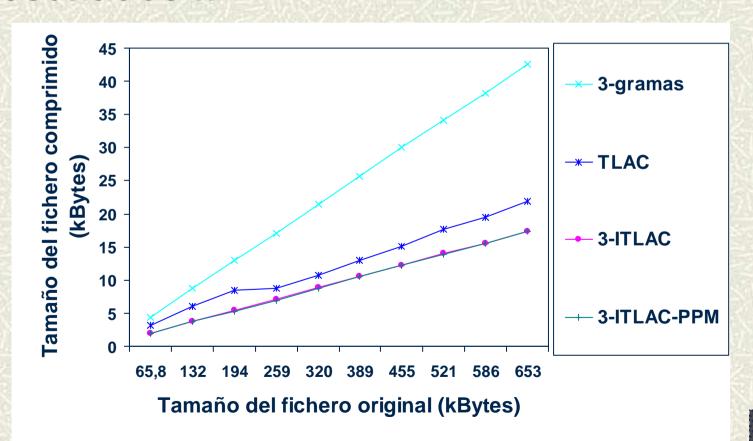
n-ario


modelo

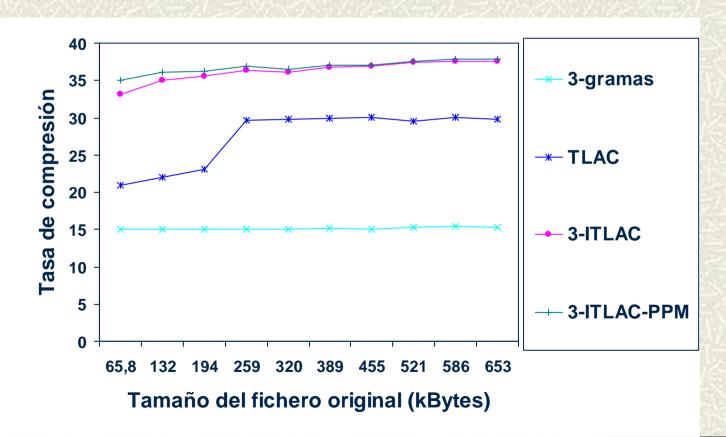
3. encode_p(a(ba),3) encode_p(b,2) encode_p(a,2) compresión


send(ϵ ,a(ba),3) send(ϵ ,b,2) send(ϵ ,a,2) send_1M(0,a)

Modelo básico M^[1]


Compresión (M=3) $M^{[1]}$			
σ	<i>p</i> (o)	m	$p_L(m/\sigma)$
	1/2	0	1/4
а		1	1/4
		2	1/4
		ε	1/4
b	1/2	0	1/4
		1	1/4
		2	1/4
		ε	1/4

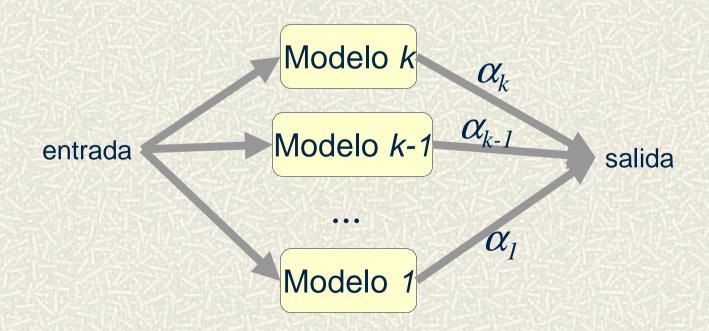
Resultados I


Resultados II

Resultados III

Resultados IV

Resultados V


Penn Tree-bank (tasa de compresión)		
gzip	6.52	
3-gramas	9.08	
3-ITLAC	9.10	
bzip2	10.92	
3-ITLAC-PPM	13.94	

- Compresión de árboles binarios con inicialización a priori no mejora al Ziv-Lempel.
- Nuestros mejores resultados se obtienen con los modelos basados en PPM.
- Aplicación sobre datos:
 - Artificiales: Mejora en 2.5 al gzip
 - Penn Tree-bank: Mejora en 2 al gzip

