
Some results about the use of tree/string edit
distances in a nearest neighbour classi�cation task

Juan Ramón Rico-Juan and Luisa Micó ?

Dept. Lenguajes y Sistemas Informáticos
Universdad de Alicante, E-03071 Alicante, Spain,

{juanra, mico}@dlsi.ua.es

Abstract In pattern recognition there is a variety of applications where
the patterns are classi�ed using edit distance. In this paper we present
some results comparing the use of tree and string edit distances in a
handwritten character recognition task. Some experiments with di�erent
number of classes and of classi�ers are done.
Keywords: nearest neighbour, handwritten character recognition, edit-
distance; metric space.

1 Introduction

One of the most useful and simplest techniques in Statistical Pattern Recogni-
tion that can be used in a wide range of applications of computer science and
technology is the Nearest Neighbour (NN) rule. In this rule, an input pattern is
assigned to the class of the nearest prototype pattern. Many times, each class is
a set of prototype patterns and a k-NN rule is used: the input pattern is assigned
to the class containing the larger fraction of the k nearest prototypes.

A variety of applications can be developed using the NN rule. Some of them
are directly related with Pattern Recognition (as the handwritten recognition
task), but also in data compression [1], data mining [2] or information retrieval
[3].

When patterns may be represented as strings or trees, conventional methods
based on a vector representation can not be used. In this case methods that only
use a distance (and the metric properties of the distance) and an adequate data
structure can be used to perform the classi�cation. Some algorithms as AESA [4]
and LAESA are focused on the reduction in the number of distance computations
[5]1. Others such as Fukunaga [6] are focused on the reduction of the temporal
overhead using a tree structure. Recently, a new algorithm based on approaching
spatially the searched objects and called sa-tree (spatial approximation tree) was
proposed [7].
? Work partially supported by the spanish CICYT TIC2000-1599-C02 and TIC2000-
1703-CO3-02

1 These methods are adequate when the computational cost of the distance is very
expensive

Given a particular representation, the edit distance between two objects is
de�ned as the number of insertions, deletions and substitutions needed to trans-
form one representation into the other. In the case of a string representation,
insertions, deletions and substitutions are made on the individual symbols of the
strings. In the case of a tree representation, insertions, deletions and substitu-
tions are made on the nodes of the tree.

In previous works as [8] the experiments were done using digits (10 classes).
In this work, some additional experiments are done using characters (26 classes)
to have a better knowledge of the behaviour of two fast search algorithms (AESA
and LAESA) when two di�erent (string and tree) edit distances are used in a
handwritten character recognition task.

2 String and tree representation of characters

Two di�erent representations of handwritten characters are done. In both cases,
the mathematical morphology opening transformation are used to avoid noisy
pixel and to smooth the shapes of characters.

2.1 Tree code

The Nagendraprasad-Wang-Gupta thinning algorithm modi�ed as in [9] was
applied (�gure 1b). The result image is transformed into a tree representation
using the following steps:

1. The �rst up and left pixel, r, is marked and assigned the tree root with a
special label �0�. Two empty pixel sets C and G and created.

2. C ⇐ {r}
3. If C = Ø go to the end (step 8).
4. For all elements t ∈ C collect in set G every unmarked pixels into the window

(size 11) centred in the pixel associate to t (�gure 1c). Follow connected pixels
until a below criteria was true:
(a) the branch has the maximum �xed parameter size (see �gure 1b);
(b) the pixel has no unmarked neighbours (terminal pixel);
(c) the pixel has more than one unmarked neighbour (intersection pixel).

5. Create the new branches: branch(t, g) : g ∈ G. The label is assigned to the
branch depending on the �nal pixel, g, relative position to the starting one2,
t.

6. C ⇐ G and erase all elements from G.
7. Go to step 3.
8. End.

A complete process showing this feature extraction with character 'F' is pre-
sented in �gure 1.
2 The 2D space is divided in 8 regions (�gure 2) .

..................................

...........................XXXXX..

..........XX..........XXXXXXXXXXX.

.........XXXXX...XXXXXXXXXXXXXXXX.

.........XXXXXXXXXXXXXXXXXXXXXXXX.

.........XXXXXXXXXXXXXXXXXXXXXXXX.

.........XXXXXXXXXXXXXXXXXX.....X.

.........XXXXXXXXXXXX.............

.........XXXXXXXX.................

........XXXXXXX...................

........XXXXXX....................

........XXXXXX....................

........XXXXX.....................

........XXXXX.....................

........XXXXX.....................

........XXXX......................

.......XXXXX......................

.......XXXXX......................

