
Contour regularity extraction based on string
edit distance

José Ignacio Abreu Salas1 and Juan Ramón Rico-Juan2

1 Universidad de Matanzas,Cuba
jose.abreu@umcc.cu

2 Dpto Lenguajes y Sistemas Informáticos, Universidad de Alicante, Spain
juanra@dlsi.ua.es

Abstract. In this paper, we present a new method for constructing pro-
totypes representing a set of contours encoded by Freeman Chain Codes.
Our method build new prototypes taking into account similar segments
shared between contours instances. The similarity criterion was based on
the Levenshtein Edit Distance definition. We also outline how to apply
our method to reduce a data set without sensibly affect its representa-
tional power for classification purposes. Experimental results shows that
our scheme can achieve compressions about 50% while classification error
increases only by 0.75%.

1 Motivation

Finding a set of representative prototypes from a group of contour instances is
often useful for improving a classifier response time and to simplify data to be
analysed by a human interpreter [1]. Different approaches have been proposed
in the literature, such as [1] [2] and [4], based on the computation of the mean
shape or inferring prototypes by some ad-hoc procedure [9].

However, there are contexts where getting good prototypes are not sufficient
because the lack of an understandable criterion about its constitution and perfor-
mance. For example, with forensic purposes its important to construct a model
characterising an individual handwriting style not in a black box sense but tak-
ing into account about the relations among different handwriting constitutive
elements.

In this work, we present a new model for computing a set of contour proto-
types based on the identification of contour segments satisfying some similarity
criterion which can be controlled by the user. In section 2, we explain some re-
lated techniques which have been used by our method. Section 3 describes our
approach, first an algorithm to construct a prototype from two contour instances
and latter the application of this algorithm to construct prototypes from a set
of contour instances. Finally, some experimental results are showed in section 4.

2 J.I. Abreu and J.R. Rico-Juan

2 Background and Notation

2.1 Extended Freeman Chain Codes

The classical chain codes can be used to represent a contour by traversing it to
produce a string of codes which describes the direction to the next point on the
contour. When images are represented as a square grid, usually eight codes are
defined to describe a square neighbourhood.

In our work, contours where encoded by an extension of classic Freeman
chain codes [6]. To represent a contour, we have not defined a fixed number of
codes, instead, we consider an infinite set of directions at range 0 ≤ d < 8 and
the symbol “?” to denote an undefined direction.

2.2 Edit Distance

As a distance function for strings we take the Levenshtein string edit distance.
Let Σ be an alphabet and S1 = {S11, S12..S1m}, S2 = {S21, S22..S2n} two strings
over Σ where m,n ≥ 0, the edit distance between S1 and S2, D(S1, S2), is defined
in terms of elementary edit operations which are required to transform S1 into
S2. Usually three edit operations are considered:

– substitution of a symbol a ∈ S1 by a symbol b ∈ S2, denoted as w(a, b)
– insertion of a symbol b ∈ Σ in S1, denoted as w(ε, b)
– deletion of a symbol a ∈ S1, denoted as w(a, ε).

where ε denotes an empty string. Let E = {e1, e2, ..., ek} be a sequence of
edit operations transforming S1 into S2, if each operation have cost c(ei) the
cost of E is c(E) =

∑k
i=1 c(ei) and the edit distance D(S1, S2) is defined as:

D(S1, S2) = argmin{c(E)| E an edit sequence to transform S1 into S2} .(1)

In our case, cost are computed as follows:

c(w(a, b)) =
{
min{|a− b|, 8− |a− b|} if a, b 6= “?”.
2 in other case. (2)

The number 2, corresponding to insertion and deletion operations, is an half
of the maximum substitution operation. The same fixed number is used in [10].
The dynamic programming algorithm exposed by Wagner and Fisher [5] lets to
compute D(S1, S2) in O(n×m) time.

3 Problem Definition and Solution Outline

Let two contours encoded by the chain codes S1 and S2, we address to construct
a prototype S3 by finding two sets (CS , CT) of pairs (S1(k, l) ∈ S1, S2(g, h) ∈
S2) where CS contains pairs encoding contour segments that fulfill a similarity
criterion while CT holds dissimilar regions. Each element at CS or CT determines
a S3 contour region and by merging all together we build the prototype. Next
subsections explain how we get S3 segment from S1(k, l) and S2(g, h) (fusion
operation) and the way to construct CS and CT .

