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Abstract

Although the success rate of handwritten character recognition using a nearest neighbour
technique together with edit distance is satisfactory, the exhaustive search is expensive.
Some fast methods asAESA andLAESA have been proposed to find nearest neighbours in
metric spaces. The average number of distances computed by these algorithms is very low
and does not depend on the number of prototypes in the training set. In this paper, we
compare the behaviour of these algorithms when string and tree edit distances are used.
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1 Introduction

Nearest neighbour search (NNS) is one of the best known and simplest techniques
in Statistical Pattern Recognition. Given a setP of prototypes (training set) whose
classification is known, the nearest neighbour technique classifies atest samplex
in the class containing the prototype whose distance tox is minimal. For this pur-
pose, some fast algorithms asAESA (Vidal (1994)) andLAESA (Micó et al. (1994))
have been proposed. The main features of these algorithms are: (a) they work in
metric spaces (no representation of the data as a vector is necessary) and (b) ex-
periments suggest that in these algorithms the number of distance computations
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is nearly constant with the size of the training set. The first property allows one
to use these methods in problems such as a chain representation for handwritten
characters. The second property makes these methods faster when the cost of the
distance computation is very expensive, as the Levenstein edit distance (Duda and
Hart (1973)).

TheLAESA algorithm (Micó et al. (1994)) is an evolution of theAESA algorithm (Vi-
dal (1994)) and shares with it the above two properties. The major bottleneck of the
AESA is its quadratic preprocessing time and memory requirements that limits its
use for large data sets. In all the applications where both algorithms has been used,
theAESA algorithm computes about one third of the distances computed byLAESA.
This result does not necessarily mean that theAESA is faster than theLAESA. Indeed,
depending on the type of the distance, in this work we will show that one method
can be faster than the other. On the other hand, when the string edit distance was
used in a real task as handwriting recognition (Gómez et al. (1995) and Micó and
Oncina (1998)), speech recognition (Vidal et al. (1988)) or human banded chromo-
somes recognition (Juan and Vidal (2000)), a“ looseness” on the triangle inequality
allowed one to speed up the classification due to the algorithms computes less num-
ber of distances. In this work, we show experimentally that this is not needed when
tree-edit-distance is used.

2 Feature extraction

In this section, we describe two different representations of handwritten characters.
The first representation uses labelled trees as a basic structure and the second uses
labelled strings.

2.1 Tree code

The Nagendraprasad-Wang-Gupta thinning algorithm (as modified in Carrasco and
Forcada (1995)) was applied to eliminate redundant information in all binary im-
ages in the training set. The result image is transformed into a tree representation.
The algorithm consists of the following steps:

(1) The first up and left pixel is marked and assigned the tree root with a special
label “0”.

(2) Every tree node has so many descendents as unmarked neighbours has the
selected and marked pixel (clockwise).

(3) Each branch is extended following the neighbour until one of the following
criteria is true:
(a) the branch has the maximum fixed parameter size (window=6);
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Figure 1. 2D labelled regions

(b) the pixel has no unmarked neighbours (terminal pixel);
(c) the pixel has more than one unmarked neighbour (intersection pixel).

(4) A new node is assigned to every end of branch pixel obtained after step 3. The
starting pixel shall be placed at the origin of the axes. The label is assigned
to the node depending on the final pixel relative position to the starting one.
The 2D space is divided in 8 regions (figure 1): the north is labelled with“ 1”
and clockwise, the rest is labelled. These labels are similar to codes used by
Freeman (1961) except that the special code “0” is assigned to the root label
and the rest of directions range between “1” and “8”.

(5) For each node with unmarked neighbours, go to step 2.

An example showing this feature extraction is presented in figure 2.

2.2 String code

An algorithm to extract the external contour of the characters is used to obtain the
patterns from the images of the characters. It begins by searching the first black
pixel in a left-to-right scan starting from the top. From this pixel going to the right,
the border of the character is followed until this first pixel is reached again. During
this route the algorithm builds a string with the directions that it follows to find the
next pixel of the border. There are eight neighbouring pixels that can be found after
a given pixel (figure 3), therefore, only eight symbols can appear in this chain-code.
The numbers from 0 to 7 were used.
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Figure 3. Example of string coded character.