.......XXXXX...............XX.....

.......XXXXX.........XXXXXXXXX....

......XXXXXX.....XXXXXXXXXXXXX....

......XXXXXX...XXXXXXXXXXXXXXX....

......XXXXXX..XXXXXXXXXXXXXXXX....

......XXXXXX..XXXXXXXXXXXXX.......

......XXXXX...XXXXXXXXXX..........

.....XXXXXX.....XXXXX.............

.....XXXXXX.......................

....XXXXXX........................

....XXXXXX........................

...XXXXXXX........................

...XXXXXX.........................

...XXXXXX.........................

...XXXXXX.........................

...XXXXXX.........................

...XXXXX..........................

..XXXXXX..........................

..XXXXXX..........................

.XXXXXX...........................

.XXXXX............................

..XXXX............................

..................................

(a)

............................

..........................X.

.....................XXXXX..

................XXXXX.......

..........XXXXXX............

.........X..................

........X...................

........X...................

........X...................

.......X....................

.......X....................

.......X....................

.......X....................

.......X....................

.......X....................

.......X....................

......X.....................

......X.....................

......X.....................

......X.............XXXXX...

......XXXXXXX...XXXX........

.....X.......XXX............

.....X......................

.....X......................

.....X......................

....X.......................

....X.......................

...X........................

...X........................

..X.........................

..X.........................

..X.........................

..X.........................

..X.........................

.X..........................

.X..........................

............................

(b)

............................

..........................X.

.....................XXXXX..

................XXXXX.......

..........XXXXXX............

.........X..................

........X...................

........X...................

........X...................

.......X....................

.......X....................

.......X....................

.......X....................

.......X....................

.......X....................

.......X....................

......X.....................

......X.....................

......X.....................

......X.............XXXXX...

......XXXXXXX...XXXX........

.....X.......XXX............

.....X......................

.....X......................

.....X......................

....X.......................

....X.......................

...X........................

...X........................

..X.........................

..X.........................

..X.........................

..X.........................

..X.........................

.X..........................

.X..........................

............................

7
7

7

5

5

5

5

5

5

4 3
3

Starting
pixel

(c)

0

7

7

7

5

5

5

5

5

5

4

3

3

(d)

....................................

...........................XXXXXX...

..........XXX.........XXXXX......X..

.........X...XX..XXXXX............X.

.........X.....XX.................X.

.........X........................X.

.........X........................X.

.........X..................XXXX..X.

.........X............XXXXXX....XX..

........X.........XXXX..............

........X.......XX..................

........X......X....................

........X......X....................

........X.....X.....................

........X.....X.....................

........X.....X.....................

.......X.....X......................

.......X.....X......................

.......X.....X.............XXX......

.......X.....X.......XXXXXX...X.....

......X......X...XXXX..........X....

......X......X.XX..............X....

......X.......X................X....

......X.......X................X....

......X......X..............XXX.....

.....X.......X...........XXX........

.....X......X.XX......XXX...........

....X.......X...XXXXXX..............

....X......X........................

...X.......X........................

...X.......X........................

...X......X.........................

...X......X.........................

...X......X.........................

...X......X.........................

..X......X..........................

..X......X..........................

.X.......X..........................

.X......X...........................

.X.....X............................

.X.....X............................

..XXXXX.............................

....................................

(e)

....................................

...........................XXXXXX...

..........XXX.........XXXXX......X..

.........X...XX..XXXXX............X.

.........X.....XX.................X.

.........X........................X.

.........X........................X.

.........X..................XXXX..X.

.........X............XXXXXX....XX..

........X.........XXXX..............

........X........X..................

........X.......X...................

........X......X....................

........X.....X.....................

........X.....X.....................

........X.....X.....................

.......X.....X......................

.......X.....X......................

.......X.....X.............XXX......

.......X.....X.......XXXXXX...X.....

......X......X...XXXX..........X....

......X.......XXX..............X....

......X........................X....

......X........................X....

......X.....................XXX.....

.....X...................XXX........

.....X.......XXX......XXX...........

....X.......X...XXXXXX..............

....X......X........................

...X.......X........................

...X.......X........................

...X......X.........................

...X......X.........................

...X......X.........................

...X......X.........................

..X......X..........................

..X......X..........................

.X.......X..........................

.X......X...........................

.X.....X............................

.X.....X............................

..XXXXX.............................

....................................

(f)

"F"=333334455556787
7767777767776666556
5555433233323333323
3445556776776776777
7787766556555655665
6777781112121111121
2121111211121111112
1111123343432333323

333

(g)

Figure 1. Example of character �F� (a) original image; (b) thinned image; (c) tree
labelling process; (d) �nal labelled as a tree; (e) problem image to extract the contour
string; (f) image right formed to extract contour string; (g) coded string.