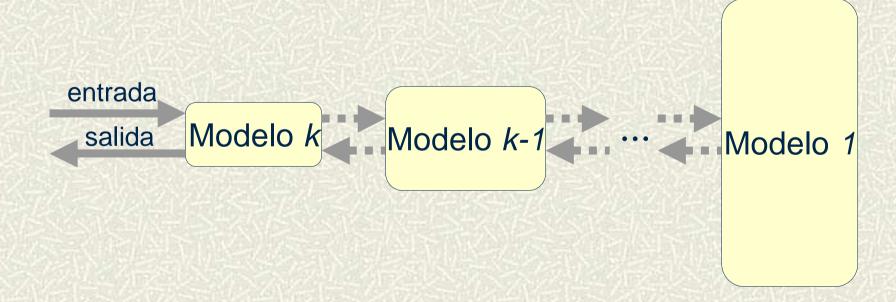
Clasificación mediante modelos k-testables

Métodos de suavizado I:


Interpolación de modelos.

Clasificación mediante modelos k-testables

Métodos de suavizado II:


Suavizado mediante distribución a priori.

Clasificación mediante modelos k-testables

Métodos de suavizado III:

Predicción por concordancia parcial

Predicción por concordancia parcial
 Cálculo de la probabilidad

$$t = \sigma(t_1,...,t_m)$$
 $p(t|M) = p(t|M^{[kMax]})$

$$p^{[k]}_{m}(\sigma,t_{1},...,t_{m}) = fr(t)$$

Predicción por concordancia parcial
 Cálculo de la probabilidad

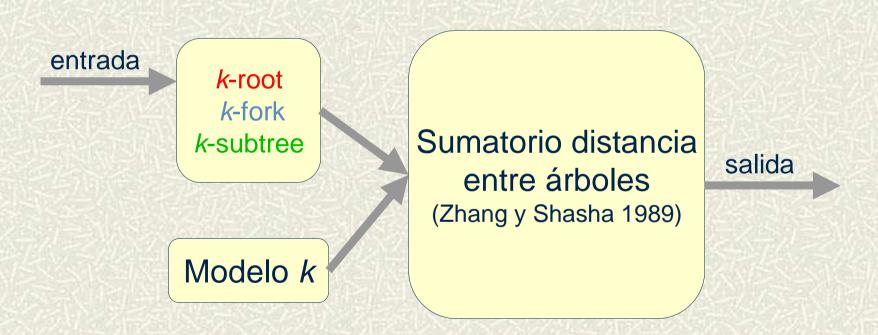
$$t = \sigma(t_1,...,t_m)$$
 $p(t|M) = p(t|M^{[kMax]})$

$$p^{[k]}_{m}(\sigma,t_{1},...,t_{m}) = \begin{cases} fr(t) - descuento(t) & \text{si } fr(t) > 0\\ \frac{\sum descuento(t)}{normalización} \prod_{j=1}^{m} p_{j}^{[k-1]} & \text{en otro caso} \end{cases}$$

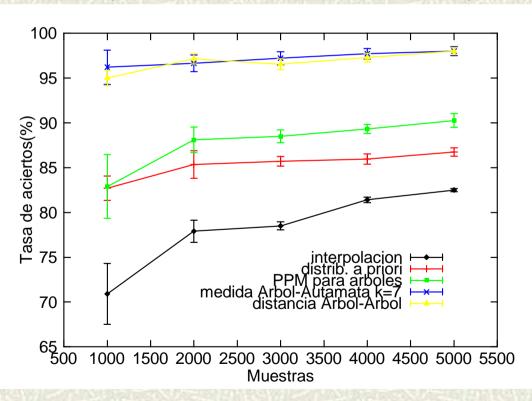
normalización

Problema con la definición de factor de normalización

$$= \sum p(t|M^{[k-1]}) : fr(t)=0 \text{ en } M^{[k]}$$


✓ Solución: Cálculo del complementario

= 1 -
$$\sum p(t|M^{[k-1]}): fr(t)>0 \text{ en } M^{[k]}$$


Modelo básico M^[1]