Contour regularity extraction based on string edit distance 3

3.1 String Fusion Operation

Let S1 and S2 strings encoding two contour sections, the fusion operation can
be defined as F (S1, S2) = S3 , where S3 satisfies:

D(S1, S2) ≥ D(S1, S3) ∧ D(S1, S2) ≥ D(S2, S3) . (3)

Thus, if we consider D(Sk, Sl) be a measure how well represented is a string Sk

by Sl, this is, if D(Sk, Sj) < D(Sk, Sl) holds, it means Sj represent better Sk

than Sl, we can say that fusion operation ensures S3 describe S1 and S2 as well
they represent each other or even better.

Let examine how to define F (S1, S2). Be S1, S2 two strings with respective
lengths L1 and L2, S3 length are fixed by:

L3 =
⌊

(L1 + L2)
2

⌋
. (4)

If L1 = L2, a simple way to construct S3 is computing its first symbol S3[1]
as the mean of S1[1] and S2[1], and so on, this procedure ensures S3 satisfies
constrains (3).

However, a more general scheme must be consider to compute S3, since most
times L1 6= L2, so the simple criterion used above can not be applied. Without
lost of generality, lets L1 > L2, so L2 ≤ L3 < L1. It means that S3 symbols cant
be determined by the mean of only two symbols at S1 and S2. Now, a symbol
S3[i] is computed voting over all S1[h] and S2[k], where the weight Wj for the
j-esime symbol of S1 or S2 are determined by:

Wj =

1 if j ≥ iL1
L3
∧ (j + 1) ≤ (i+ 1)L1

L3
.

(i+ 1)L1
L3
− j if iL1

L3
≤ j ≤ (i+ 1)L1

L3
∧ (j + 1) > (i+ 1)L1

L3
.

L1
L3

if j < iL1
L3
∧ (j + 1) ≥ (i+ 1)L1

L3
.

j + 1− iL1
L3

if j < iL1
L3
∧ (j + 1) < (i+ 1)L1

L3
.

(5)

Since a symbol from S1 or S2 represent a direction d, have no sense multi-
plying by its weight Wd and sum all of them, so we consider pairs < d,Wd >
like vectors with direction d and magnitude Wd, this way S3 symbols can be
computed as the direction of a vector obtained by the sum of each < d,Wd >.

Fig. 1 shows the result string S3 when applied the fusion procedure over
S1 = {0, 0, 0, 0} and S2 = {2, 2}.

3.2 Finding Similar Regions

The algorithm to compute Edit Distance explained in section 2.2 from two strings
S1 and S2 determines the minimum cost edit sequence (Q) to transform S1 in
S2. Substitutions at Q maps a S1 symbol to other at S2, deletions denotes a

4 J.I. Abreu and J.R. Rico-Juan

Fig. 1. Result of fusion operation over two strings.

S1 symbol without image at S2 and insertions symbols at S2 that is not the
image of any S1 symbol. Thus, given a subsequence of edit operations Q(k, l)
from Q , it maps a contour segment S1

k,l from S1 to other S2
k,l on S2 and we

can compute the cost EQ(k,l) which represent those edit operations involved at
Q(k, l) over the edit distance.

To select similar regions from S1 and S2, we fix a parameter T called tolerance
factor, 0 ≤ T ≤ 1, which determines a set CS of non-overlapping subsequences
from Q satisfying the following constraint:∑

EQ(k,l) ≤ D(S1, S2)T |Q(k, l) ∈ CS . (6)

We can see, there are multiples sets satisfying constraints (6). Since infor-
mation from those CS ∈ Q(h, g) will be partially ignored, we are also interested
finding a CS subject to:

argmax{
∑

L(Q(k, l))|Q(k, l) ∈ CS} . (7)

where L(S) denotes the length of a string S. This constraint aims to find a set of
similar regions covering as contour length as possible. Finally, we prefer solutions
where CS contains a few long length regions instead a large set of short regions.