1

2

3

4

5

6

7

8

90º

45º

0º

315º

270º

225º

180º

135º

X

Y

(a)

window=11
w
i
n
d
o
w
=
1
1

No candidateGood candidate

Starting
pixel

(b)

Figure 2. (a) 2D labelled regions; (b) example to get next candidates to create branches
in structured tree extraction.

2.2 String code

The algorithm to extract the coded string from the image is detailed below:

1. Assign i = 1.
2. The mathematical morphology opening transformation with i pixels was

applied and the algorithm to extract the external contour of the characters
is used to obtain the patterns from the images.

3. If the new image contains pixels with 3 o more neighbours, as in �gure 1e),
the algorithm will have problems to follow the contour, so do i = i + 1 and
go to step 2.

4. The �rst black pixel is searched from the left-to-right scan starting from the
top. From this pixel going to the right, the border of the character is followed
until this �rst pixel is reached again. During this route the algorithm builds a
string with the directions that it follows to �nd the next pixel of the border3.

3 There are eight neighbouring pixels that can be found after a given pixel (�gure 1f
and 1g), therefore, only eight symbols can appear in this chain-code (see �gure 2a)

3 Edit distances

3.1 The tree edit distance

A general tree edit distance is described in [10]. The distance between two or-
dered trees is considered to be the weighted number of edit operations (insertion,
deletion and substitution) to transform one tree into another.

A dynamic programming algorithm is implemented to compute the distance
between two trees, T1 and T2 whose complexity is in space O (|T1| × |T2|) and
time O (|T1| × |T2| ×min (depth (T1) , leaves (T1))×min (depth (T2) , leaves (T2))).

Each basic operation has an associated weight. Substitution weights wij are
min (|i− j| , 8− |i− j|). Both insertion and deletion have a weight wI = wD = 2.
This distance is �nally normalised with the sum of the number of nodes in each
tree.

3.2 The string edit distance

The string edit distance is de�ned as the minimum-cost set of transformations
to turn a string into the other. The basic transformations are deletion, insertion
and substitution of a single symbol in the string. The cost values are equal as
those used in tree edit distance. The string edit distance can be computed in
time in O(|x|, |y|) using a standard dynamic-programming technique [11]. As in
the tree edit distance, this �nal measure is normalised, in this case by the sum
of the lengths of the strings.

4 Experiments

Two fast approximating-eliminating search algorithms have been used in this
work: AESA and LAESA. These algorithms has been applied in a handwritten char-
acter recognition task using the NIST SPECIAL DATABASE 3 of the National
Institute of Standards and Technology. Some results using only digits from this
data set have been presented in a recent work [8]. In this work new experiments
are made using the upper handwritten characters. The increasing-size training
samples for the experiments were built by taking 500 writers and selecting the
samples randomly. The �gures show the results averaged for all combinations.

A �rst set of experiments using AESA were made to compare the average
error rate between the string and the tree edit distances. In these experiments
(see �gure 3), di�erent number of classes have been used: one set with 26 classes
representing all the alphabet, and two di�erent sets of 10 classes (the �rst 10
characters of the alphabet and the 10 more frequently used characters). In all
the cases the use of strings allow to have a better accuracy in the recognition
task. However, as �gure 4 shows, the average number of distance computations
is higher that in the tree representation. Moreover, the computation of the string
distance is more expensive than the tree edit distance in average, because the
number of symbols in the strings is higher than the number of nodes in the tree.

 5

 10

 15

 20

 50 100 150 200

A
ve

ra
ge

 e
rr

or
 r

at
e(

%
)

Number of examples per class in training set

String (26 classes)
Tree (26 classes)

(a)

 5

 10

 15

 20

 50 100 150 200

A
ve

ra
ge

 e
rr

or
 r

at
e(

%
)

Number of examples per class in training set

String (10 classes first)
Tree (10 classes first)

String (10 classes +freq)
Tree (10 classes +freq)

(b)

Figure 3. Average error rate as a function of the di�erent training examples size: (a)
26 character classes (b) two di�erent sets of 10 character classes.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.05 0.1 0.15 0.2

E
rr

or
 r

at
e(

%
)

Looseness

String (LAESA)
Tree (LAESA)
String (AESA)
Tree (AESA)

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 0.05 0.1 0.15 0.2A
ve

ra
ge

 n
um

be
r

of
 d

is
ta

nc
es

 c
om

pu
ta

ci
on

s

Looseness

String (LAESA)
Tree (LAESA)
String (AESA)
Tree (AESA)

(b)

Figure 4. Results applying AESA and LAESA algorithms as a function of looseness using
5200 prototypes belonging to 26 character classes: (a) average error rate; (b) average
number of distance computations.