3 Dissimilarity functions

As we have two structures we have two dissimilarity functions: the tree-edit-distance
and the string-edit-distance.
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Figure 4. Weight matrix for the substitution operation

3.1 The tree-edit-distance

A general tree-edit-distance,dT , is described in Zhang and Shasha (1989). The
distance between two ordered trees is considered to be the weighted number of edit
operations (insertion, deletion and substitution) to transform one tree into another.

Substituting a noden means changing the label inn. When deleting a noden, the
children ofn become the children of the parent ofn andn is removed. Insertion is
complementary of deletion. This means that insertingn as the child ofn′ will make
n the parent of a consecutive subsequence of the current children ofn′.

A dynamic programming algorithm is implemented to compute the distance be-
tween two trees,T1 andT2 whose complexity is in spaceO

(∣∣T1

∣∣×
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Each basic operation has an associated weight. We use the weights proposed in
Rico-Juan (1999). Substitution weightswi j aremin(|i− j| ,8−|i− j|). This equa-
tion assigns smaller weights to closer directions and larger weights to distant direc-
tions as shown in figure 4. Both insertion and deletion have a weightwI = wD = 2.
The effect of choosing a different set of weights is relatively small with respect to
accuracy, provided thatwI +wD ≥ wi j .

This distance is finally normalised with the sum of the number of nodes in each
tree:

d′T(T1,T2) =
dT(T1,T2)∣∣T1

∣∣+
∣∣T2

∣∣
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3.2 The string-edit-distance

The edit distance,dS, is defined as the minimum-cost set of transformations to turn
a string into the other. The basic transformations are deletion, insertion and substi-
tution of a single symbol in the string. This distance can be defined recursively as
follows:

dS(λ ,λ ) = 0

dS(xa,yb) = min





dS(x,yb)+wD

dS(xa,y)+wI

dS(x,y)+wab if a 6= b

dS(x,y) if a = b

wherewD, wI andwab are, respectively, the cost of a deletion, an insertion and a
substitution, andλ is the empty string. The cost values are equal as those used in
tree-edit-distance, sowD = wI = 2 andwi j is shown in figure 4.

This distance can be computed in time inO(|x|, |y|) using a standard dynamic-
programming technique (Masek and Paterson (1980) and Wagner and Fischer (1974)).

As in the tree-edit-distance case, this final measure is normalised by the sum of
length of the strings:

d′S(x,y) =
dS(x,y)
|x|+ |y|

4 The algorithms

The LAESA algorithm requires a preprocessing procedure that selects a subset of
base prototypesB from the training setP, and computes and stores the distances
between the prototypes ofP andB. This preprocessing is the main difference in
relation to theAESA algorithm, sinceAESA requires the computation and storage of
all the distances between all the prototypes belonging toP. In the figures 5 and 6
are detailed theAESA andLAESA algorithms respectively.

The search procedure in these algorithms uses abranch and boundtechnique for
finding the nearest prototype to a samplex (test sample). The two main steps of
these algorithms are approximation and elimination. Instead of computing the dis-
tance between the prototypes belonging toP and the samplex to search the nearest
neighbour (exhaustive search), a lower bound is used to avoid some distance com-
putations. This lower bound uses the information obtained in the preprocessing
step and in the previous iterations of the search procedure. For everyp∈ P, a lower
boundgx(p) of the distance fromx to p can be easily derived from the triangle
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Input: P (training set),
x (sample)

Output: min∈ P, Dmin ∈ R
(1) Initialization.

Dmin = ∞
for everyp∈ P, g(p) = 0
s= arbitrary_element(P)

(2) Distance computation, d(x,s), P = P - {s}
(3) UpdateminandDmin
(4) For everyp∈ P do

• Update functiong(p)
• Elimination. If g(p)≥ Dmin, p is eliminated fromP.
• Approximation. Select as new candidates. The prototype with the mini-

mum value ofg. Return to step 2 ifP 6= /0.

Figure 5. Scheme of the AESA algorithm.

Input: P (training set),
B⊆ P (base prototypes),
x (sample)

Output: min∈ P, Dmin ∈ R
(1) Initialization.