Searching a set satisfying such conditions became a computational expensive
problem, thus, defining:

PQ(k,h) =

2 if Q(n, k − 1) ∧ Q(h+ 1,m) ∈ CS .
1 if Q(n, k − 1) ∈ CS ∧ Q(h+ 1,m) 3 CS or viceversa .
0 if Q(n, k − 1) 3 CS ∧ Q(h+ 1,m) 3 CS .

(8)

we applied a heuristic approach to get CS that is good enough, by the greedy
procedure outlined below:
Let:

– CT a set of all subsequences Q(k, k)|k = 0..L(Q)
– CS = ∅

while CT 6= ∅ and
∑
EQ(k, l) ≤ D(S1, S2)T |Q(k, l) ∈ CS

– get Q(g, g) = argmin{EQ(k,k)|Q(k, k) ∈ CT }: if there is two or more
select one with the smallest PQ(g, g)

Contour regularity extraction based on string edit distance 5

– CS = CS ∪Q(g, g)
– CT = CT ∼ Q(g, g)
– case PQ(g, g):
• 2: replace Q(n, g − 1), Q(g + 1,m) and Q(g, g) at CS by Q(n,m)
• 1: replace Q(n, g−1) or Q(g+1,m) and Q(g, g) at CS by Q(n, g)
or Q(g,m) at case

end while

3.3 Prototype Construction

To construct a prototype representing two contours encoded by the chain codes
S1 and S2 we uses the algorithm to find similar regions and the fusion pro-
cedure defined before. First, we get sets CS , containing those regions meeting
the similarity criterion, and CT which contains dissimilar contour segments. For
each Q(k, l) ∈ CS get both regions S1

k,l and S2
k,l it determines and compute

S3
k,l = F (S1

k,l, S2
k,l). To construct S3

g,h from regions at CT we need its length,
which is compute by equation (4), this time, each S3

g,h[i] contains the symbol
“?”. Finally, we get the prototype concatenating each S3

g,h which have been
sorted by g. Now, we illustrate the behaviour of the algorithm by an example:

Be S1 = {2, 2, 5, 1.5, 1.5, 1, 1, 1} and S2 = {3, 2, 1.6, 1.5, 7, 0.3, 0.3}; T = 0.7.
Table 1 shows Q and cost for each edit operation.

Table 1. Minimum Cost Edit Sequence and costs.

Q w(2, 3) w(2, 2) w(5, ε) w(1.5, 1.6) w(1.5, 1.5) w(1, 7) w(1, 0.3) w(1, 0.3)

Cost 1 0 2 0.1 0 2 0.7 0.7

It drives to CS = {Q(0, 4), Q(6, 7)} and CT = {Q(5, 5)}. From Q(0, 4) we
get S0,4

1 = {2, 2, 5, 1.5, 1.5} ; S0,4
2 = {3, 2, 1.6, 1.5} and by the fusion S0,4

3 =
{2.5, 2, 1.5, 1.5}. Q(6, 7) turns S6,7

1 = {1, 1} ; S6,7
2 = {0.3, 0.3} and S6,7

3 =
{0.65, 0.65}. Putting all S0,4

3 , S6,7
3 and S5,5

3 = {“?”} together we get a prototype:
S3 = {3, 2, 1.6, 1.5, ?, 0.65, 0.65}

3.4 Building prototypes from a contour set

Actually our algorithm can handle only two instances at time, thus we need to
define an additional procedure if want to get prototypes from a set Cc greater
than two objects. To address this problem we iteratively find instances Si, Sj ∈
Cc which meet argmin{D(Sk, Sl)|Sk, Sl ∈ Cc}, from those instances we build a
prototype Sp, which will replace Si and Sj from Cc. This procedure is repeated
while holds:

Li − C?(Si) + Lj − C?(Sj)− 2C?(Sp)
Li − Lj

≤ P . (9)

6 J.I. Abreu and J.R. Rico-Juan

where C?(Sx) counts the amount of symbols from Sx equals to “?”, and P
(0 ≤ P ≤ 1), called persistence factor, is a measure of how many information
haven been lost by the fusion operation.

4 Experimental Results

The proposed algorithm was applied to construct a set of prototypes from a
group of contour instances represented by chain codes. Separated experiments
where carried with two independent contour subsets, containing digits and letters
respectively, from the NIST SPECIAL DATABASE 3 of the National Institute of
Standards and Technology. With this subsets we perform a 4-fold crossvalidation
where each train and test sets have 60 and 20 instances per class respectively.