The application of the AESA and LAESA algorithms in previous works, as [12]
and [13], shows that the �looseness� H in the triangle inequality can be used to
reduce the number of distance computations4.

The performance of both algorithms is compared evaluating the average er-
ror rate and the average number of distance computations as a function of the
�looseness� 5 (see �gure 4). This experiment reveals that the �looseness� is not
a critical parameter when the tree representation is used. For any value of H
between 0 and 0.2, the error rate in the classi�cation and the average number of
distance computations have a slight variation for the tree representation. How-
ever, in the case of the string representation there is a large variation. It will be
necessary to use a higher value of H to reduce signi�cantly the average number
of distance computations in the tree case. The problem is that in this case the
average error increases dramatically.

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 0 1 2 3 4 5

F
re

qu
en

cy

Looseness

string (26 classes)
tree (26 classes)

Figure 5. Histograms from looseness using normalised edit distance.

The histograms of the looseness can help to understand the last statement6.
The �gure 5 shows that the smallest looseness is observed for strings. For this
reason, the error rate increases for smaller values of H for strings than for trees.

5 Conclusions
In this paper we have done some experiments comparing the performance and
the accuracy of a handwritten recognition task using two di�erent representa-
4 Given a representation space E, the looseness is de�ned for each x, y, z ∈ E as

h(x, y, z) = d(x, y) + d(y, z)− d(x, z). If a histogram of the distribution of h(x, y, z)
is computed, this histogram can be used to estimate of the probability that the
triangle inequality is satis�ed with a looseness smaller than H [14].

5 The size of the set of base prototypes, B is selected to minimise the number of
computed distances per sample, so is 70 and 140 for trees and strings, respectively.

6 The triangle inequality is almost always satis�ed for both representations and the
distribution is reasonably normal-like.

tions. Our experiments show that the tree edit distance is a suitable choice as
opossed to the string edit distance. Although the error rate is higher for the
tree representation when no looseness is used, this di�erence dissapears when
the looseness is applied to speed up the classi�cation.

References
1. Allen Gersho and Robert M. Gray. Vector quantization and signal compression.

Kluwer Academic Publishers, 1991.
2. T. Hastie and 1996. R. Tibshirani. Classi�cation by pairwise coupling. Technical

report, Stanford University and University of Toronto, 1996.
3. G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. Mc-

Graw Hill, New York, 1983.
4. Enrique Vidal. New formulation and improvements of the Nearest-Neighbour ap-

proximating and eliminating search algorithm(AESA). Pattern Recognition Letters,
15(1):1�7, January 1994.

5. L. Micó, J. Oncina, and E. Vidal. A new version of the nearest-neighbour ap-
proximating and eliminating searh algorithm with linear preprocessing-time and
memory requirements. Pattern Recognition Letters, 15:9�17, 1994.

6. K. Fukunaga and P. M. Narendra. A branch and bound algorithm for computing
k-nearest neighbours. IEEE Transactions on Computers, 24(7):750�753, 1975.

7. Gonzalo Navarro. In String Processing and Information Retrieval Symposium and
International Workshop on Groupware, pages 141�148. IEEE Press, 1999.

8. J. R. Rico-Juan and L. Micó. Comparison of AESA and LAESA search algorithms
using string and tree edit distances. Pattern Recognition Letters, 24(9):1427�1436,
2003.

9. R. C. Carrasco and M. L. Forcada. A note on the Nagendraprasad-Wang-Gupta
thinning algorithm. Pattern Recognition Letters, 16:539�541, 1995.

10. K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal of Computing, 18:1245�1262, 1989.

11. R. A. Wagner and M. J. Fischer. The string-to-string correction problem. J. ACM,
21:168�173, 1974.

12. E. Vidal and M. J. Lloret. Fast speaker independent DTW recognition of isolated
words using a metric-space search algorithm (AESA). Speech Communication,
7:417�422, 1988.

13. L. Micó and J. Oncina. Comparison of fast nearest neighbour classi�ers for hand-
written character recognition. Pattern Recognition Letters, 19:351�356, 1998.

14. Enrique Vidal, Francisco Casacuberta, and H. Rulot. Is the DTW distance really
a metric? an algorithm reducing the number of dtw comparisons in isolated words.
Speech Communication, 4:333�344, 1985.