Clasificación $M^{[1]}$ μ =0.8						
σ	$p(\sigma)$	μ_{σ}	m	$p_L(m/\sigma)$		
ε	$\Lambda_r = 0$			P(m/ 0.8)		
	$4/10 (1-\Lambda_r)$	0.5	\mathcal{E}	$\Lambda_L(a) \frac{P(m \mid 0.5)}{1 - (P(0 \mid 0.5) + P(2 \mid 0.5))}$		
a			0	$3/4 (1-\lambda_L(0,a))$		
			2	$\frac{1/4 (1-\lambda_L(2,a))}{\mathbf{P}(m+1)}$		
1	6/10 (1-A _r)	1	\mathcal{E}	$\Lambda_L(b) \frac{P(m 1)}{1 - (P(0 1) + P(2 1))}$		
b			0	$3/6 (1-\lambda_L(0,b))$		
			2	$3/6 (1-\lambda_L(2,b))$		

Clasificación no probabilística.

Resultados (NIST SPECIAL DATABASE 3).

- Hay dos tipos de modelos:
 - Probabilísticos (tasas [82%,90%]).
 - No probabilísticos (tasas [98%]).
- Los modelos no probabilísticos son extremadamente lentos para bases de datos extensas.
 - $O(m-n-d-n_b-d_b)$ vs. O(n-log m).

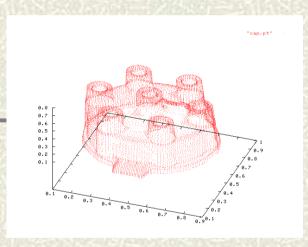
Parte II

Otros modelos de árboles

Esquema de compresión

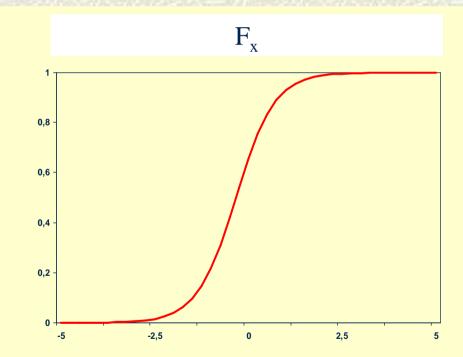
Árbol de expansión mínima (MST):

- Coordenadas relativas
- Distancia Euclídea

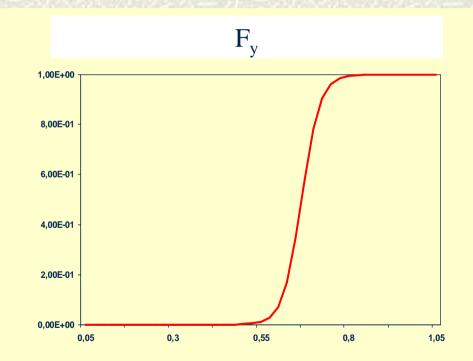

Modelo probabilístico:

- p_k : probabilidad de k hijos
- $F_i(x)=1/(1+\exp(-\lambda_i(x-\mu_i)))$
- 3D: F_x , F_y y F_z

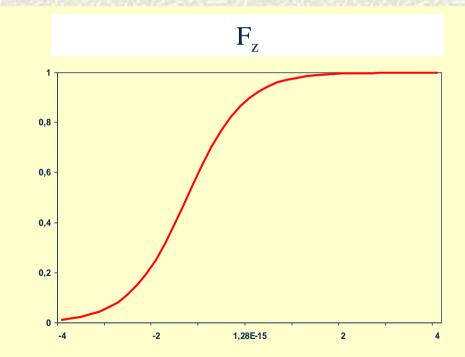
Codificación aritmética:


- Precisión ε : $F_i(x_t + \varepsilon/2) F_i(x_t \varepsilon/2)$
- Datos: $p_{k1} \mathbf{d}(n_1) p_{k2} \mathbf{d}(n_2) ... p_{km} \mathbf{d}(n_m)$