Dmin = ∞
for everyp∈ P, g(p) = 0
s= arbitrary_element(B)

(2) Distance computation, d(x,s), P = P - {s}
(3) UpdateminandDmin
(4) For everyp∈ P do

• Update functiong(p) // only whens∈ B
• Elimination. If p 6∈ B andg(p)≥ Dmin, p is eliminated fromP.
• Approximation. Select as new candidates. The prototype with the mini-

mum value ofg (wheres∈ B if B 6= /0). Return to step 2 ifP 6= /0.

Figure 6. Scheme of the LAESA algorithm.

inequality:
gx(p) = max

b∈U
{|d(x,b)−d(b, p)|} (1)

whereU is the subset of prototypes whose distance to the test sample has been
previously computed. For theAESA algorithm, all prototypes inP are allowed to be
in U (provided that their distance tox has been computed). However, in theLAESA
algorithm, only base prototypes are added to the setU .

Both methods can be implemented as an iterative procedure that ends when the list
of prototypes is empty. At each iteration, a new candidate is selected and those pro-
totypes that cannot be closer to the sample than the actual candidate are eliminated
(using the triangle inequality). In theLAESA algorithm the new candidate is selected
among base prototypes.
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Figure 7. Average number of distance computations as a function of the looseness forAESA
algorithm using4000prototypes as training set. The standard deviation for all estimations
was below 3.5%.

In the approximation step, the prototype with a minimum value of the lower bound
function is selected. Details of the algorithm can be found in Vidal (1994) and Micó
et al. (1994).

Some methods for selecting base prototypes from the training setP are proposed
in previous works as Micó et al. (1994). In this paper, themaximum minimum dis-
tancesmethod (MMD) is used. This is the recommend method in Micó (1996) and
uses an accumulator array that stores the minimum distance to the preselected base
prototypes. The prototype with a maximum value in the array in each iteration is
selected as a new base prototype. In this paper,LAESA was implemented using the
elimination condition where the base prototypes never are pruned. This criterion
means that all the distances to the test sample from the base prototypes are com-
puted before selecting non-base prototypes in the approximation step.

5 Experiments

In order to explore the application of this algorithms to the handwritten digit recog-
nition task, we apply these classifiers to the NIST SPECIAL DATABASE 3 of Na-
tional Institute of Standards and Technology also used in other works as Rico-Juan
and Calera-Rubio (2002), Gómez et al. (1995), Micó and Oncina (1998) and López
and Piñaga (2000).

The increasing-size training samples for the experiments were built by taking50
writers and selecting the samples of digits randomly. The figures show the results

8



 0

 10

 20

 30

 40

 50

 60

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

E
rr

or
 r

at
e(

%
)

Looseness

Tree
String

Figure 8. Error rate as a function of the looseness forAESA algorithm using4000prototypes
as training set. The standard deviation for all estimations was below 3.5%.
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Figure 9. Average number of distance computations forLAESA algorithm withH = 0.15as
a function of the number of base prototypes, for a training set of4000prototypes.

averaged for all combinations.

The application of theAESA andLAESA algorithms in previous works as Vidal and
Lloret (1988), Vidal et al. (1988) and Micó and Oncina (1998) shows that a “loose-
ness”,H, in the triangle inequality reduces the number of distance computations.

Given a representation spaceE, the loosenessis defined for eachx,y,z∈ E as
h(x,y,z) = d(x,y)+d(y,z)−d(x,z). If a histogram of the distributiion ofh(x,y,z) is
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Figure 10. Average error rate obtained with different sizes of handwritten digits in the NIST
database withH = 0.15.

computed, this histogram can be used to estimate of the probability that the triangle
inequality is satisfied with aloosenesssmaller thanH. (Vidal et al. (1985)).

A prototype is eliminated in both algorithms ifgx(p) ≥ Dmin−H, whereDmin is
the distance between the sample and the nearest neighbour found at this moment.

We have checked thatAESA andLAESA algorithms using the tree-edit-distance and
the “looseness” is not needed to obtain very low computing time.

