
Part-of-Speech Tagging

with Recurrent Neural Networks

Juan Antonio Pérez-Ortiz and Mikel L. Forcada

Departament de Llenguatges i Sistemes Informàtics
Universitat d’Alacant

E-03071 Alacant, Spain
{japerez,mlf}@dlsi.ua.es

Abstract

This paper explores the use of discrete-time recurrent
neural networks for part-of-speech disambiguation of
textual corpora. Our approach does not need a hand-
tagged text for training the tagger, being probably the
first neural approach doing so. Preliminary results
show that the performance of this approach is, at least,
similar to that of a standard hidden Markov model
trained using the Baum-Welch algorithm.

1 Introduction

This paper explores the use of discrete-time recurrent
neural networks (DTRNN) for part-of-speech (PoS)
tagging of ambiguous words from the sequential infor-
mation stored in the network’s state. PoS tagging [10]
is a very important intermediate step in many natural
language processing applications. A PoS tagger is a
program that assigns each word in a text a PoS tag or
category from a previously defined set, the tagset for
that language.

PoS tags may be very coarse (such as “verb”) or very
fine (such as “transitive lexical verb, present tense, 3rd
person singular”), depending on the particular task or
application. A large fraction of the words in a text may
be easily assigned a single PoS tag by looking them
up in a lexicon of forms or using a guesser that infers
the part of speech from the form of the word (e.g.,
English words ending in -ously are most likely adverbs),
but many words are ambiguous: they may be assigned
more than one PoS tag (for example, the English word
round may be a noun, an adjective, a preposition or an
adverb, or a verb).

The choice of the correct part of speech may be crucial,
for example, when translating to another language.

Most PoS taggers rely on the assumption that a word
can be assigned a single PoS tag in a given context, or
at least one of the possible parts of speech is most likely.
Choices are usually made (likelihoods are usually esti-
mated) depending on the part of speech of words sur-
rounding it, that is, assuming that syntax is the best
cue to disambiguation.

There are different approaches to automatic PoS tag-
ging: rule-based approaches [1] use linguistic knowl-
edge to formulate simple rules that assign a part of
speech to an ambiguous word using context informa-
tion; statistical approaches (of which hidden Markov
models trained using the Baum-Welch expectation-
maximization algorithm [2, 13] [10, ch. 10] are the stan-
dard model) use the statistics collected from ambigu-
ously or unambiguously tagged texts (see below) to es-
timate the likelihood of each possible interpretation of
a sentence or text portion so that the most likely dis-
ambiguation is chosen. Of course, hybrid approaches
are possible which combine the power of rule-based and
statistical PoS taggers.

We will refer to a text as unambiguously tagged or just
tagged when each occurrence of each word (ambiguous
or not) has been assigned the correct PoS tags. An
ambiguously tagged text corpus is the one in which all
words are assigned (using a lexicon or a morphological
analyser and optionally a guesser) the set of possible
PoS tags independently of context; in this case, am-
biguous and unknown words would receive more than
one PoS tag (unknown words are usually assigned the
set of open categories, that is, categories to which it is
very possible to add new words of the language: nouns,
verbs, adjectives, adverbs and proper nouns). Words
receiving the same set of PoS tags are said to belong
to the same ambiguity class [2]; for example, the words
tailor and book belong to the ambiguity class {noun,
verb}.



A neural or connectionist approach is also possible; a
brief survey of neural PoS tagging work follows:

• Schmid [14] trains a single-layer perceptron to
produce the PoS tag of a word as a unary or one-
hot vector. Input is a window of the p = 2 or
p = 3 words before the current word, the current
word, and the f = 1 or f = 2 words after it; on
the one hand, the following words and the current
word are represented by a vector in which the j-
th component is the frequency with which that
word gets the j-th PoS tag in a large unambigu-
ously tagged corpus; the previous words, on the
other hand, are represented by a linear combina-
tion of this vector and the output produced by
the net for the corresponding word. He reports
a 2% improvement over a regular hidden Markov
model (HMM) [2] model.

• Marques and Pereira [12] follow a similar ap-
proach but use small training sets for Portuguese.
In addition, they explore the use of Elman’s
net [3], but with worse results.

• Ma and Isahara [8] build upon Schmid’s [14]
model, using a combination of (multilayer) per-
ceptrons with different windows, and use the tag-
ger for the Thai language.

• Ma et al. [9] use a two-layer perceptron but net-
work outputs are corrected using Brill’s transfor-
mation rule [1] approach and the context window
is dynamically sized. Results are marginally bet-
ter than those in [8].