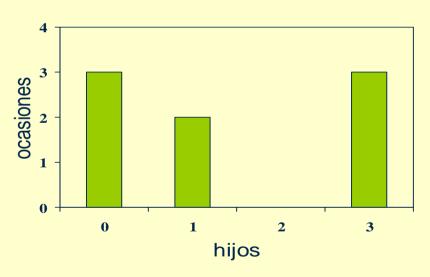
Datos comprimidos


Ejemplo

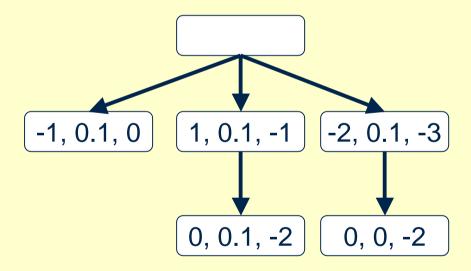
 $\lambda_x = 1.9238$ $\mu_x = -0.3333$

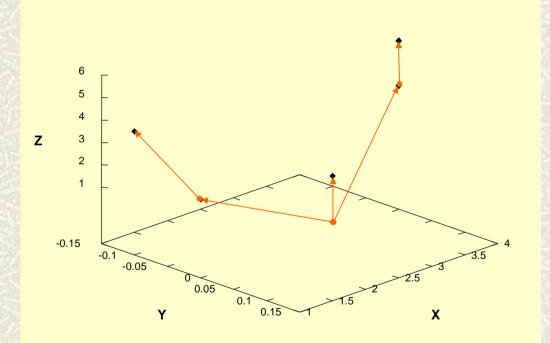

Ejemplo

 $\lambda_y = 38.4765$ $\mu_y = 0.6666$

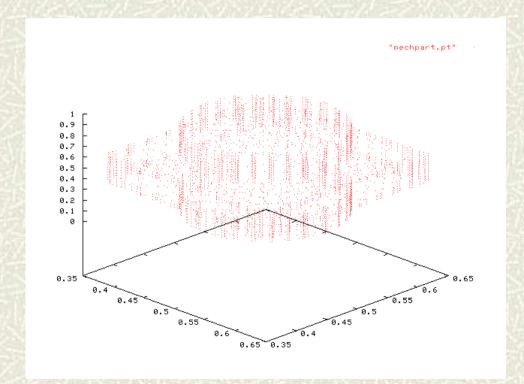

Ejemplo

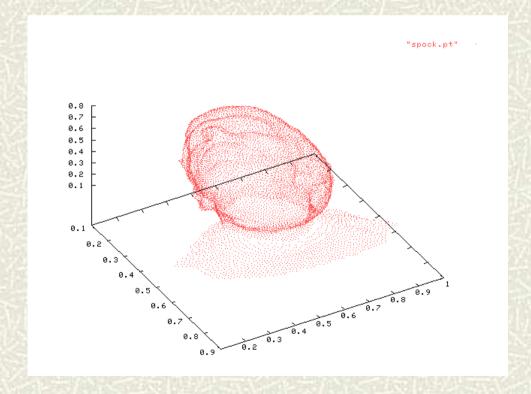
 λ_z =1.6407 μ_z =-1.3333

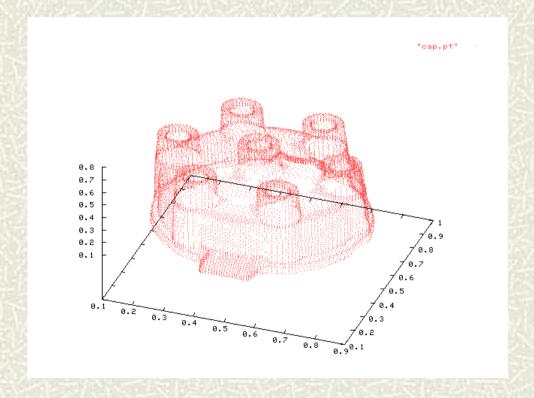

Ejemplo

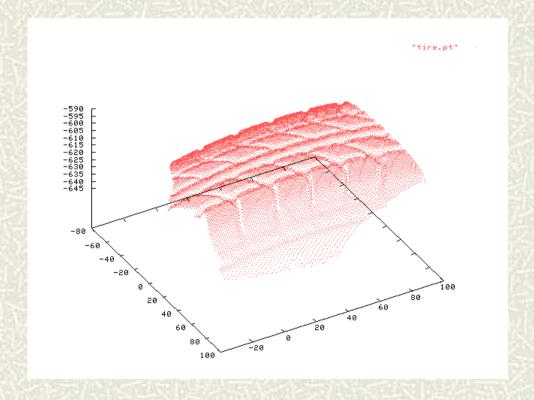


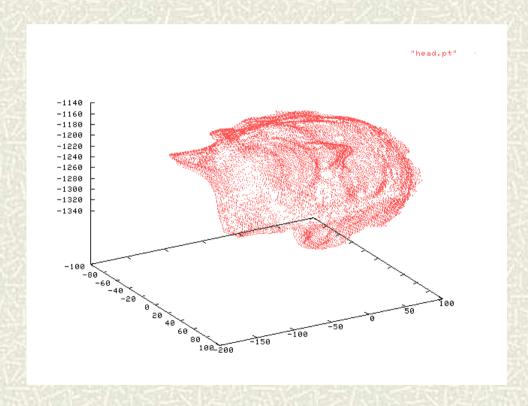
Ejemplo

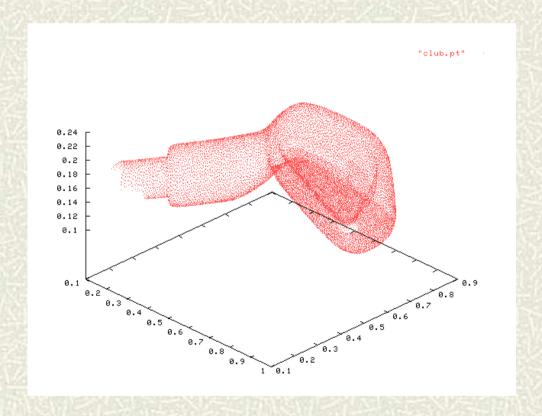