A first experiment usingAESA was made to selectH (using4000prototypes as a
training set). The experiments in Micó (1996) showed that this optimal number
does not depend on the number of prototypes in the training set. We can see in
figure 7 that these algorithms compute a few number of distances, even when the
looseness is not used with tree-edit-distance. Another interesting result obtained
when looseness is used for tree-edit-distance (to compare with the strings case) is
that the classification error rate is only slightly increased in contrast to the large
increase in the strings case.

In view of figures 7 and 8, we have decided to selectH = 0.15 as value to use
for pruning. This value reduces the number of computed distances but does not
increases significantly the classification error rate. IfH = 0 the number of computed
distances doubles in the trees case but, in the strings case, this number is30 times
bigger.

In the following experiment, the optimal size of the set of base prototypes,B, for
theLAESA is calculated. As shown in figure 9, the optimal size ofB that minimises
the number of computed distances per sample is10 and13 for trees and strings,

10



 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 1000  2000  3000  4000

A
ve

ra
ge

 n
um

be
r 

of
 d

is
ta

nc
e 

co
m

pu
ta

tio
ns

Number of prototypes in training set

LAESA string
AESA string
LAESA tree
AESA tree

Figure 11. Average number of distances computed by the algorithms as a function of the
numbers of prototypes in training set.

respectively. These sizes are fixed for the rest of theLAESA experiments.

The accuracy of classification, as well as, the number of computed distances per
sample whenH = 0.15are similar when using trees or strings (figure 10).

The number of distance computations needed to classify a sample is very impor-
tant when the cost of the distance is high. The figure 11 shows that this number
computed byAESA (LAESA) tends to constants6 (19), in the tree case;6 (21), in the
string case. So, this fact suggests thatAESA is faster thanLAESA. However, we will
see that this is not necessarily true.

Note that the time to classify a sample depends both on the algorithm and on the
dissimilarity function. As the figure 12 shows,LAESA is faster thanAESA when the
tree-edit-distance is used. Both algorithms are faster when the tree-edit-distance is
used instead of the string-distance.

In order to study this behaviour, we have considered the time used to classify a
sample by the algorithms as a function of the numbern = |P| of prototypes,

T(n) = To(n)+T1(n) (2)

whereTo(n) is the time consumed if the cost of the dissimilarity function was null
andT1(n) is the time used by dissimilarity function. In other words,T1(n) = N(n)×
t, whereN(n) is the number of computed distances andt the average time used to
compute the dissimilarity function.

An approximate way to obtainTo(n) is precompute all the distances between the
samples in training set and test set and store the results in a matrix (see figure 13).
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Figure 13. An approximation to computeTo(n) as a function of the number of prototypes
in training set.

TheLAESA is faster than theAESA in most cases. This reflects that the bounds update
in AESA is more expensive than inLAESA.

If we know To(n) andN(n), we can estimate the value oft whereLAESA becomes
faster thanAESA

TL(n) = TL
o (n)+NL(n) t̂(n)

TA(n) = TA
o (n)+NA(n) t̂(n)

(3)
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where the superscripts L and A denoteLAESA andAESA, respectively. WhenTL(n)=
TA(n) we obtain the crossing pointt̂(n)

t̂(n) =
TA

o (n)−TL
o (n)

NL
o (n)−NA

o (n)
(4)

represented in figure 14. If thet is between0 andt̂(n) theLAESA is faster than the
AESA, otherwiseAESA is faster. Note that in the strings case if the size of training
set is below than2000, AESA is always the faster. In contrast, in the trees case the
LAESA is always faster thanAESA.

6 Conclusions

In this paper we have studied the situations whereLAESA is faster and cheaper (in
terms of memory cost) thanAESA. In previous works as Micó et al. (1994) and Micó
and Oncina (1998), it seemed thatAESA was the best algorithm, because it computes
less distances. However, the cost of the dissimilarity function is very important to
the final result.

Our experiments show that the tree-edit-distance is a suitable choice in order to use
AESA andLAESA algorithms in a handwritten recognition task. Although the error
rate is similar using strings or trees, the average time needed to classify a sample
becomes smaller when the tree-edit-distance is used.

This paper also shows that theloosenesscan be avoided when the tree-edit-distance
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is used, in contrast with previous works as Juan and Vidal (2000) and Micó and
Oncina (1998) where the looseness was needed. However, further work must be
done in order to understand theloosenesseffect in the string and the tree case.
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