It has to be noted that all of the surveyed work relies on
training the neural net with an unambiguously tagged
corpus and using word representations which are also
based on the statistics of unambiguously tagged texts.
The work presented in this paper is also an exam-
ple of the neural approach to PoS tagging; however,
one of the main differences is that we train a DTRNN
on an ambiguously tagged corpus. As an intermediate
step, the network is trained to predict the next ambigu-
ity class in the text; then, a single-layer perceptron is
trained to extract a PoS from the state representation
developed by the network for the text seen so far. A
deeper explanation follows.

2 Method

Discrete-time recurrent neural networks (DTRNN)
have been used since their inception for predictive tasks

in the natural language processing arena; the work of
Elman [3] stands out. Elman trained his simple re-
current net (SRN, a class of DTRNN) to predict the
next word in a synthetic corpus of simple, randomly-
generated two- or three-word grammatical sentences
drawn from a small vocabulary of untagged nonam-
biguous words. Elman found out that, after learning,
the state representation the network developed after
reading a word grouped words in categories that could
be identified with classical tags such as noun, transitive
verb, intransitive verb, etc. For the predictive task to
succeed, the network had developed a way to obtain a
syntactic representation of the portion of text seen up
to that point.

The result of Elman’s work has very interesting cog-
nitive implications: humans learn syntax and parts of
speech from their exposure to untagged language, only
by observing co-ocurrences. The cognitive appeal of
Elman’s work is, however, obscured by the weak neu-
robiological plausibility of a discrete-time architecture
such as a SRN [5].

2.1 Neural Architecture
Elman’s [3] simple recurrent net (SRN), computes,
from its previous state or context s[t−1] and from each
input vector a[t] in the sequence, a new state s[t], using
a single-layer perceptron; then, it computes an output
o[t] from that state using another single-layer percep-
tron. SRN may be easily trained using the standard
methods [7] for DTRNN such as RTRL (real-time re-
current learning) —our choice here— or BPTT (back-
propagation through time).

2.2 Training Phases
In our approach, SRN is trained in two phases. First,
the training text is ambiguously tagged using a lexi-
con or morphological analyser, assigning each word its
ambiguity class, that is, a set of possible PoS tags (a
singleton in the case of a nonambiguous word).

The use of ambiguity classes instead of words or tags
reduces drastically the size of the task: Elman [3]
worked on a small vocabulary, but real vocabularies
have thousands of entries, whereas the number of am-
biguity classes is usually in the range of a few hundreds.

After that, a two-phase training process begins:

First Phase: The SRN is trained to predict the am-
biguity class of the next word o[t] ' a[t+1] from
the ambiguity class of the current word a[t], and,
indirectly, from the classes of preceding words in
the sentence, a[1], · · · ,a[t − 1], ideally stored in



the network’s state s[t − 1]. It is hoped that, in
this way, the SRN will learn to develop in its state
s[t] a syntactic representation of each particular
ambiguity class in its previous context which al-
lows it to make its best prediction about the am-
biguity class of the following word.

The coding of ambiguity classes is one-hot, both
for input and for output so that using a quadratic
error function allows outputs to be interpreted as
probabilitites. We use RTRL and learn the initial
state s[0] as in [4] (the SRN is restarted at that
learned state at the beginning of each sentence so
that intersentence interferences are avoided).

Second Phase: After successful training, each word
in the text is tagged with the hidden state vector
computed for it by the network; then, for each
word a perceptron is trained to predict its part
of speech from the state vector assigned to the
word which is f positions to the right of it. The
number f represents the amount of right (for-
ward) context needed to disambiguate a word;
the amount of left (past) context is determined
by the learning algorithm. Note that for this to
work, f end-of-sentence markers (a nonambigu-
ous word) have to be added at the end of each
sentence and predicted during the first training
phase.

An output unit is assigned to each PoS in this sec-
ond phase. When an ambiguous word is present,
three different target schemes have been used:

a) output units representing tags in the ambi-
guity class are set to 1 and all other units to
zero;

b) as a, but using 1/θ instead of 1, where θ > 1
is the size of the ambiguity class;

c) targets of 0 are provided only for tags not in
the class; the rest do not contribute to the
error function.

The third approach is the only one allow-
ing convergence toward tag probabilities (with
a quadratic error function), although we have
found the first approach to give the best results.

The combination of the state part of the SRN and the
perceptron is used to determine the PoS tag of words in
new sentences. Figures 1 and 2 illustrate the training
scheme for the first and the second phase, respectively.