Coordenadas relativas del MST

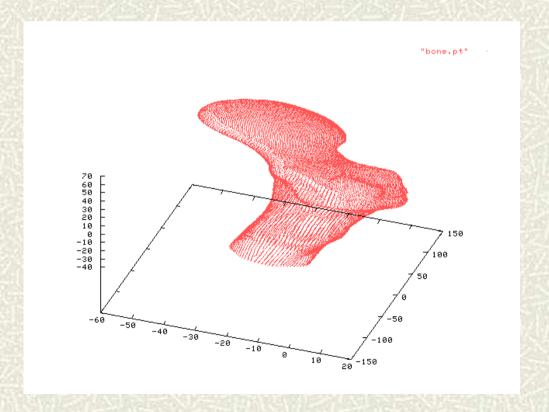


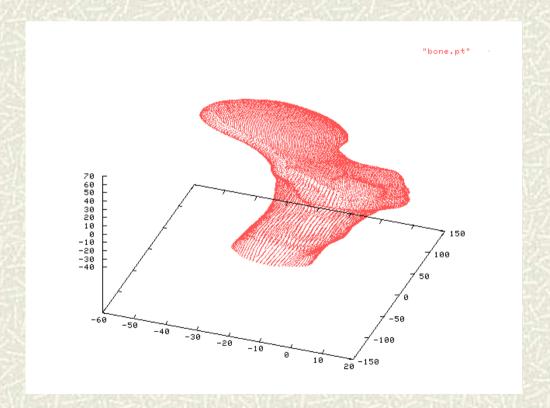

Ejemplo

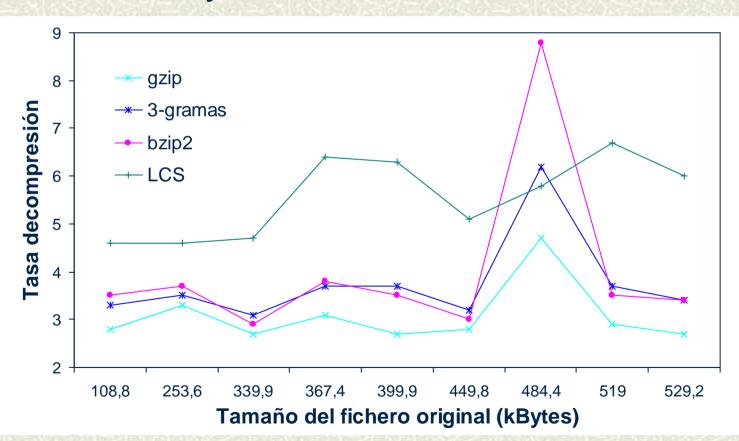



X	Y	Z
2	0.1	1
3	0	1
1	-0.1	4
1	0	2
4	0	4
4	0	6

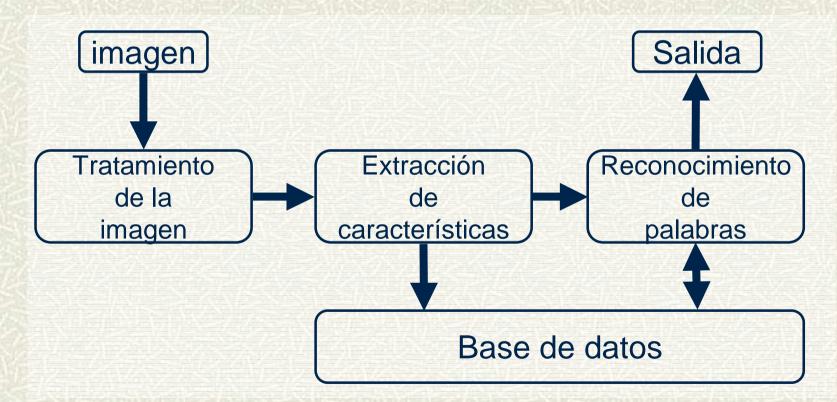








Resultados y discusión



- Codificador aritmético para superficies de puntos.
- Complejidad del método coincide con la del cálculo del MST.
- Mejores tasas que usando compresores de propósito general.
- Estudiar función 3D en vez de (F_x, F_y, F_z).

Introducción

- Propósito: reconocer palabras completas.
- Letras aisladas (Suen et al. 1980; Elliman y Banks 1991; Bunke et al. 1995).
- Localización de palabras en un texto (Wang et al. 1997)

Esquema general del reconocedor

Imagen y características

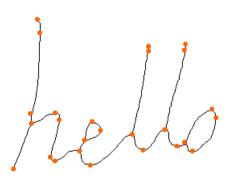
■ Tratamiento de la imagen

escala grises

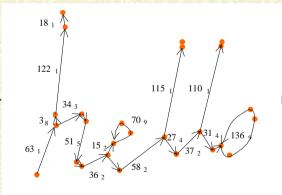
hello hello hello

Apertura morfológica (Serra 1982)

esqueletizado (Carrasco y Forcada 1995)


Imagen y características

Extracción del árbol de características


Puntos dominantes (Li y Yeaung 1997;

Powalka et al. 1997)