First, we classified every instance at test set by the nearest neighbour rule and
compute the absolute error commited. Later, we use our scheme separately over
instances from the same class at the train set to get a new set which will replace
the former. We compute a compression index C that is a measure (as percent) of
how much we reduce de original train set, and by classifying again the test set, we
get the error rate variation. These values characterised the algorithm behaviour
since we hope improve the compression index without sensibly increases the
classification error.

We try different values for tolerance and persistence factors to analyse how
they affect both compression and error rate. As Table 2 shows, our algorithm per-
forms well for some T and P values. Fig 2 illustrates how this values determines
the similar segments from contours. We also are interested into compare how

Table 2. Values for C and ∆E when T = 0.5 and P = 0.1 (digits experiment)

Fold C ∆E

0 52.5 0

1 53.0 0.5

2 54.66 0

3 52.33 2.5

Mean 53.12 0.75

values for T and P determines both compression and error rate variation across
different data sets. Graphics at Fig 3 shows our algorithm performs similarly
through both databases for the compression index, similar results was obtained
for the error rate variation.

5 Conclusions and future work

A new method to construct prototypes from a set of contours instances was
presented. Our approach lets to identify similar segments through contours by

Contour regularity extraction based on string edit distance 7

Fig. 2. Each row shows similar segments from two contours S1 and S2 and the corre-
spondent ones at the build prototype from different T values.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0.1/0.3 0.1/0.5 0.1/0.7 0.3/0.7 0.5/0.7 0.5/0.9 0.7/0.9

T/P

%C digits data set
%C letters data set

Fig. 3. Values for C through different T and P for digits and letters (dashed line) data
sets.

8 J.I. Abreu and J.R. Rico-Juan

a criterion that can be adjusted by the user, and, from those segments we get
the prototypes. Experiments shows our model is suitable for compress contours
data sets without affect its representative power. We think our approach can
be used for characterise a class of contours and for data compression. Further
investigations can be addressed to extend the algorithm to other representations
for contours, like cyclic strings.

Acknowledgements

This work is partially supported by the Spanish CICYT under project DPI2006-
15542-C04-01 and by the Spanish research programme Consolider Ingenio 2010:
MIPRCV (CSD2007-00018).

References

1. Duta, N., Sonka, M., Jain, A.:Learning Shape Models from Examples Using Auto-
matic Shape Clustering and Procrustes Analysis.Information Processing in Med-
ical Imaging. LNCS, vol. 1613, pp. 370-375.(2008)

2. Jiang, X., Abegglen, K., Bunke, H., Csirik, J.:Dynamic computation of generalised
median strings. Journal Pattern Analysis and Applications, vol 6, pp. 185-193.
(2003)

3. Jiang, X.,Schiffmann, L., Bunke, H.:Computation of median shapes. 4th Asian
Conference on Computer Vision.(2000)

4. Cárdenas, R.:A Learning Model for Multiple-Prototype Classification of
Strings.In:17th International Conference on Pattern Recognition, vol. 4, pp. 420-
42.(2004)

5. Wagner, R., Fischer, M.:The String-to-String Correction Problem. Journal of the
ACM, vol. 21, pp. 168-173.(1974)

6. Freeman, H.:Computer Processing of Line-Drawing Data. Computer Surveys, vol.
6, pp. 57-96.(1974)

7. Chikkerur, S., Wu, C., Govindaraju, V.: A Systematic Approach for Feature Ex-
traction in Fingerprint Images.First International Conference on Biometric Au-
thentication. LNCS, vol 3072, pp. 344-350.(2004)

8. Govindaraju, V., Shi, Z., Schneider, J.: Feature Extraction Using a Chaincoded
Contour Representation of Fingerprint Images. AVBPA, pp. 268-275.(2003)

9. Duta, N., Jain, A., Dubuisson-Jolly, M.: Automatic Construction of 2D Shape
Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
23, pp. 433-446.(2001)

10. Rico-Juan, J. R, Mico L.: Comparison of AESA and LAESA search algorithms
using string and tree-edit-distances. Pattern Recognition Letters, vol. 24, pp.
1417-1426.(2003)