2.3 Alternative Models
To evaluate the results of our approach we compare it
with those obtained with three models:

• A standard hidden Markov model trained using
the Baum-Welch algorithm [2, 10, 13].

• A model which randomly chooses a PoS tag from
each ambiguity class with probability 1/θ, where
θ is the number of tags in the class.

• A winner-takes-it-all model which always selects
the most probable PoS tag observed in a large
corpus for each ambiguity class.

Tagging results on a test text are compared to a hand-
tagged version of the same text. The first model is the
standard solution to the problem in hand, whereas the
other two models may be used as baselines. In par-
ticular, the last baseline in less fair because it involves
using more information besides the training text.

3 Results and Discussion

Experiments were performed to compute the error rates
when tagging text taken from the Penn Treebank (re-
lease 3) corpus [11]. A 14276-entry lexicon was built
from the first 20 sections of the 24 data sets correspond-
ing to the Wall Street Journal, discarding all words
appearing less than 4 times (which yielded a 95% cov-
erage), and discarding for each word all tags below 5%.
No guesser was used.

The training corpus has 46,461 words; the independent
test corpus has 47,397 words, of which 6574 are ambigu-
ous according to the lexicon and 2290 unknown. The
45 original tags in the Penn Treebank corpus were re-
duced to 19 coarser tags by removing some syntactical
distinctions; 82 ambiguity classes were then observed.
To train the SRN, pattern RTRL with a learning rate
of 0.05 and no momentum term, and initial weights in
the range [−0.2, 0.2] were used; all neural results are av-
erages of three differently initialized runs. Results are
expressed as the percentage of incorrect tags assigned
to ambiguous words (including unknown words), not as
the overall percentage of correct tags (a common, but
confusing error measure).

HMM results are shown in table 1 as a function of
the number of Baum-Welch iterations.

Random tagging yields an incorrect tag rate between
61.8% and 62.9%, as observed in 14 experiments with
different random number seed.

Winner-takes-it-all results in an incorrect tag rate of
20.5%, a reasonably good result which however relies
on the availability of a large hand-tagged corpus.



ã[1] ã[2] ã[3] . . . ã[L] #̃ #̃ . . . #̃
↑ ↑ ↑ ↑ ↑ ↑ ↑

s[0] → s[1] → s[2] → . . . s[L− 1] → s[L] → s[L + 1] → . . . s[L + f ]
↑ ↑ ↑ ↑ ↑ ↑

a[1] a[2] . . . a[L− 1] a[L] # . . . #

Figure 1: Training, first phase: learning to predict the next ambiguity class. The symbol “˜” means predicted value; the
“#”’s are end-of-sentence markers. Note the trailing sequence of f sentence boundaries, which are needed to tag
the f last words of a sentence in second phase.

d[1] . . . d[L− f − 1] d[L− f ] . . . d[L]
↑ ↑ ↑ ↑

s[0] → s[1] → . . . s[f + 1] → . . . s[L− 1] → s[L] → . . . s[L + f ]
↑ ↑ ↑ ↑ ↑

a[1] . . . a[f + 1] . . . a[L− 1] a[L] . . . #

Figure 2: Training, second phase: learning to obtain the correct tag

Neural taggers trained contain roughly the same
number of parameters as corresponding HMM; there-
fore, 12 state units are used, although preliminary re-
sults with 24 units were marginally better. Results for
f = 0 and f = 1 are shown in Table 2 as a function
of the number of iterations in both phases. As can be
seen, the addition of one word of right context confuses
rather than help the SRN, which makes better predic-
tions by relying only on past context. Also, it is clear
that deep phase 2 training is more critical than deep
phase 1 training.

As can be seen, a very simple neural tagger with
roughly the same number of adjustable parameters at-
tains basically the same results (about 45% incorrect
tags) as a standard Baum-Welch-trained HMM model,
but the neural tagger makes a decision on an ambigu-
ous word without taking future words into account,
whereas a HMM has to pospone the decision until a
nonambiguous word appears, although this capability
does not seem to give HMM an edge over the neural
net. The overall correct tag rate of both models is
around 92%.

4 Concluding Remarks

The work presented here shows that the information
stored in the state of a discrete-time recurrent neural
network trained to predict the ambiguity class of the
next word can be useful in the problem of PoS tagging.
Results show that the performance of this approach
is, at least, similar to that of standard Baum-Welch
trained HMM, but at the expense of ignoring the right
context of the word.

We are working on the extraction, via clustering, of a
finite-state automaton from the network’s state [6] to
formulate the finite-state tagging rules learnt by the
network. The effect of discretization on the error rate
attained by this automaton is also worth the study.