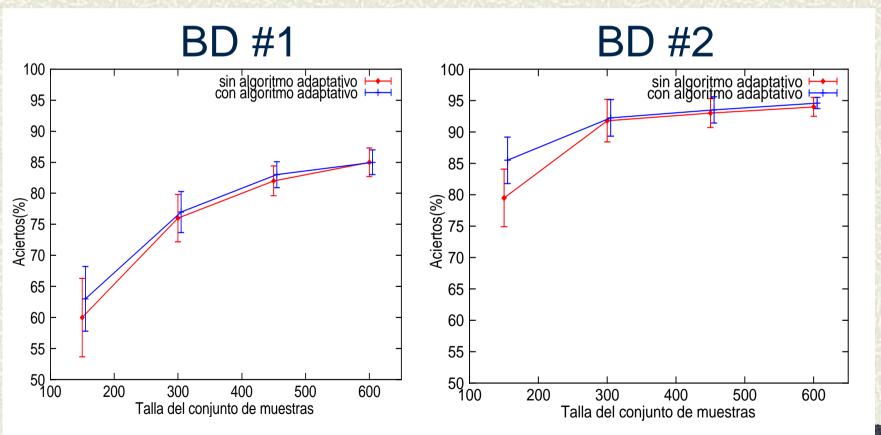
Árbol de características

Cadena del árbol

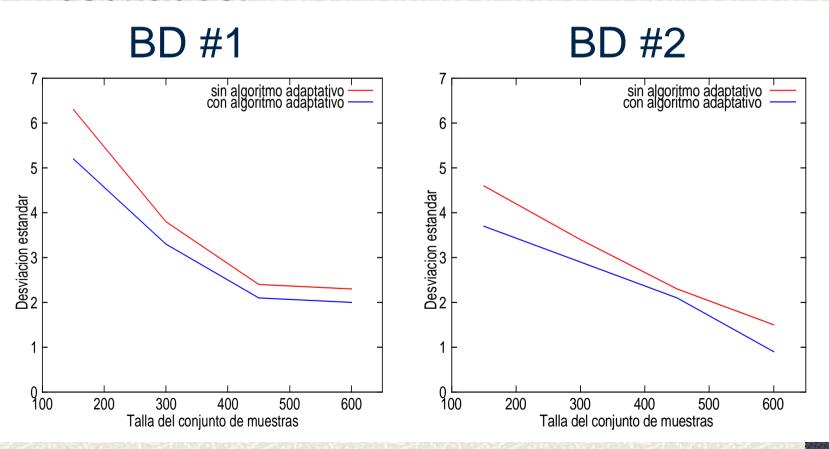
(63;1(34;3(9;4(51;5(8;4(36;2(15;2(70;9())28;4(58;2(115;1(4;1())27;4(37;2(110;1(5;1())31;4(8;3(136;9())))))))))3;8(122;1(18;1()))))

Clasificación

- Distancia de edición (Zhang y Shasha 1989)
- Técnica Leaving-One-Out (Duda y Hart 1973)
- Algoritmo adaptativo.


Resultados

- Base datos:
 - #1: 50 palabras. 12 repeticiones. 4 escritores.


whisky whisky who my

■ #2: 34 palabras. 20 repeticiones. 1 escritor (LOB, Senior y Robinson 1998)

Resultados.

Resultados.

- Nuevo sistema de extracción de características.
- Algoritmo adaptativo.
- Futuros trabajos:
 - Coste de computación lineal con la BD. Se reduce con AESA (Micó et al. 1996; Micó y Oncina 1998).
 - Incrementar número de escritores.
 - Segmentación de palabras en letras aisladas.
 - Reconocimiento de firmas.

Parte III

Conclusiones y trabajos futuros

Conclusiones y trabajos futuros

Conclusiones

- Se ha definido una extensión de los lenguajes de árboles k-testables actualizable incrementalmente.
- Aplicación eficiente a la compresión y clasificación.
- Definición de un método de compresión para superficies 3D.
- Sistema de reconocimiento de palabras manuscritas basado en distancia de árboles

Conclusiones y trabajos futuros

Trabajos futuros

- Evaluación de bases de datos extensas.
 Especialmente lingüísticas para resolver ambigüedades léxicas y sintácticas.
- Generalizar los métodos de suavizado para gramáticas independientes del contexto.
- Aplicaciones al análisis de imágenes codificadas como árboles (bintree/quadtree).
- Desarrollo de métodos eficientes para grafos dirigidos acíclicos.