References

[1] E. Brill, “A Simple Rule-Based Part-of-Speech
Tagger”, in Proceedings Third Conference on Applied
Natural Language Processing, Trento, Italy, 1992.

[2] Doug Cutting, Julian Kupiec, Jan Pedersen and
Penelope Sibun, “A Practical Part-of-Speech Tagger”,
Proceedings of Third Conference on Applied Natural
Language Processing, Association for Computational
Linguistics, 1992, pp. 133–140.

[3] J. L. Elman, “Finding Structure in Time”, Cog-
nitive Science 14, 1990, pp. 179–211.

[4] Mikel L. Forcada and Rafael C. Carrasco,
“Learning the Initial State of a Second Order Recurrent
Neural Network during Regular-Language Inference”,
Neural Computation 7, 1995, pp. 923–930.

[5] Mikel L. Forcada and Rafael C. Carrasco,
“Finite-State Computation in Analog Neural Net-
works: Steps Towards Biologically Plausible Mod-
els?”, in S. Wermter et al., Emergent Neural Computa-
tional Architectures based on Neuroscience, col. Lecture
Notes in Computer Science 2036, Heidelberg, Springer-
Verlag, 2001, in press.

[6] C. L. Giles, C. B. Miller, D. Chen, H. H. Chen,
G. Z. Sun and Y. C. Lee, “Learning and Extracting
Finite-State Automata with Second-Order Recurrent



Table 1: Percent error rate with a hidden Markov model as a function of Baum-Welch iterations

Iterations 0 1 2 3 4 5 6 7 8
Error rate 62.8 51.7 48.8 47.2 46.0 45.5 45.3 45.3 45.5

Table 2: Error rates with 12 state units and f = 1, 0, according to the number of iterations in each phase

Phase 1 iterations →
0 100 200 300 400 500

0 98.7, 95.4 61.8, 67.8 62.1, 66.7 62.0, 66.6 62.1, 66.4 62.3, 66.4
Phase 2 100 96.7, 92.0 59.9, 46.4 60.1, 47.3 60.2, 47.4 60.2, 47.4 60.2, 47.5

iterations 200 96.8, 90.4 55.2, 45.6 55.3, 45.4 55.2, 45.4 55.1, 45.2 54.9, 45.0
↓ 300 96.1, 90.6 55.8, 44.9 56.0, 44.5 55.7, 44.4 55.7, 44.2 55.4, 44.2

400 96.5, 90.6 55.8, 44.4 55.8, 44.9 55.8, 45.1 55.7, 45.0 55.8, 45.0
500 96.9, 89.6 55.5, 45.1 55.5, 45.5 55.5, 45.5 55.5, 45.6 55.7, 45.5

Neural Networks”, Neural Computation 4(3), pp. 393–
405.

[7] S. Haykin, Neural Networks: a Comprehensive
Foundation, 2nd. ed., NJ: Prentice-Hall.

[8] Qing Ma and Hitoshi Isahara, “Part-of-Speech
Tagging of Thai Corpus with the Logically Combined
Neural Networks”, Proceedings of the Natural Language
Processing Pacific Rim Symposium, Linguistics and
Knowledge Science Laboratory, 1997, pp. 537–540.

[9] Qing Ma, Masaki Murata, Masao Utiyama, Kiy-
otaka Uchimoto and Hitoshi Isahara, “Part of Speech
Tagging With Mixed Approaches of Neural Networks
and Transformation Rules”, NLPRS’99 Workshop on
Natural Language Processing and Neural Networks,
Beijing, China, 1999.

[10] Cristopher D. Manning and Hinrich Schütze,
Foundations of Statistical Natural Language Process-
ing, MIT Press, 1999.

[11] Mitchell P. Marcus, Beatrice Santorini and Mary
Ann Marcinkiewicz, “Building a Large Annotated Cor-
pus of English: the Penn Treebank”, Computational
Linguistics 19, 1993, pp. 313–330.

[12] Nuno C. Marques and Gabriel Pereira Lopes,
“Using Neural Nets for Portuguese Part-of-Speech Tag-
ging”, Proceedings of the Fifth International Confer-
ence on The Cognitive Science of Natural Language
Processing, Dublin City University, Ireland, 1996.

[13] Lawrence R. Rabiner, “A Tutorial on Hidden
Markov Models and Selected Applications in Speech
Recognition”, Proceedings of the IEEE 77(2), 1989, pp.
257–286.

[14] H. Schmid, “Part-of-Speech Tagging with Neural
Networks”, Proceedings of the International Conference
on Computational Linguistics, 1994, pp. 172–176.


